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Abstract. In this paper, we suggest a modification of Kovarik’s ap-

proximate orthogonalization method without any necessity to compute

an inverse matrix at any iteration. Moreover, the cost of computation

in each iteration of our modification is low and constrained to matrix-

by-matrix multiplication. It is proved that this modification is linearly

convergent with a small asymptotic error constant. Numerical experi-

ments have shown that the number of iterations of our modification is at

least as good as that of Kovarik’s method. Therefore, despite the qua-

dratic convergence of Kovarik’s method, it is expected that the time of

implementation of our modification will be lower than that of Kovarik’s

method. Numerical experiments show the validity of our findings.
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Resumen. En este art́ıculo sugerimos una modificación del método
de ortogonalización aproximada de Kovaric sin necesidad de computar
la matriz inversa de ninguna iteración. El costo de computación es
relativamente bajo y se limita a multiplicar matrices. Se demuestra
que esta modificación es linealmente convergente con una constante de
error asintóticamente pequeña. Experimentos numéricos han mostrado
que el número de iteraciones de nuestra modificación es por lo menos
tan buena como en el método de Kovarik. Por consiguiente, a pesar
de la convergencia cuadrática del método de Kovaric, se espera que el
tiempo de implementación de nuestra modificación sea tan bajo como
la del método de Kovarik. Experimentos numéricos muestran la validez
de los hallazgos.
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1. Introduction

In [2], Z. Kovarik proposed his algorithm for approximate orthogonaliza-
tion of a finite linearly independent set of vectors from a Hilbert space. His
algorithm is some kind of iterative version of the classical Gram-Schmidt’s and
some of its direct applications have been derived for variational finite element
formulation of elliptic problems and least squares [3,6]. Kovarik had shown
that his method has quadratic convergence. Popa [5] adapted and extended
Kovarik’s method to a set of arbitrary vectors in Rn, and proved that if these
vectors were put to rows of a matrix, then the transformed matrix columns, in
addition to rows, were “quasi-orthogonal” (see [4]).

Suppose that m ≤ n and A is a m × n matrix of rank r. Kovarik’s approx-
imate orthogonalization method tries to transform A to a matrix with quasi-
orthogonal rows (see (5)). This method is initialized by setting A0 = A and
then generating the sequences of matrices Kk and Ak, k ≥ 0, as the following:

Kk = (I − AkAT
k )(I + AkAT

k )−1, Ak+1 = (I + Kk)Ak, k ≥ 0. (1)

Kovarik had shown:

Theorem 1. Suppose that the rows of the matrix A are linearly independent
and take

A� =
[
(AAT )1/2

]−1

A.

Then,

(a) the matrix A� has mutually orthogonal rows;
(b) the sequence {Ak}k≥0 defined by (1) converges to A�. Moreover,

‖K0‖2 < 1

and
‖A� − Ak‖2 ≤ ‖K0‖2k

2 , ∀ k ≥ 1. (2)

Relationship (2) tells us that the sequence generated by Kovarik’s method
has quadratic convergence.

We note that, since the rows of the matrix A are linearly independent,
the associated Gram matrix AAT is symmetric and positive definite. Thus,
the matrix A� is well defined. On the other hand, if the rows of A are not
linearly independent, then the matrix (AAT )1/2 still exists, but is no longer
invertible. Thus, instead of A�, we have to consider its “natural” generalization
A∞ defined by

A∞ =
[
(AAT )1/2

]+

A,

where B+ is the Moore-Penrose pseudoinverse of B (see [1]). Popa [5] proved
that, in this case, sequence {Ak} converges to A∞ and the rows of A∞ are
“quasi-orthogonal”.
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It is known that, if
‖AkAT

k ‖2 < 1, (3)
then the matrix I + AkAT

k will be invertible and vice versa [1]. For k = 0, (3)
is as

‖AAT ‖2 < 1. (4)
If (4) is true, then it can be proved [4] that (3) holds true, for all k ≥ 1.
Moreover, assumption (4) is not restrictive. It is sufficient to scale the matrix
A, for example, as the following [6]:

Anew :=
1√‖A‖1‖A‖∞ + 1

A.

So, without loss of generality, it is assumed that the matrix A satisfies (4).
In this case, by setting δ = 1 − λmin(AAT ), where λmin(AAT ) is the smallest
nonzero eigenvalue of AAT , we have [5]:

A∞ := lim
k→∞

Ak =
[
(AAT )1/2

]+

A

and
‖Ak − A∞‖2 ≤ δ2k

, ∀ k ≥ 0.

Suppose that the singular value decomposition (SVD) of A is as

UT AV = diag (σ1, . . . , σr, 0, . . . , 0),

where
σ1 ≥ · · · ≥ σr > 0, r = rank (A).

Take

Ĩ =

[
Ir 0

0 0

]
m×m

.

It can be proved [7] that the following “quasi-orthogonality” relation between
rows of A∞ holds true:

〈(A∞)i, (A∞)j〉 = 〈(U)iĨ , (U)j〉. (5)

If the rows of A are independent, then Ĩ = I and the relation (5) is the same
classical orthogonality. Popa [7] showed that a similar relation holds true
between the columns of A∞ and

lim
k→∞

cond2(Ak) = cond2(A∞) = 1.

Despite the quadratic convergence of Kovarik’s algorithm, there is a difficult
computational aspect related to explicitly compute the inverse of I +AkAT

k , for
all k. As it is known, explicit computation of the inverse, because of accumu-
lation and rounding errors, always has some problems [1]. Thus, it is preferred
to use some techniques to approximate the inverse. Several modifications have
been proposed for Kovarik’s method, all of which try to eliminate the necessity
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to explicitly compute the inverse. These are upon the use of some approx-
imations for (I + AkAT

k )−1, which are based on Taylor’s series of particular
functions and are generally linearly convergent [3,4,6,7].

In this paper, we propose a modification for Kovarik’s method that, free
from computation of an inverse, is very simple and its computational cost is
restricted to matrix-by-matrix multiplication in each iteration. We prove that
the modification is linearly convergent with a small asymptotic error constant,
so it is expected to have some good convergent properties. Although Kovarik’s
algorithm is quadratically convergent and our modification is linearly conver-
gent, numerical experiments show that the modification works at least as well
as Kovarik’s method, both in the number of iterations and in the time of im-
plementation. In other word, we propose a modification for Kovarik’s method
so that it, with a lower cost, gives results as good as Kovarik’s method and free
from its numerical problems.

2. A modification of Kovarik’s method

Suppose that the SVD decomposition of A0 = A is as

UT A0V = diag (σ(0)
1 , . . . , σ(0)

r , 0, . . . , 0),

where r = rank (A). It is shown [5] that the SVD decomposition of Ak+1 is

UT Ak+1V = diag (σ(k+1)
1 , . . . , σ(k+1)

r , 0, . . . , 0),

where

σ
(k+1)
j =

[
1 +

1 − (σ(k)
j )2

1 + (σ(k)
j )2

]
σ

(k)
j , j = 1, . . . , r, k ≥ 0. (6)

Thus, the examination of Kovarik’s method convergence leads to that of real
numbers sequence (6).

Various modifications for Kovarik’s method are obtained by the approxi-
mation of 1/(1 + (σ(k)

j )2) (and therefore, (I + AkAT
k )−1). For example, the

approximation

1

1 + (σ(k)
j )2

≈
qk∑

i=0

(
−(σ(k)

j )2
)i

was used in [7] leading to modification of

Kk = (I − AkAT
k )

qk∑
i=0

(−AkAT
k

)i
, Ak+1 = (I + Kk)Ak, ∀ k ≥ 0

for Kovarik’s method. Here, the integers qk are arbitrary odd. For a good
convergence property of this modification, the numbers qk must be chosen large.
Moreover, if qk is even or arbitrary, the method does not always converge.
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In what follows, we suggest a modification for Kovarik’s method, based on
a special quadratic interpolation. To clarify the issue, we simplify (6) in the
following way:

σ
(k+1)
j =

2σ
(k)
j

1 + (σ(k)
j )2

. (7)

Consider the function

f(t) =
1

1 + t
, 0 ≤ t ≤ 1.

We know that f(0) = 1 and f(1) = 0.5. We are going to approximate this
function with a quadratic polynomial passing the points (0,1) and (1,0.5) which
is as good as possible. Suppose that this polynomial is

p(t) = a0 + a1t + a2t
2.

Since p(0) = 1 and p(1) = 0.5, we will have

a0 = 1, a2 = −0.5 − a1.

Therefore, p(t) is as

p(t) = 1 + a1t − (a1 + 0.5)t2,

where a1 is a parameter. Due to the existence of the parameter a1 in p(t), a
class of approximations for f(t) is obtained. Different choices for a1 lead to
different modifications for Kovarik’s method. For example, if we choose a1 so
that ∫ 1

0

f(t) dt =
∫ 1

0

p(t) dt,

then we will obtain a1 ≈ −0.841, leading to iterative scheme

σ
(k+1)
j = 2p((σ(k)

j )2)σ(k)
j

=
[
2 − 1.682(σ(k)

j )2 + 0.682(σ(k)
j )4

]
σ

(k)
j

=
[
1 +

(
1 − (σ(k)

j )2
) (

1 − 0.682(σ(k)
j )2

)]
σ

(k)
j

and, hence, the modification of

Kk = (I − AkAT
k )(I − 0.682AkAT

k ), Ak+1 = (I + Kk)Ak, k ≥ 0 (8)

for Kovarik’s method.
Also, we can choose a1 such that least square error∫ 1

0

(f(t) − p(t))2 dt
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is minimum. With some calculations, we obtain a1 ≈ −0.848 for which iterative
scheme

σ
(k+1)
j = 2p((σ(k)

j )2)σ(k)
j

=
[
2 − 1.696(σ(k)

j )2 + 0.696(σ(k)
j )4

]
σ

(k)
j

=
[
1 +

(
1 − (σ(k)

j )2
) (

1 − 0.696(σ(k)
j )2

)]
σ

(k)
j

and hence the modification

Kk = (I − AkAT
k )(I − 0.696AkAT

k ), Ak+1 = (I + Kk)Ak, k ≥ 0 (9)

are resulted. The convergence of these modifications will be examined later.
To make p(t) a good approximation for f(t), we choose the parameter a1

such that p(t) is near l(t), where

l(t) = 1 − 0.5t

is the chord connecting the points (0, 1) and (1, 0.5). Since f(t) ≤ l(t), for all
t ∈ [0, 1], and since p(t) must be a good approximation for f(t), then we have
p(t) ≤ l(t). Therefore,

|l(t) − p(t)| = l(t) − p(t) = (a1 + 0.5)(t2 − t), ∀ t, 0 ≤ t ≤ 1.

On the other hand, since t2 ≤ t, for all t ∈ [0, 1], then we must have a1+0.5 < 0
or a1 < −0.5.

The special choice of a1 = −0.5 implies that p(t) equals l(t) so that iterative
scheme

σ
(k+1)
j = 2

[
1 − (σ(k)

j )2
]
σ

(k)
j

and modification
Ak+1 = 2(I − AkAT

k )Ak, k ≥ 0

are obtained for Kovarik’s method. The above method is the same as that
obtained by using two first terms of Newman’s series [1]

(I + AkAT
k )−1 = I − AkAT

k + (AkAT
k )2 − (AkAT

k )3 + · · · .

Having known the choice of the parameter a1 in p(t) (namely, a1 satisfying
a1 + 0.5 < 0), we can pose the class of methods

σ
(k+1)
j = 2p((σ(k)

j )2)σ(k)
j

=
[
2 + a1(σ

(k)
j )2 − 2(a1 + 0.5)(σ(k)

j )4
]
σ

(k)
j

=
[
1 +

(
1 − (σ(k)

j )2
)(

1 − α(σ(k)
j )2

)]
σ

(k)
j

(10)

leading to the modification class of

Kk = (I − AkAT
k )(I − αAkAT

k ), Ak+1 = (I + Kk)Ak+1, k ≥ 0 (11)
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for Kovarik’s method. Here, α = −2a1 − 1 and since a1 + 0.5 < 0, then

α = −2a1 − 1 > 0. (12)

We note that the modifications (8) and (9) for Kovarik’s method are special
cases of (11) corresponding to the choices of α = 0.682 and α = 0.696, respec-
tively. In the next section, we prove that if the parameter α is chosen in a
special interval, then (11) is always convergent and, in general, the order of its
convergence is linear.

3. Convergence proof

It is clear that the parameter α must be chosen such that the class (10) (or
(11)) will be convergent. We can write the sequence (10) as

xk+1 = h(xk), k ≥ 0 (13)

in which
h(x) =

(
1 + (1 − x2)(1 − αx2)

)
x.

The above sequence starts from an initial approximation x0 ∈ (0, 1]. If x∗ =
limk→∞ xk, then x∗ is a fixed point of function h(x) and we have

x∗ =
(
1 + (1 − (x∗)2)(1 − α(x∗)2)

)
x∗.

Therefore,
x∗(1 − (x∗)2)(1 − α(x∗)2) = 0

which results in
x∗ = 0,±1,±1/

√
α.

On the other hand, from (3) and that xk = σ
(k)
j is an eigenvalue of Ak, we

have 0 < xk < 1, and hence 0 < x∗ ≤ 1.

Theorem 2. If α ∈ (0, 1), and if the numbers a and b are chosen such that
0 < a < 1 < b < 1/

√
α, then the sequence (13) converges to x∗ = 1, for any

initial approximation of x0 ∈ (0, 1].

Proof. If [a, b] consists of only fixed point of x∗ = 1 and h : [a, b] −→ [a, b], it is
clear that, from the continuity of h(x), sequence (13) converges to x∗ = 1. Since
[a, b] does not include fixed point of 0, therefore a > 0. (that is [a, b] = (0, b].)
From h(a) > a, we conclude that 1− (1 + α)a2 + αa4 > 0, which is a quadratic
polynomial in terms of a2 with the roots of

a2 =
(1 + α) ± |1 − α|

2α
.

Therefore, a must be such that{
a < 1 or a > 1/

√
α 1 − α > 0

a < 1/
√

α or a > 1 1 − α < 0.
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Similarly, from h(b) < b we conclude that 1 − (1 + α)b2 + αb4 < 0, which is a
quadratic polynomial in terms of b2 with the roots of

b2 =
(1 + α) ± |1 − α|

2α
.

Therefore, b must be such that{
1 < b < 1/

√
α 1 − α > 0

1/
√

α < b < 1 1 − α < 0.

Hence, a and b must be such that{
0 < a < 1 < b < 1/

√
α 1 − α > 0

0 < a < 1/
√

α < b < 1 1 − α < 0.

In any case, h : [a, b] −→ [a, b]. Since we expect that [a, b] includes fixed point
of x∗ = 1, we must choose 0 < a < 1 < b < 1/

√
α, corresponding to 1− α > 0.

Moreover, by (12), we get α = −2a1 − 1 > 0, which results in 0 < α < 1. ��

In the next theorem, we show that any modification of the class (11) is
linearly convergent.

Theorem 3. If α ∈ (0, 1), then the sequence (13) is linearly convergent to
x∗ = 1, for any initial approximation of x0 ∈ (0, 1]. Moreover, the asymptotic
error constant is |2α − 1|.

Proof. Let ek = xk − 1 denote the error in the kth iteration of the sequence
(13). From

xk+1 =
(
1 + (1 − x2

k)(1 − αx2
k)

)
xk

= 2xk − (α + 1)x3
k + αx5

k,

we obtain
ek+1 = 2ek − (α + 1)(ek + 1)3 + α(ek + 1)5

≈ (−1 + 2α)ek.

Therefore,

lim
k→∞

|ek+1|
|ek| = |2α − 1|. (14)

Relationship (14) shows that the sequence (13) is linearly convergent with as-
ymptotic error constant |2α − 1|. ��

By combining the above two theorems, we obtain the following result.

Theorem 4. If α ∈ (0, 1), then the class of modifications (11) is linearly
convergent with the asymptotic error constant |2α − 1|. ��
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For a rapid convergence, we must choose the parameter α such that the
asymptotic error constant |2α − 1| will be as small as possible. Suppose that
x0 ∈ (0, 1] is arbitrary. If the sequence (13) is generated for different values of
α, 0 < α < 1, then we will observe that:

(a) For 0.506 < α < 1, the convergence is monotonic, while for 0 < α ≤
0.506, it is not.

(b) For α approaching zero or one, the convergence is slow.
(c) For 0.506 < α ≤ 0.6, the convergence is rapid and monotonic.
(d) For 0.4 ≤ α < 0.506, the convergence is rapid but not monotonic.
(e) For α = 0.507 the most rapid convergence is obtained.

So, we take α = 0.507 and obtain the modification

Kk+1 = (I − AkAT
k )(I − 0.507AkAT

k ), Ak+1 = (I + Kk)Ak, k ≥ 0 (15)

for Kovarik’s method that is linearly convergent with an asymptotic error con-
stant equal to 0.014.

4. Numerical experiments

In this section, Kovarik’s method, KO, is numerically compared with (15),
MK. To this end, we use the stop criterion ‖Ak+1 − Ak‖2 < 10−4. The com-
puting platform is a PC with a PIV processor at 2.8 MHz and 512 Mb RAM.
Test square matrices are as the following:
Matrix H: Hilbert matrix n × n, with elements aij = 1/(i + j − 1);
Matrix P: Pascal matrix n × n, with elements a1j = ai1 = 1, aij = ai−1,j +
ai,j−1;
Matrix A: a n × n matrix with elements aij = |i − j|;
Matrix M: a n × n matrix with elements aij = max{i, j};
Matrix R: a n × n random matrix with elements belonging to [0, 1] (normal
distribution with average 0 and variance 1);

In the next step, some test matrices were obtained from the following integral
equation of the first kind [3]: for a given function y ∈ L2([0, 1]), find x ∈
L2([0, 1]) such that ∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1]. (16)

We discretized (16) by a collocation algorithm with the collocation points

si =
i − 1
n − 1

, i = 1, 2, . . . , n,

obtaining a symmetric and positive semidefinite system

Ax = b, (17)
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where A and b given by

Aij =
∫ 1

0

k(si, t)k(sj , t)dt, bi = y(si). (18)

We considered two particular cases. In the first, denoted by C1,

k(s, t) =
1

1 + |s − 0.5| + t
, y(s) =




ln
(

2.5 − s

1.5 − s

)
s ∈ [0, 0.5)

ln
(

1.5 + s

0.5 + s

)
s ∈ [0.5, 1].

The right hand side y was computed such that the equation (16) had the
solution x(t) = 1, ∀ t ∈ [0, 1]. Then

Aij =
∫ 1

0

k(si, t)k(sj , t)dt =




1
αi(1 + αj)

αi = αj

1
αi − αj

ln
(1 + αj)αi

(1 + αi)αj
αi �= αj

(19)

where

αi = 1 + |si − 0.5|, i = 1, 2, . . . , n.

For n ≥ 3, the rank of matrix A is given by

rank (A) =

{
(n + 1)/2 n = odd

n/2 n = even.

The second case, denoted by C2, is derived from the determination of the
charge distribution generated from a given electric field. In this case,

k(s, t) =
1√

(1 + (s − t)2)3
, y(s) = s (20)

and the exact values Aij from (18) were approximated by rectangular (’mid-
point’) quadrature formula, with 16 equally spaced points in [0, 1].

In table 1, iter and time indicate the number of iterations and the time of
computations, respectively. According to table 1, iter and time of MK method,
in general, are better than those of KO. Although MK method has linear con-
vergence, in contrast with quadratic convergence of KO, table 1 shows that MK
has better performance than KO. Note that the number of computational arith-
metic of MK is much less than that of KO. So, MK method, besides simplicity,
has a good performance.
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MK KO
MAT n iter time(s) iter time(s)

100 68 0.344 70 0.547
H 200 71 2.343 72 3.469

500 70 34.828 74 51.234
100 232 1.000 230 1.719

P 200 431 13.781 428 20.109
500 739 22.461 739 31.011
100 17 0.125 18 0.188

A 200 19 0.640 20 0.969
500 21 10.438 23 15.907
100 19 0.141 20 0.203

M 200 21 0.734 28 1.063
500 23 11.407 25 17.250
100 14 0.125 15 0.187

R 200 18 0.625 18 0.922
500 18 8.750 20 13.594
100 17 0.666 17 1.753

C1 200 15 9.108 16 20.172
500 20 12.082 26 33.458
100 66 4.252 70 8.735

C2 200 66 37.701 64 82.280
500 72 50.017 81 102.118

Table 1.

5. Conclusion

We represented a modification for Kovarik’s method based on a special qua-
dratic interpolation. Our modification does not need inversion in every itera-
tion. In addition, the cost of computations is much less than that of Kovarik’s
method. On the other hand, numerical experiments show that the number of
iterations is less than that of Kovarik’s method. Hence, we expect that, in gen-
eral case, the time of computations will be less than that of Kovarik’s method
which is confirmed by numerical experiments.
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