An improved convergence analysis of a superquadratic method for solving generalized equations

Ioannis K. Argyros
Cameron University, USA

Abstract. We provide a finer local convergence analysis than before [6]-[9] of a certain superquadratic method for solving generalized equations under Hölder continuity conditions
Keywords and phrases. Superquadratic convergence, generalized equations, radius of convergence, Aubin continuity, pseudo-Lipschitz map.

2000 Mathematics Subject Classification. Primary: 65K10, 65G99. Secondary: 47H04, 49M15

Resumen. Nosotros hacemos un análisis de convergencia local más fino que el proporcionado antes de [6]-[9] de cierto método supercuadrático para resolver ecuaciones generalizadas bajo ciertas condiciones de continuidad de Hölder.

1. Introduction

In this study we are concerned with the problem of approximating a solution x^{*} of the generalized equation of the form

$$
\begin{equation*}
o \in F(x)+G(x), \tag{1.1}
\end{equation*}
$$

where F is a twice Fréchet differentiable operator defined on a Banach space X with values in a Banach space Y, and G is a set-valued map from X to the subsets of Y.

Local results providing sufficient conditions for the existence of x^{*} have been provided by several authors using various iterative methods and hypotheses [2][9], [11]. Here in particular, we use the method

$$
\begin{equation*}
o \in F\left(x_{n}\right)+\nabla F\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)+\frac{1}{2} \nabla^{2} F\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{2}+G\left(x_{n+1}\right) \tag{1.2}
\end{equation*}
$$

to generate a sequence approximating x^{*}.

In the paper by Geoffroy and Pietrus [9] local convergence results were provided for method (1.2) using Hölder continuity conditions on $\nabla^{2} F$. Here we are motivated by this paper, our paper [1], and optimization considerations.

In particular using the same hypotheses but more precise error bounds we provide a larger convergence radius and finer error bounds on the distances $\left\|x_{n}-x^{*}\right\|(n \geq 0)$.

Some numerical examples are provided to justify our theoretical results. The same examples are used to compare favorably our results with the corresponding ones in [9].

The paper is organized as follows: In Section 2 we have collected a number of necessary results [6], [9], [10] needed in our local convergence analysis appearing in Section 3.

2. Preliminaries

We need a definition about the Aubin continuity [5]-[7]:
Definition 2.1. A set-valued map $\Gamma: X \rightarrow Y$ is said to be M-pseudo-Lipschitz around $\left(x_{0}, y_{0}\right) \in$ graph $F=\{(x, y) \in X \times Y \mid y \in \Gamma(x)\}$ if there exist neighborhoods V of x_{0} and U of y_{0} such that

$$
\begin{equation*}
\sup _{y \in \Gamma(u) \cap U} \operatorname{dist}(y, \Gamma(v)) \leq M\|u-v\| \text { for all } x, y \in V \text {. } \tag{2.1}
\end{equation*}
$$

The Aubin continuity of Γ is equivalent to the openess with linear rate of Γ^{-1} and the metric regularity of Γ^{-1}.

Let A and C be two subsets of X. Then the excess e from the set A to the set C is given by

$$
\begin{equation*}
e(C, A)=\sup _{x \in C} \operatorname{dist}(x, A) . \tag{2.2}
\end{equation*}
$$

Estimate (2.1) using (2.2) can be written

$$
\begin{equation*}
c(\Gamma(u) \cap U, \Gamma(v)) \leq M\|u-v\| \text { for all } u, v \in V \tag{2.3}
\end{equation*}
$$

We also need a lemma about fixed points [10]:
Lemma 2.2. Let (X, ρ) be a Banach space, let T be a map from X into the closed subsets of X, let $p \in X$ and let r and λ be such that $0 \leq \lambda<1$, and

$$
\begin{gather*}
\operatorname{dist}(p, T(p)) \leq r(1-\lambda), \tag{2.4}\\
e(T(u) \cap U(p, r), T(v)) \leq \lambda \rho(u, v), \text { for all } u, v \in U(p, r) \tag{2.5}
\end{gather*}
$$

where

$$
\begin{equation*}
U(p, r)=\{x \in X\|x-p\| \leq r\} . \tag{2.6}
\end{equation*}
$$

Then T has a fixed point in $U(p, r)$. Moreover if T is single-valued, then x is the unique fixed point of T in $U(p, r)$.

Let x^{*} be a solution of (1.1). We assume:
(A1) F is Fréchet-differentiable on some neighborhood V of x^{*};
(A2) $\nabla^{2} F$ is bounded by L on V and $\left\|\nabla^{2} F\left(x^{*}\right)\right\| \leq L_{0}$;
(A3) $\nabla^{2} F$ is α-Hölder on V with constant K, i.e.

$$
\begin{equation*}
\left\|\nabla^{2} F(x)-\nabla^{2} F(y)\right\| \leq K\|x-y\|^{\alpha} \text { for all } x, y \in V \tag{2.7}
\end{equation*}
$$

where K satisfies

$$
\begin{equation*}
K \geq 5(\alpha+1)(\alpha+2) \bar{L}, \quad \bar{L}=\frac{L_{0}+L}{2} \tag{2.8}
\end{equation*}
$$

(A4) $\nabla^{2} F$ is α-center-Hölder on V at x^{*} with constant K_{0}, i.e.

$$
\begin{equation*}
\left\|\nabla^{2} F(x)-\nabla^{2} F\left(x^{*}\right)\right\| \leq K_{0}\left\|x-x^{*}\right\|^{\alpha} \text { for all } x \in V \tag{2.9}
\end{equation*}
$$

(A5) The application

$$
\begin{equation*}
\left[F\left(x^{*}\right)+\nabla F\left(x^{*}\right)\left(\cdot-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(\cdot-x^{*}\right)^{2}+G(\cdot)\right]^{-1} \tag{2.10}
\end{equation*}
$$

is M-pseudo-Lipschitz around $\left(0, x^{*}\right)$ and G has closed graph.
We can now compare our hypotheses with the corresponding ones in [9]:
Remark 2.3. In general

$$
\begin{equation*}
K_{0} \leq K, \quad L_{0} \leq L \tag{2.11}
\end{equation*}
$$

hold in general and $\frac{K}{K_{0}}$ can be arbitrarily large [1], [2]. If $K_{0}=K$ our hypotheses reduce to the ones in [9]. Otherwise our hypotheses can be used to improve the results in [9] as stated in the Introduction. Note that in practice the computation of K requires that of K_{0}. That is the computational cost of our hypotheses (A1)-(A5) is the same as the corresponding one in [9] using (A1)-(A3) and (A5).

3. Local convergence analysis of method (1.2)

We will follow the proof routine in [9] but we will also stretch the differences where the really needed condition (2.9) is used instead of the stronger (2.7) used in [9].

We state the main local convergence result for method (1.2):
Theorem 3.1. Let x^{*} be a solution of (1.1). Under hypotheses (A1)-(A5) and for

$$
\begin{equation*}
c>\frac{M K}{(\alpha+1)(\alpha+1)} \tag{3.1}
\end{equation*}
$$

there exists $\delta>0$ such that for every starting guess $x_{0} \in U\left(x^{*}, \delta\right)$ there exists a sequence $\left\{x_{n}\right\}(n \geq 0)$ generated by method (1.2) satisfying

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq c\left\|x_{n}-x^{*}\right\|^{2+\alpha} \quad(n \geq 0) \tag{3.2}
\end{equation*}
$$

In order for us to prove this theorem we first need some notations. Let us define the set-valued map Q from X to the subsets of Y by

$$
\begin{equation*}
Q(x)=F\left(x^{*}\right)+\nabla F\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(x-x^{*}\right)+G(x) . \tag{3.3}
\end{equation*}
$$

Let

$$
\begin{align*}
Z_{n}(x)= & F\left(x^{*}\right)+\nabla F\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(x-x^{*}\right)^{2} \\
& -F\left(x_{n}\right)-\nabla F\left(x_{n}\right)\left(x-x_{n}\right)-\frac{1}{2} \nabla^{2} F\left(x_{n}\right)\left(x-x_{n}\right)^{2}, \tag{3.4}
\end{align*}
$$

and define $T_{n}: X \rightarrow Y$ by

$$
\begin{equation*}
T_{n}(x)=Q^{-1}\left[Z_{n}(x)\right] \tag{3.5}
\end{equation*}
$$

Clearly x_{1} is a fixed point of T_{0} if and only if:

$$
\begin{align*}
F\left(x^{*}\right) & +\nabla F\left(x^{*}\right)\left(x_{1}-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(x_{1}-x^{*}\right)-F\left(x_{0}\right) \\
& -\nabla F\left(x_{0}\right)\left(x_{1}-x_{0}\right)-\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(x_{1}-x_{0}\right)^{2} \in Q\left(x_{1}\right) \tag{3.6}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
o \in F\left(x_{0}\right)+\nabla F\left(x_{0}\right)\left(x_{1}-x_{0}\right)+\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(x_{1}-x_{0}\right)^{2}+G\left(x_{1}\right) . \tag{3.7}
\end{equation*}
$$

We need the proposition:
Proposition 3.2. Under the hypotheses of Theorem 3.1, there exists $\delta>0$ such that for all $x_{0} \in U\left(x^{*}, \delta\right)\left(x_{0} \neq x^{*}\right)$, the map T_{0} has a fixed point x_{1} in $U\left(x^{*}, \delta\right)$.

Proof. By (A5) there exist positive numbers a and b such that

$$
\begin{equation*}
e\left(Q^{-1}\left(y_{1}\right) \cap U\left(x^{*}, a\right), Q^{-1}\left(y_{2}\right)\right) \leq M\left\|y_{1}-y_{2}\right\|, \text { for all } y_{1}, y_{2} \in U(0, b) \tag{3.8}
\end{equation*}
$$

Choose $\delta>0$ such that

$$
\begin{equation*}
\delta<\delta_{0} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{0}=\min \left\{a,\left[\frac{b(\alpha+1)(\alpha+2)}{K_{0}+K 2^{2+\alpha}}\right]^{\frac{1}{2+\alpha}}, \frac{(\alpha+1)(\alpha+2)}{M K}-\frac{1}{c}, \frac{1}{\sqrt[1+\alpha]{c}}\right\} \tag{3.10}
\end{equation*}
$$

We shall show condition (2.4) and (2.5) of Lemma 2.2 hold true for $p=x^{*}, T$ being T_{0} and r and λ parameters to be determined.

We first have

$$
\begin{equation*}
\operatorname{dist}\left(x^{*}, T_{0}\left(x^{*}\right)\right) \leq e\left(Q^{-1}(0) \cap U\left(x^{*}, \delta\right), T_{0}\left(x^{*}\right)\right) \tag{3.11}
\end{equation*}
$$

Using (2.7), (3.4), and (3.9) we obtain in turn:

$$
\begin{align*}
\left\|Z_{0}\left(x^{*}\right)\right\|= & \left\|F\left(x^{*}\right)-F\left(x_{0}\right)-\nabla F\left(x_{0}\right)\left(x^{*}-x_{0}\right)-\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(x^{*}-x_{0}\right)^{2}\right\| \\
= & \| \int_{0}^{1}(1-t) \nabla^{2} F\left(x_{0}+t\left(x^{*}-x_{0}\right)\right)\left(x^{*}-x_{0}\right)^{2} d t \\
& -\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(x^{*}-x_{0}\right)^{2} \| \\
\leq & K\left|\int_{0}^{1}(1-t) t^{\alpha} d t\right|\left\|x^{*}-x_{0}\right\|^{2+\alpha} \\
= & \frac{K}{(\alpha+1)(\alpha+2)}\left\|x^{*}-x_{0}\right\|^{2+\alpha}<b \tag{3.12}
\end{align*}
$$

It follows from (3.8):

$$
\begin{align*}
e\left(Q^{-1}(0) \cap U\left(x^{*}, \delta\right), T_{0}\left(x^{*}\right)\right) & =e\left(Q^{-1}(0) \cap U\left(x^{*}, \delta\right), Q^{-1}\left[T_{0}\left(x^{*}\right)\right]\right) \\
& \leq \frac{M K}{(\alpha+1)(\alpha+2)}\left\|x_{0}-x^{*}\right\|^{2+\alpha} \tag{3.13}
\end{align*}
$$

and by (3.11)

$$
\begin{equation*}
\operatorname{dist}\left(x^{*}, T_{0}\left(x^{*}\right)\right) \leq \frac{M K}{(\alpha+1)(\alpha+2)}\left\|x^{*}-x_{0}\right\|^{2+\alpha} . \tag{3.14}
\end{equation*}
$$

Moreover by (3.9)

$$
\begin{equation*}
\operatorname{dist}\left(x^{*}, T_{0}\left(x^{*}\right)\right)<c\left[1-\frac{M K \delta}{(\alpha+1)(\alpha+2)}\right]\left\|x^{*}-x_{0}\right\|^{2+\alpha} \tag{3.15}
\end{equation*}
$$

since,

$$
\begin{equation*}
c\left[1-\frac{M K \delta}{(\alpha+1)(\alpha+2)}\right]>\frac{M K}{(\alpha+1)(\alpha+2)} \tag{3.16}
\end{equation*}
$$

Note that by the choice of c

$$
\begin{equation*}
\frac{M K \delta}{(\alpha+1)(\alpha+2)}<1 \tag{3.17}
\end{equation*}
$$

By setting $p=x^{*}, \lambda=\frac{M K \delta}{(\alpha+1)(\alpha+2)}$ and $r=r_{0}=c\left\|x_{0}-x^{*}\right\|^{2+\alpha}$ we deduce (2.4).
We shall show (2.5). We have $r_{0} \leq \delta<a$, since $\delta \leq \frac{1}{\sqrt[1+\alpha]{c}}$ for $\left\|x_{0}-x^{*}\right\| \leq \delta$.

In view of (2.7), (2.9) and (3.4) we can obtain in turn

$$
\begin{align*}
\left\|Z_{0}(x)\right\| \leq & \left\|F\left(x^{*}\right)-F(x)+\nabla F\left(x^{*}\right)\left(x-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(x-x^{*}\right)^{2}\right\| \\
& +\left\|F(x)-F\left(x_{0}\right)-\nabla F\left(x_{0}\right)\left(x-x_{0}\right)-\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(x-x_{0}\right)^{2}\right\| \\
\leq & \frac{K_{0}}{(\alpha+1)(\alpha+2)}\left\|x-x^{*}\right\|^{2+\alpha}+\frac{K}{(\alpha+1)(\alpha+2)}\left\|x-x_{0}\right\|^{2+\alpha} \\
\leq & \frac{K_{0}}{(\alpha+1)(\alpha+2)}\left\|x-x^{*}\right\|^{2+\alpha} \\
& +\frac{K}{(\alpha+1)(\alpha+2)}\left(\left\|x-x^{*}\right\|+\left\|x_{0}-x^{*}\right\|\right)^{2+\alpha} \\
\leq & \frac{\left(K_{0}+K \cdot 2^{2+\alpha}\right) \delta^{2+\alpha}}{(\alpha+1)(\alpha+2)} \leq b \tag{3.18}
\end{align*}
$$

and $Z_{0}(x) \in U(0, b)$. That is for all $u, v \in U\left(x^{*}, r_{0}\right)$ we have

$$
\begin{align*}
e\left(T_{0}(u) \cap\right. & \left.U\left(x^{*}, r_{0}\right), T_{0}(v)\right) \\
\leq & e\left(T_{0}(u) \cap U\left(x^{*}, \delta\right), T_{0}(v)\right) \leq M\left\|Z_{0}(u)-Z_{0}(v)\right\| \\
\leq & M \| \nabla F\left(x^{*}\right)(u-v)-\nabla F\left(x_{0}\right)(u-v)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)(u-v+v-u)^{2} \\
& -\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(v-x^{*}\right)^{2}+\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(v-x_{0}\right)^{2} \\
& -\frac{1}{2} \nabla^{2} F\left(x_{0}\right)\left(u-v+v-x_{0}\right)^{2}\|\leq 5 M \bar{L} \delta\| u-v \|, \tag{3.19}
\end{align*}
$$

which shows (2.5). It follows by Lemma $2.2 x_{1} \in U\left(x^{*}, r_{0}\right)$ is a fixed point of T_{0}.

That completes the proof of Proposition 3.2.
Proof of Theorem 3.1. We have $x_{1} \in U\left(x^{*}, r_{0}\right)$. That is

$$
\begin{equation*}
\left\|x_{1}-x^{*}\right\| \leq r_{0}=c\left\|x_{0}-x^{*}\right\|^{2+\alpha} . \tag{3.20}
\end{equation*}
$$

We continue using induction on $n \geq 0$. Set $p=x^{*}, \lambda=\frac{M K \delta}{(\alpha+1)(\alpha+2)}$ and $r_{n}=c\left\|x_{n}-x^{*}\right\|^{2+\alpha}$ to obtain again from the application of Proposition 3.2 to T_{n} the existence of a fixed point x_{n+1} of T_{n} in $U\left(x^{*}, r_{n}\right)$, which implies (3.2).

That completes the proof of Theorem 3.1.
Corollary 3.3. Let x^{*} be a simple solution of (1.1). Under assumptions (A1)-(A5) for

$$
\begin{equation*}
c>\frac{M K}{(\alpha+1)(\alpha+2)}=c_{0} \tag{3.21}
\end{equation*}
$$

there exists $\delta>0$ such that any sequence $\left\{x_{n}\right\}$ generated by (1.2) with $x_{n} \in$ $U\left(x^{*}, \delta\right)$ satisfies (3.2).

Proof. Let $\delta>0$ be a number satisfying (3.9) and

$$
\begin{equation*}
\delta<\delta_{1} \tag{3.22}
\end{equation*}
$$

where,

$$
\begin{equation*}
\delta_{1}=\min \left\{\frac{1}{3 M \bar{L}}, \frac{(\alpha+1)(\alpha+2) c-M K}{3(\alpha+1)(\alpha+2) c M \bar{L}}\right\} \tag{3.23}
\end{equation*}
$$

We assume without loss of generality that x^{*} is a unique solution of (1.1) in a certain neighborhood of x^{*}, since x^{*} is a simple zero of (1.1). Let us choose it to be $U\left(x^{*}, \delta\right)$. Set $x^{*}=Q^{-1}(0) \cap U\left(x^{*}, \delta\right)$. By Theorem 3.1

$$
x_{n+1}=Q^{-1}\left[Z_{n}\left(x_{n+1}\right)\right] .
$$

In view of (2.2), (2.3), (2.7) and (2.8) we obtain in turn:

$$
\begin{align*}
\operatorname{dist}\left(x_{n+1},\right. & \left.Q^{-1}(0)\right)=\left\|x_{n+1}-x^{*}\right\| \\
\leq & e\left(Q^{-1}\left[Z_{n}\left(x_{n+1}\right)\right] \cap U\left(x^{*}, \delta\right), Q^{-1}(0)\right) \leq M\left\|Z_{n}\left(x_{n+1}\right)\right\| \\
\leq & M \| F\left(x^{*}\right)+\nabla F\left(x^{*}\right)\left(x_{n+1}-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(x_{n+1}-x^{*}\right)^{2} \\
& -F\left(x_{n}\right)-\nabla F\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)-\frac{1}{2} \nabla^{2} F\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)^{2} \| \\
\leq & M \| F\left(x^{*}\right)+\nabla F\left(x^{*}\right)\left(x_{n+1}-x^{*}\right)+\frac{1}{2} \nabla^{2} F\left(x^{*}\right)\left(x_{n+1}-x^{*}\right)^{2} \\
& -F\left(x_{n}\right)-\nabla F\left(x_{n}\right)\left(x_{n+1}-x^{*}+x^{*}-x_{n}\right) \\
& -\frac{1}{2} \nabla^{2} F\left(x_{n}\right)\left(x_{n+1}-x^{*}+x^{*}-x_{n}\right)^{2} \| \\
\leq & M\left[\frac{K_{0}}{(\alpha+1)(\alpha+2)}\left\|x^{*}-x_{n}\right\|^{2+\alpha}+3 \bar{L} \delta\left\|x_{n+1}-x^{*}\right\|\right] \tag{3.24}
\end{align*}
$$

or

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & \leq \frac{M K}{(\alpha+1)(\alpha+2)(1-3 M \bar{L} \delta)}\left\|x_{n}-x^{*}\right\|^{2+\alpha} \\
& \leq c\left\|x_{n}-x^{*}\right\|^{2+\alpha} .
\end{aligned}
$$

That completes the proof of Corollary 3.3.
Remark 3.4. If $L_{0}=L$ and $K_{0}=K$, then our results are reduced to the corresponding ones in [9]. Otherwise they constitute an improvement. Indeed, let us denote by $\bar{\delta}_{0}, \bar{\delta}_{1}$ parameters obtained from δ_{0} and δ_{1} respectively by replacing K_{0} and L_{0} by K and L respectively. Then, we get

$$
\begin{equation*}
\bar{\delta}_{0} \leq \delta_{0} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\delta}_{1} \leq \delta_{1} \tag{3.26}
\end{equation*}
$$

That is we can obtain a larger convergence radius for method (1.2), which implies that a wider choice of initial choices x_{0} becomes available, and finer error bounds on the distances $\left\|x_{n}-x^{*}\right\|(n \geq 0)$. These observations are important in computational mathematics [1], [2], [6].
Remark 3.5. The local results obtained here can be used to solve equations where $F^{\prime \prime}$ satisfies the autonomous differential equation [1], [2]

$$
\begin{equation*}
F^{\prime \prime}(x)=P(F(x)), \tag{3.27}
\end{equation*}
$$

where $P: Y \rightarrow X$ is a known continuous operator. Since $F^{\prime \prime}\left(x^{*}\right)=P\left(F\left(x^{*}\right)\right)=$ $P(0)$, we can apply our results without actually knowing the solution x^{*} of equation (1.1).

We complete this study with two numerical examples where we show that strict inequality can hold in (2.11).
Example 3.6. Let $X=Y=\mathbf{R}, x^{*}=0$, and define F on $U(0,1)$ by

$$
\begin{equation*}
F(x)=e^{x}-x . \tag{3.28}
\end{equation*}
$$

It can easily be seen that

$$
\begin{equation*}
\alpha=1, \quad L_{0}=1, \quad L=K=e \quad \text { and } \quad K_{0}=e-1 \tag{3.29}
\end{equation*}
$$

Example 3.7. Let $X=Y=\mathbf{R}, x^{*}=\frac{9}{4}, U\left(x^{*}, r\right) \subset D=[.81,6.25]$, and define function F on D by

$$
\begin{equation*}
F(x)=\frac{4}{15} x^{5 / 2}-\frac{1}{2} x^{2} \tag{3.30}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\alpha=\frac{1}{2}, L_{0}=\frac{1}{2}, L=\sqrt{6.25}-1, K_{0}=\frac{1}{2} \text { and } K=1 . \tag{3.31}
\end{equation*}
$$

References

[1] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Applic. 298 (2004), 374-397.
[2] I. K. Argyros, Approximate Solution of Operator Equations with Applications, World Scientific Publ. Comp., New Jersey, USA, 2005.
[3] I. K. Argyros, On the secant method for solving nonsmooth equations, J. Math. Anal. Applic. (to appear, 2006).
[4] I. K. Argyros, D. Chen, \& M. Tabatabai, The Halley-Werner method in Banach spaces, Revue d'Analyse Numerique et de theorie de l'Approximation, $\mathbf{1}$ (1994), 1-14.
[5] J. P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111.
[6] J. P. Aubin \& H. Frankowska, Set Valued Analysis, Birkhäuser, Boston, 1990.
[7] A. L. Dontchev, Local convergence of the Newton method for generalized equations, C.R.A.S. Paris 332 Ser. I (1996), 327-331.
[8] A. L. Dontchev \& W. W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-489.
[9] M. H. Geoffroy \& A. A. Pietrus, Superquadratic method for solving generalized equations in the Hölder case, Ricerche di Matematica LII fasc. 2 (2003), 231-240.
[10] A. D. Ioffe \& V. M. Tikhomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979.
[11] S. M. Robinson, Strong regular generalized equations, Math. Oper. Res. 5 (1980), 43-62.
(Recibido en marzo de 2006. Aceptado en mayo de 2006)
Department of Mathematical Sciences
Cameron University
OK 73505
Lawton, USA
e-mail: iargyros@cameron.edu

