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Abstract. We provide a finer local convergence analysis than before [6]–[9] of a
certain superquadratic method for solving generalized equations under Hölder
continuity conditions.
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Resumen. Nosotros hacemos un análisis de convergencia local más fino que el
proporcionado antes de [6]–[9] de cierto método supercuadrático para resolver
ecuaciones generalizadas bajo ciertas condiciones de continuidad de Hölder.

1. Introduction

In this study we are concerned with the problem of approximating a solution
x∗ of the generalized equation of the form

o ∈ F (x) + G(x), (1.1)

where F is a twice Fréchet differentiable operator defined on a Banach space
X with values in a Banach space Y , and G is a set-valued map from X to the
subsets of Y .

Local results providing sufficient conditions for the existence of x∗ have been
provided by several authors using various iterative methods and hypotheses [2]–
[9], [11]. Here in particular, we use the method

o ∈ F (xn) +∇F (xn)(xn+1 − xn) +
1
2
∇2F (xn)(xn+1 − xn)2 + G(xn+1) (1.2)

to generate a sequence approximating x∗.
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In the paper by Geoffroy and Pietrus [9] local convergence results were pro-
vided for method (1.2) using Hölder continuity conditions on ∇2F . Here we
are motivated by this paper, our paper [1], and optimization considerations.

In particular using the same hypotheses but more precise error bounds we
provide a larger convergence radius and finer error bounds on the distances
‖xn − x∗‖ (n ≥ 0).

Some numerical examples are provided to justify our theoretical results. The
same examples are used to compare favorably our results with the correspond-
ing ones in [9].

The paper is organized as follows: In Section 2 we have collected a number of
necessary results [6], [9], [10] needed in our local convergence analysis appearing
in Section 3.

2. Preliminaries

We need a definition about the Aubin continuity [5]–[7]:

Definition 2.1. A set-valued map Γ: X → Y is said to be M -pseudo-Lip-
schitz around (x0, y0) ∈ graph F = {(x, y) ∈ X × Y | y ∈ Γ(x)} if there exist
neighborhoods V of x0 and U of y0 such that

sup
y∈Γ(u)∩U

dist (y, Γ(v)) ≤ M‖u− v‖ for all x, y ∈ V. (2.1)

The Aubin continuity of Γ is equivalent to the openess with linear rate of Γ−1

and the metric regularity of Γ−1.
Let A and C be two subsets of X. Then the excess e from the set A to the

set C is given by
e(C, A) = sup

x∈C
dist(x,A). (2.2)

Estimate (2.1) using (2.2) can be written

c (Γ(u) ∩ U,Γ(v)) ≤ M‖u− v‖ for all u, v ∈ V. (2.3)

We also need a lemma about fixed points [10]:

Lemma 2.2. Let (X, ρ) be a Banach space, let T be a map from X into the
closed subsets of X, let p ∈ X and let r and λ be such that 0 ≤ λ < 1, and

dist (p, T (p)) ≤ r(1− λ), (2.4)

e(T (u) ∩ U(p, r), T (v)) ≤ λρ(u, v), for all u, v ∈ U(p, r) (2.5)
where

U(p, r) = {x ∈ X ‖x− p‖ ≤ r}. (2.6)
Then T has a fixed point in U(p, r). Moreover if T is single-valued, then x is
the unique fixed point of T in U(p, r).

Let x∗ be a solution of (1.1). We assume:
(A1) F is Fréchet-differentiable on some neighborhood V of x∗;
(A2) ∇2F is bounded by L on V and ‖∇2F (x∗)‖ ≤ L0;
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(A3) ∇2F is α-Hölder on V with constant K, i.e.

‖∇2F (x)−∇2F (y)‖ ≤ K‖x− y‖α for all x, y ∈ V, (2.7)

where K satisfies

K ≥ 5(α + 1)(α + 2)L, L =
L0 + L

2
; (2.8)

(A4) ∇2F is α-center-Hölder on V at x∗ with constant K0, i.e.

‖∇2F (x)−∇2F (x∗)‖ ≤ K0‖x− x∗‖α for all x ∈ V ; (2.9)

(A5) The application
[
F (x∗) +∇F (x∗)(· − x∗) +

1
2
∇2F (x∗)(· − x∗)2 + G(·)

]−1

(2.10)

is M -pseudo-Lipschitz around (0, x∗) and G has closed graph.
We can now compare our hypotheses with the corresponding ones in [9]:

Remark 2.3. In general
K0 ≤ K, L0 ≤ L, (2.11)

hold in general and K
K0

can be arbitrarily large [1], [2]. If K0 = K our hy-
potheses reduce to the ones in [9]. Otherwise our hypotheses can be used to
improve the results in [9] as stated in the Introduction. Note that in practice
the computation of K requires that of K0. That is the computational cost of
our hypotheses (A1)–(A5) is the same as the corresponding one in [9] using
(A1)–(A3) and (A5).

3. Local convergence analysis of method (1.2)

We will follow the proof routine in [9] but we will also stretch the differences
where the really needed condition (2.9) is used instead of the stronger (2.7)
used in [9].

We state the main local convergence result for method (1.2):

Theorem 3.1. Let x∗ be a solution of (1.1). Under hypotheses (A1)–(A5) and
for

c >
MK

(α + 1)(α + 1)
(3.1)

there exists δ > 0 such that for every starting guess x0 ∈ U(x∗, δ) there exists
a sequence {xn} (n ≥ 0) generated by method (1.2) satisfying

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖2+α (n ≥ 0). (3.2)

In order for us to prove this theorem we first need some notations. Let us
define the set-valued map Q from X to the subsets of Y by

Q(x) = F (x∗) +∇F (x∗)(x− x∗) +
1
2
∇2F (x∗)(x− x∗) + G(x). (3.3)
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Let

Zn(x) = F (x∗) +∇F (x∗)(x− x∗) +
1
2
∇2F (x∗)(x− x∗)2

− F (xn)−∇F (xn)(x− xn)− 1
2
∇2F (xn)(x− xn)2, (3.4)

and define Tn : X → Y by

Tn(x) = Q−1[Zn(x)]. (3.5)

Clearly x1 is a fixed point of T0 if and only if:

F (x∗) +∇F (x∗)(x1 − x∗) +
1
2
∇2F (x∗)(x1 − x∗)− F (x0)

−∇F (x0)(x1 − x0)− 1
2
∇2F (x0)(x1 − x0)2 ∈ Q(x1), (3.6)

or equivalently

o ∈ F (x0) +∇F (x0)(x1 − x0) +
1
2
∇2F (x0)(x1 − x0)2 + G(x1). (3.7)

We need the proposition:

Proposition 3.2. Under the hypotheses of Theorem 3.1, there exists δ > 0
such that for all x0 ∈ U(x∗, δ) (x0 6= x∗), the map T0 has a fixed point x1 in
U(x∗, δ).

Proof. By (A5) there exist positive numbers a and b such that

e
(
Q−1(y1) ∩ U(x∗, a), Q−1(y2)

) ≤ M‖y1 − y2‖, for all y1, y2 ∈ U(0, b). (3.8)

Choose δ > 0 such that

δ < δ0, (3.9)

where

δ0 = min

{
a,

[
b(α + 1)(α + 2)
K0 + K22+α

] 1
2+α

,
(α + 1)(α + 2)

MK
− 1

c
,

1
1+α
√

c

}
. (3.10)

We shall show condition (2.4) and (2.5) of Lemma 2.2 hold true for p = x∗, T
being T0 and r and λ parameters to be determined.

We first have

dist (x∗, T0(x∗)) ≤ e
(
Q−1(0) ∩ U(x∗, δ), T0(x∗)

)
. (3.11)
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Using (2.7), (3.4), and (3.9) we obtain in turn:

‖Z0(x∗)‖ =
∥∥∥∥F (x∗)− F (x0)−∇F (x0)(x∗ − x0)− 1

2
∇2F (x0)(x∗ − x0)2

∥∥∥∥

=
∥∥∥∥
∫ 1

0

(1− t)∇2F (x0 + t(x∗ − x0))(x∗ − x0)2dt

− 1
2
∇2F (x0)(x∗ − x0)2

∥∥∥∥

≤ K

∣∣∣∣
∫ 1

0

(1− t)tαdt

∣∣∣∣ ‖x∗ − x0‖2+α

=
K

(α + 1)(α + 2)
‖x∗ − x0‖2+α < b. (3.12)

It follows from (3.8):

e
(
Q−1(0) ∩ U(x∗, δ), T0(x∗)

)
= e

(
Q−1(0) ∩ U(x∗, δ), Q−1[T0(x∗)]

)

≤ MK

(α + 1)(α + 2)
‖x0 − x∗‖2+α (3.13)

and by (3.11)

dist(x∗, T0(x∗)) ≤ MK

(α + 1)(α + 2)
‖x∗ − x0‖2+α. (3.14)

Moreover by (3.9)

dist(x∗, T0(x∗)) < c

[
1− MKδ

(α + 1)(α + 2)

]
‖x∗ − x0‖2+α, (3.15)

since,

c

[
1− MKδ

(α + 1)(α + 2)

]
>

MK

(α + 1)(α + 2)
. (3.16)

Note that by the choice of c

MKδ

(α + 1)(α + 2)
< 1. (3.17)

By setting p = x∗, λ = MKδ
(α+1)(α+2) and r = r0 = c‖x0−x∗‖2+α we deduce (2.4).

We shall show (2.5). We have r0 ≤ δ < a, since δ ≤ 1
1+α
√

c
for ‖x0 − x∗‖ ≤ δ.
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In view of (2.7), (2.9) and (3.4) we can obtain in turn

‖Z0(x)‖ ≤
∥∥∥∥F (x∗)− F (x) +∇F (x∗)(x− x∗) +

1
2
∇2F (x∗)(x− x∗)2

∥∥∥∥

+
∥∥∥∥F (x)− F (x0)−∇F (x0)(x− x0)− 1

2
∇2F (x0)(x− x0)2

∥∥∥∥

≤ K0

(α + 1)(α + 2)
‖x− x∗‖2+α +

K

(α + 1)(α + 2)
‖x− x0‖2+α

≤ K0

(α + 1)(α + 2)
‖x− x∗‖2+α

+
K

(α + 1)(α + 2)
(‖x− x∗‖+ ‖x0 − x∗‖)2+α

≤ (K0 + K · 22+α)δ2+α

(α + 1)(α + 2)
≤ b, (3.18)

and Z0(x) ∈ U(0, b). That is for all u, v ∈ U(x∗, r0) we have

e
(
T0(u) ∩ U(x∗, r0), T0(v)

)

≤ e
(
T0(u) ∩ U(x∗, δ), T0(v)

) ≤ M‖Z0(u)− Z0(v)‖

≤ M

∥∥∥∥∇F (x∗)(u− v)−∇F (x0)(u− v) +
1
2
∇2F (x∗)(u− v + v − u)2

− 1
2
∇2F (x∗)(v − x∗)2 +

1
2
∇2F (x0)(v − x0)2

− 1
2
∇2F (x0)(u− v + v − x0)2

∥∥∥∥ ≤ 5MLδ‖u− v‖, (3.19)

which shows (2.5). It follows by Lemma 2.2 x1 ∈ U(x∗, r0) is a fixed point of
T0.

That completes the proof of Proposition 3.2. ¤X

Proof of Theorem 3.1. We have x1 ∈ U(x∗, r0). That is

‖x1 − x∗‖ ≤ r0 = c‖x0 − x∗‖2+α. (3.20)

We continue using induction on n ≥ 0. Set p = x∗, λ = MKδ
(α+1)(α+2) and

rn = c‖xn − x∗‖2+α to obtain again from the application of Proposition 3.2 to
Tn the existence of a fixed point xn+1 of Tn in U(x∗, rn), which implies (3.2).

That completes the proof of Theorem 3.1. ¤X

Corollary 3.3. Let x∗ be a simple solution of (1.1). Under assumptions
(A1)–(A5) for

c >
MK

(α + 1)(α + 2)
= c0 (3.21)

there exists δ > 0 such that any sequence {xn} generated by (1.2) with xn ∈
U(x∗, δ) satisfies (3.2).
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Proof. Let δ > 0 be a number satisfying (3.9) and

δ < δ1, (3.22)

where,

δ1 = min
{

1
3ML

,
(α + 1)(α + 2)c−MK

3(α + 1)(α + 2)cML

}
. (3.23)

We assume without loss of generality that x∗ is a unique solution of (1.1) in a
certain neighborhood of x∗, since x∗ is a simple zero of (1.1). Let us choose it
to be U(x∗, δ). Set x∗ = Q−1(0) ∩ U(x∗, δ). By Theorem 3.1

xn+1 = Q−1[Zn(xn+1)].

In view of (2.2), (2.3), (2.7) and (2.8) we obtain in turn:

dist(xn+1, Q
−1(0)) = ‖xn+1 − x∗‖

≤ e
(
Q−1[Zn(xn+1)] ∩ U(x∗, δ), Q−1(0)

) ≤ M‖Zn(xn+1)‖

≤ M

∥∥∥∥F (x∗) +∇F (x∗)(xn+1 − x∗) +
1
2
∇2F (x∗)(xn+1 − x∗)2

− F (xn)−∇F (xn)(xn+1 − xn)− 1
2
∇2F (xn)(xn+1 − xn)2

∥∥∥∥

≤ M

∥∥∥∥F (x∗) +∇F (x∗)(xn+1 − x∗) +
1
2
∇2F (x∗)(xn+1 − x∗)2

− F (xn)−∇F (xn)(xn+1 − x∗ + x∗ − xn)

− 1
2
∇2F (xn)(xn+1 − x∗ + x∗ − xn)2

∥∥∥∥

≤ M

[
K0

(α + 1)(α + 2)
‖x∗ − xn‖2+α + 3Lδ‖xn+1 − x∗‖

]
, (3.24)

or

‖xn+1 − x∗‖ ≤ MK

(α + 1)(α + 2)(1− 3MLδ)
‖xn − x∗‖2+α

≤ c‖xn − x∗‖2+α.

That completes the proof of Corollary 3.3. ¤X

Remark 3.4. If L0 = L and K0 = K, then our results are reduced to the
corresponding ones in [9]. Otherwise they constitute an improvement. Indeed,
let us denote by δ0, δ1 parameters obtained from δ0 and δ1 respectively by
replacing K0 and L0 by K and L respectively. Then, we get

δ0 ≤ δ0 (3.25)

and
δ1 ≤ δ1. (3.26)
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That is we can obtain a larger convergence radius for method (1.2), which
implies that a wider choice of initial choices x0 becomes available, and finer
error bounds on the distances ‖xn − x∗‖ (n ≥ 0). These observations are
important in computational mathematics [1], [2], [6].

Remark 3.5. The local results obtained here can be used to solve equations
where F ′′ satisfies the autonomous differential equation [1], [2]

F ′′(x) = P (F (x)), (3.27)

where P : Y → X is a known continuous operator. Since F ′′(x∗) = P (F (x∗)) =
P (0), we can apply our results without actually knowing the solution x∗ of
equation (1.1).

We complete this study with two numerical examples where we show that
strict inequality can hold in (2.11).

Example 3.6. Let X = Y = R, x∗ = 0, and define F on U(0, 1) by

F (x) = ex − x. (3.28)

It can easily be seen that

α = 1, L0 = 1, L = K = e and K0 = e− 1. (3.29)

Example 3.7. Let X = Y = R, x∗ = 9
4 , U(x∗, r) ⊂ D = [.81, 6.25], and define

function F on D by

F (x) =
4
15

x5/2 − 1
2
x2. (3.30)

We obtain

α =
1
2
, L0 =

1
2
, L =

√
6.25− 1, K0 =

1
2

and K = 1. (3.31)
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