The analytic fixed point function II

Diego Mejía*
Universidad Nacional de Colombia, Medellín
Christian Pommerenke ${ }^{\dagger}$
Technische Universität, Berlin

Abstract

Let φ be analytic in the unit disk \mathbb{D} and let $\varphi(\mathbb{D}) \subset \mathbb{D}, \varphi(0) \neq 0$. Then $w=z / \varphi(z)$ has an analytic inverse $z=f(w)$ for $w \in \mathbb{D}$, the fixed point function. This paper studies the case that $\varphi(1)=\varphi^{\prime}(1)=1$ with a growth condition for $\varphi^{\prime \prime}(x)$ and determines the asymptotic behaviour of various combinations of the coefficients of φ connected with f. The results can be interpreted in various contexts of probability theory. Keywords and phrases. Fixed point function, coefficients, Bürmann-Lagrange, asymptotics, equilibrium, first return, branching process. 2000 Mathematics Subject Classification. Primary: 30B10. Secondary: 60F99, 60 J 80 .

Resumen. Sea φ analítica en el disco unitario \mathbb{D} y $\varphi(\mathbb{D}) \subset \mathbb{D}, \varphi(0) \neq 0$. Entonces $w=z / \varphi(z)$ tiene una inversa analítica $z=f(w)$ para $w \in \mathbb{D}$, la función de punto fijo. Este artículo estudia el caso en que $\varphi(1)=\varphi^{\prime}(1)=1$ con una condición de crecimiento para $\varphi^{\prime \prime}(x)$ y determina el comportamiento asintótico de varias combinaciones de los coeficientes de φ conectados con f. Los resultados se pueden interpretar en varios contextos de la teoría de la probabilidad.

1. Introduction

Let the function φ be analytic in the unit disk \mathbb{D} and $\varphi(\mathbb{D}) \subset \mathbb{D}, \varphi(0) \neq 0$. In [MePo05, Sec. 3] it was shown that there is a unique function f that maps \mathbb{D} conformally onto a starlike domain F in \mathbb{D} and satisfies $f(0)=0$,

$$
\begin{equation*}
w \varphi(f(w))=f(w) \quad \text { for } w \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

[^0]Thus $z=f(w)$ is the inverse function of $w=z / \varphi(z)$. We call f the fixed point function of φ because $f(w)$ is the unique fixed point of $w \varphi$ in \mathbb{D}.

The fixed point function f has a continuous and injective extension to $\overline{\mathbb{D}}$, see $[\mathrm{MePo} 05, \mathrm{Th} .3 .2]$. Furthermore $[\mathrm{MePo} 05$, Th. 2.2] we have

$$
\begin{equation*}
\partial \mathbb{D} \cap \partial F=\left\{\zeta \in \partial \mathbb{D}:|\varphi(\zeta)|=1,\left|\varphi^{\prime}(\zeta)\right| \leq 1\right\} \tag{1.2}
\end{equation*}
$$

where $\varphi(\zeta)$ and $\varphi^{\prime}(\zeta)$ are angular limits [Po92, Sect. 4.3]. It follows from (1.1) by differentiation that

$$
\begin{equation*}
w \frac{f^{\prime}(w)}{f(w)}=\frac{1}{1-w \varphi^{\prime}(f(w))}=\frac{1}{1-z \varphi^{\prime}(z) / \varphi(z)} \tag{1.3}
\end{equation*}
$$

for $z=f(w), w \in \mathbb{D}$.
We shall restrict ourselves to the case that $\varphi(1)=1$ and $\varphi^{\prime}(1) \leq 1$; since $\varphi(\mathbb{D}) \subset \mathbb{D}$ the Julia-Wolff lemma [Po92, Prop. 4.13] shows that $\varphi(1)=1$ implies that the angular derivative $\varphi^{\prime}(1)$ is positive real or infinite. The case $\varphi^{\prime}(1)<1$ will be considered only in the last section.

In Section 4 we study the condition

$$
\begin{equation*}
\varphi(x)=x+b(1-x)^{\beta}+o\left((1-x)^{\beta}\right) \quad \text { as } x \rightarrow 1- \tag{1.4}
\end{equation*}
$$

where $1<\beta \leq 2$ and $0<b<\infty$. Then $\varphi^{\prime \prime}(1)$ is finite if and only if $\beta=2$. Our main result is Theorem 4.3 about coefficients.

The results about the coefficients can be interpreted as results about probabilities. Let X denote a random variable with values in \mathbb{N}_{0} and the distribution $a_{k}=\mathbb{P}(X=k)$ for $k=0,1, \ldots$. Then

$$
\begin{equation*}
\varphi(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \quad(z \in \overline{\mathbb{D}}) \tag{1.5}
\end{equation*}
$$

is the generating function of X and satisfies $\varphi(1)=1$ and $\varphi(\mathbb{D}) \subset \mathbb{D}$. We assume that $\varphi(0)=\mathbb{P}(X=0)>0$.

Let S_{n} be the sum of n independent random variables all distributed like X. The Bürmann-Lagrange formula (Theorem 2.1) shows that the fixed point function f has a special affinity to probabilities of the form $\mathbb{P}\left(S_{n}=n-k\right)$.

The study of S_{n} is a classical chapter of probability theory, see e.g. the book of V.V. Petrov [Pe75]. Most of our results on probability are known, at least, in the case $\beta=2$ of finite variance.

2. The Bürmann-Lagrange formula

Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be analytic with $\varphi(0) \neq 0$ and let $z=f(w)$ be the inverse function of $w=z / \varphi(z)$. We define $a_{n, k}$ for $n \in \mathbb{Z}$ and $k \in \mathbb{N}_{0}$ by

$$
\begin{equation*}
\varphi(z)^{n}=\sum_{k=0}^{\infty} a_{n, k} z^{k} \tag{2.1}
\end{equation*}
$$

Now we present the Bürmann-Lagrange formula [PoSz25, p. 125] in a somewhat different form and also for functions ψ with a pole at 0 .

The formulas still hold near $w=0$ if we only assume that φ is analytic near $z=0$ and $\varphi(0) \neq 0$.

Theorem 2.1. Let $m \geq 0,0<\rho \leq 1$ and

$$
\begin{equation*}
\psi(z)=\sum_{k=-m}^{\infty} b_{k} z^{k} \text { for } 0<|z|<\rho \tag{2.2}
\end{equation*}
$$

If $0<|w|<\rho$ then

$$
\begin{array}{r}
w f^{\prime}(w) \psi(f(w))=\sum_{n=-m+1}^{\infty}\left(\sum_{k=-m+1}^{n} b_{k-1} a_{n, n-k}\right) w^{n}, \\
\psi(f(w))=b_{0}-\sum_{k=1}^{m} b_{-k} a_{k}^{*}+\sum_{n=-m}^{\infty}\left(\sum_{k=-m}^{n} \frac{k}{n} b_{k} a_{n, n-k}\right) w^{n} \tag{2.4}
\end{array}
$$

where $n=0$ is omitted in the last outer sum and where $z \varphi^{\prime}(z) / \varphi(z)=\sum a_{k}^{*} z^{k}$.
Proof. Since $|f(w)| \leq|w|$ by the Schwarz lemma and since f is univalent in \mathbb{D}, we have $0<|f(w)|<\rho$ for $0<|w|<\rho$ so that $\psi \circ f$ is analytic in $\{0<|w|<\rho\}$.

Let $0<r<\rho$ and $C=\{|w|=r\}$. Let $n \in \mathbb{Z}$. The coefficient of w^{n} of the function $w f^{\prime}(w) \psi(f(w))$ is

$$
\frac{1}{2 \pi i} \int_{C} \frac{\psi(f(w))}{w^{n}} f^{\prime}(w) d w=\frac{1}{2 \pi i} \int_{f(C)} \frac{\psi(z) \varphi(z)^{n}}{z^{n}} d z
$$

where we have substituted $w=z / \varphi(z)$ with $z=f(w)$. This is the coefficient of z^{n-1} of the function

$$
\psi(z) \varphi(z)^{n}=\sum_{k=-m+1}^{\infty} b_{k-1} z^{k-1} \sum_{j=0}^{\infty} a_{n, j} z^{j}
$$

which is equal to the inner sum in (2.3).
Next we apply (2.3) to ψ^{\prime}. We obtain

$$
\frac{d}{d w} \psi(f(w))=\sum_{n=-m}^{\infty}\left(\sum_{k=-m+1}^{n} k b_{k} a_{n, n-k}\right) w^{n-1}
$$

Integrating we obtain (2.4) except for a constant. The coefficient of w^{0} is

$$
\frac{1}{2 \pi i} \int_{C} \frac{\psi(f(w))}{w} d w=\frac{1}{2 \pi i} \int_{f(C)} \frac{\psi(z)}{z}\left(1-z \frac{\varphi^{\prime}(z)}{\varphi(z)}\right) d z
$$

because of (1.3), which gives the value in (2.4).

In particular we obtain

$$
\begin{align*}
w f^{\prime}(w) f(w)^{k-1} & =\sum_{n=k}^{\infty} a_{n, n-k} w^{n} \quad \text { for } k \in \mathbb{Z} \tag{2.5}\\
f(w)^{k} & =\sum_{n=k}^{\infty} \frac{k}{n} a_{n, n-k} w^{n} \quad \text { for } k \in \mathbb{N} \tag{2.6}
\end{align*}
$$

3. Some auxiliary estimates

A Stolz angle at 1 is an open triangle \triangle symmetric to \mathbb{R} that satisfies $\bar{\triangle} \cap \partial \mathbb{D}=$ $\{1\}$. We say that a function has an angular limit at 1 if this limit exists for $z \rightarrow 1$ in every Stolz angle \triangle.
Proposition 3.1. Let g be analytic in \mathbb{D} and

$$
\begin{equation*}
g(z) \sim b(1-z)^{\beta} \text { as } z \rightarrow 1 \text { angularly. } \tag{3.1}
\end{equation*}
$$

where $b \neq 0$ and $\beta \neq 0$. Then

$$
\begin{equation*}
g^{\prime}(z) \sim-\beta b(1-z)^{\beta-1} \text { as } z \rightarrow 1 \text { angularly. } \tag{3.2}
\end{equation*}
$$

Proof. By (3.1) the function $(1-z)^{-\beta} g(z)$ has the angular limit $b \neq \infty$ at 1 . It follows [Po92, Prop. 4.8] that

$$
(1-z)^{-\beta+1} g^{\prime}(z)+\beta(1-z)^{-\beta} g(z)=(1-z) \frac{d}{d z}\left[(1-z)^{-\beta} g(z)\right]
$$

has the angular limit 0 at 1 . Hence (3.2) follows from (3.1).
Proposition 3.2. Let g be analytic in \mathbb{D} and

$$
\begin{gather*}
(1-x)^{\alpha} g(x) \rightarrow 0 \text { as } x \rightarrow 1- \tag{3.3}\\
|1-z|^{\alpha}|g(z)| \leq c<\infty \text { for } z \in \mathbb{D} \tag{3.4}
\end{gather*}
$$

where $1<\alpha<\infty$. Then

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|g\left(r e^{i t}\right)\right| d t=o\left((1-r)^{1-\alpha}\right) \text { as } r \rightarrow 1- \tag{3.5}
\end{equation*}
$$

Proof. We establish (3.5) for $0 \leq t \leq \pi$. The analytic function $(1-z)^{\alpha} g(z)$ is bounded because of (3.4) and therefore has the angular limit 0 at 1 because of (3.3), see [Po92, Th. 4.3].

Given $\varepsilon \in(0,1)$ there exists $r_{0} \in\left(\frac{1}{2}, 1\right)$ such that

$$
\left|1-r e^{i t}\right|^{\alpha}\left|g\left(r e^{i t}\right)\right|<\varepsilon \text { for } r_{0}<r<1,|t| \leq \delta=(1-r) / \varepsilon
$$

For $r_{0}<r<1$ we therefore have

$$
\begin{equation*}
\int_{0}^{\delta}\left|g\left(r e^{i t}\right)\right| d t<\varepsilon \int_{0}^{\delta} \frac{\left|1-r e^{i t}\right|^{2-\alpha}}{\left|1-r e^{i t}\right|^{2}} d t \tag{3.6}
\end{equation*}
$$

If $1<\alpha \leq 2$ this is

$$
\leq \varepsilon\left(1+\varepsilon^{-2}\right)^{(2-\alpha) / 2}(1-r)^{2-\alpha} \int_{0}^{\delta} \frac{d t}{\left|1-r e^{i t}\right|^{2}}<4 \pi \varepsilon^{\alpha-1}(1-r)^{1-\alpha}
$$

If $2 \leq \alpha<\infty$ the last expression in (3.6) is

$$
\leq \varepsilon(1-r)^{(2-\alpha)} \int_{0}^{\delta} \frac{d t}{\left|1-r e^{i t}\right|^{2}} \leq 2 \pi \varepsilon(1-r)^{1-\alpha}
$$

Since $\left|1-r e^{i t}\right| \geq 2 r t / \pi$ we obtain from (3.4) that

$$
\int_{\delta}^{\pi}\left|g\left(r e^{i t}\right)\right| d t \leq \int_{\delta}^{\infty} \frac{c \pi^{\alpha}}{t^{\alpha}} d t=\frac{c \pi^{\alpha} \varepsilon^{\alpha-1}}{\alpha-1}(1-r)^{1-\alpha}
$$

because $\delta=(1-r) / \varepsilon$. These estimates prove (3.5).
It is well known that, for $\alpha>0$,

$$
\begin{equation*}
(-1)^{n}\binom{-\alpha}{n}=\frac{\alpha(\alpha+1) \cdots(\alpha+n-1)}{n!} \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)} \quad(n \rightarrow \infty) \tag{3.7}
\end{equation*}
$$

The following theorem is the key to the later results.
Theorem 3.3. Let $1<\alpha<\infty$ and let

$$
\begin{equation*}
h(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \tag{3.8}
\end{equation*}
$$

be analytic in \mathbb{D}. We suppose that

$$
\begin{gather*}
(1-x)^{\alpha-1} h(x) \rightarrow a \in \mathbb{C} \text { as } x \rightarrow 1 \tag{3.9}\\
\sup _{z \in \mathbb{D}}|1-z|^{\alpha}\left|h^{\prime}(z)\right|<\infty \tag{3.10}
\end{gather*}
$$

Then

$$
\begin{equation*}
c_{n} \sim \frac{a}{\Gamma(\alpha-1)} n^{\alpha-2} \text { as } n \rightarrow \infty \tag{3.11}
\end{equation*}
$$

Proof. It follows from (3.9) and (3.10) that

$$
|h(x)| \leq \frac{c_{0}}{(1-x)^{\alpha-1}}(0 \leq x \leq 1),\left|h^{\prime}(\zeta)\right| \leq \frac{c_{1}}{|1-\zeta|^{\alpha}}(\zeta \in \mathbb{D}) .
$$

Let $z \in \mathbb{D}$ and $|1-z|<1$; the case $|1-z| \geq 1$ is simpler. Let C be the circular arc $\{\zeta \in \mathbb{D}:|1-\zeta|=|1-z|\}$ and let $x \in(0,1)$ be the point where C intersects \mathbb{R}. Integrating over C we obtain

$$
|h(z)-h(x)| \leq \int_{x}^{z}\left|h^{\prime}(\zeta)\right||d \zeta| \leq \frac{\pi}{2}|1-z| \frac{c_{1}}{|1-z|^{\alpha}}
$$

and since $1-x=|1-z|$ we conclude that

$$
\begin{equation*}
|1-z|^{\alpha-1}|h(z)| \leq c_{2} \text { for } z \in \mathbb{D} \tag{3.12}
\end{equation*}
$$

It follows by (3.9) that $(1-z)^{\alpha-1} h(z)$ has the angular limit a; see e.g. [Po92, Th. 4.3]. Therefore we conclude from Proposition 3.1 that $(1-x)^{\alpha} h^{\prime}(x) \rightarrow$ $(\alpha-1) a$ as $x \rightarrow 1-$. Hence we can apply Proposition 3.2 to the function

$$
\begin{equation*}
g(z)=z h^{\prime}(z)-\frac{(\alpha-1) a}{(1-z)^{\alpha}}=\sum_{n=0}^{\infty}\left(n c_{n}-(\alpha-1) a\binom{-\alpha}{n}(-1)^{n}\right) z^{n} \tag{3.13}
\end{equation*}
$$

the condition (3.4) is satisfied due to (3.10). We conclude from (3.5) with $r=1-n^{-1}$ that the coefficients of g are $o\left(n^{\alpha-1}\right)$ so that (3.11) follows from (3.13) and (3.7).

4. A fractional derivative condition

In this section we consider the following condition and its consequences.
(A) The function $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is analytic and satisfies $\varphi(0) \neq 0$ and

$$
\begin{equation*}
\varphi(x)-x \sim b(1-x)^{\beta} \text { as } x \rightarrow 1- \tag{4.1}
\end{equation*}
$$

where $0<b<\infty$ and $1<\beta \leq 2$. Note that we only require radial and not unrestricted approach to $z=1$.

Proposition 4.1. If condition (A) holds then $\varphi(1)=\varphi^{\prime}(1)=1$ as angular limits and, as $z \rightarrow 1$ angularly,

$$
\begin{gather*}
\varphi(z)-z \sim b(1-z)^{\beta} \tag{4.2}\\
1-\varphi^{\prime}(z) \sim \beta b(1-z)^{\beta-1} \tag{4.3}\\
\varphi^{\prime \prime}(z) \sim \beta(\beta-1) b(1-z)^{\beta-2} \tag{4.4}
\end{gather*}
$$

Proof. We see from (4.1) that $(1-\varphi(x)) /(1-x) \rightarrow 1$. Hence φ has the angular derivative 1 at 1 so that $\varphi^{\prime}(1)=1$ [Po92, Prop. 4.7] and it follows from the Julia-Wolff lemma [Po92, Th. 4.13] that

$$
\frac{1+\varphi(z)}{1-\varphi(z)}=\frac{1+z}{1-z}+p(z) \quad(z \in \mathbb{D})
$$

where $\operatorname{Re} p(z)>0$ and thus $|\arg p(z)|<\frac{\pi}{2}$. Hence

$$
h(z)=\log \frac{\varphi(z)-z}{(1-z)^{\beta}}=\log \frac{p(z)(1-\varphi(z))}{2(1-z)^{\beta-1}}
$$

satisfies $|\operatorname{Im} h(z)|<(\beta+2) \pi / 2$ and is therefore a Bloch function [Po92, Sect. 4.2]. Since $h(x) \rightarrow \log b$ as $x \rightarrow 1$ by (4.1), it follows that h has the angular limit at 1. This is the assertion (4.2), and we obtain (4.3) and (4.4) by applying Proposition 3.1 twice.

Let f be again the fixed point function of φ, see (1.1).

Theorem 4.2. Under the assumption (A) the domain $F=f(\mathbb{D})$ has tangents of angles $\pm \frac{\pi}{2 \beta}$ at 1 and

$$
\begin{gather*}
1-f(w) \sim b^{-1 / \beta}(1-w)^{1 / \beta} \tag{4.5}\\
f^{\prime}(w) \sim(\beta b)^{-1}(1-f(w))^{1-\beta} \sim \beta^{-1} b^{-\frac{1}{\beta}}(1-w)^{\frac{1}{\beta}-1} \tag{4.6}\\
f^{\prime \prime}(w) \sim(\beta-1) \beta^{-2} b^{-\frac{1}{\beta}}(1-w)^{\frac{1}{\beta}-2} \tag{4.7}
\end{gather*}
$$

as $w \rightarrow 1, w \in \mathbb{D}$, thus for unrestricted approach.
Proof. (a) Let \triangle be a Stolz angle in 1 of opening $\alpha>\pi / \beta$ and let $\varepsilon>0$. If $z=1-\rho e^{i \vartheta}$ with $|\vartheta|<\frac{\pi}{2}$ then, by (4.2),

$$
\begin{aligned}
|\varphi(z)|^{2} & =\left|z+b(1-z)^{\beta}+o\left(\rho^{\beta}\right)\right|^{2} \\
& =|z|^{2}+2 b \operatorname{Re}\left[(1-z)^{\beta}\right]+o\left(\rho^{\beta}\right)
\end{aligned}
$$

as $\rho \rightarrow 0$ and thus

$$
|\varphi(z)|^{2}-|z|^{2}=\rho^{\beta}(2 b \cos (\beta \vartheta)+o(1))
$$

This is positive for $\beta|\vartheta|<\frac{\pi}{2}-\varepsilon$ and negative for $\beta|\vartheta|>\frac{\pi}{2}+\varepsilon$ for small ρ. Hence the domain $F=\{z \in \mathbb{D}:|\varphi(z)|>|z|\}$ has tangents of angles $\pm \pi /(2 \beta)$ at 1. In particular, F lies within some Stolz angle near 1.
(b) We obtain from Proposition 4.1 that $1-z \varphi^{\prime}(z) / \varphi(z) \sim \beta b(1-z)^{\beta-1}$ as $z \rightarrow 1$ angularly. Since $f(\mathbb{D})$ lies in a Stolz angle by part (a), we conclude from (1.3) with $z=f(w)$ that

$$
\begin{equation*}
f^{\prime}(w)=\frac{1+o(1)}{\beta b}(1-f(w))^{1-\beta} \tag{4.8}
\end{equation*}
$$

as $w \rightarrow 1, w \in \mathbb{D}$ and therefore

$$
\begin{aligned}
(1-f(w))^{\beta} & =\beta \int_{w}^{1}(1-f(\omega))^{\beta-1} \frac{1+o(1)}{\beta b}(1-f(\omega))^{1-\beta} d \omega \\
& =\left(b^{-1}+o(1)\right)(1-w)
\end{aligned}
$$

Hence (4.5) holds, and (4.6) follows from (4.8).
By a short calculation we obtain from (1.3) that

$$
\begin{equation*}
f^{\prime \prime}(w)=\frac{w^{2} f^{\prime}(w)^{3}}{f(w)} \varphi^{\prime \prime}(f(w))+2 \frac{f^{\prime}(w)^{2}}{f(w)}-2 \frac{f^{\prime}(w)}{w} \tag{4.9}
\end{equation*}
$$

Hence we see from (4.4) and (4.6) that

$$
f^{\prime \prime}(w) \sim(\beta b)^{-3}(1-f(w))^{3-3 \beta} \beta(\beta-1) b(1-f(w))^{\beta-2}
$$

which implies (4.7) in view of (4.5).
Let $a_{n, k}$ be the coefficients of $\varphi(z)^{n}$, see (2.1). We come to our main theorem.

Theorem 4.3. Suppose that condition (A) holds and that $\overline{f(\mathbb{D})} \subset \mathbb{D} \cup\{1\}$. Let

$$
\begin{equation*}
\psi(z)=\frac{\chi(z)}{(1-z)^{\gamma}}=\sum_{k=0}^{\infty} b_{k} z^{k}, \gamma \geq 0 \tag{4.10}
\end{equation*}
$$

where χ is analytic in \mathbb{D} and has a finite angular limit $\chi(1) \neq 0$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k-1} a_{n, n-k} \sim \frac{\chi(1) b^{\frac{\gamma-1}{\beta}}}{\beta \Gamma(1+(\gamma-1) / \beta)} n^{\frac{\gamma-1}{\beta}} \text { as } n \rightarrow \infty \tag{4.11}
\end{equation*}
$$

Proof. (a) We apply Theorem 3.3 with $\alpha=2+\frac{\gamma-1}{\beta}>1$ and

$$
\begin{equation*}
h(w)=w \psi(f(w)) f^{\prime}(w)=\sum_{n=0}^{\infty} c_{n} w^{n} . \tag{4.12}
\end{equation*}
$$

We have $\chi(f(w)) \rightarrow \chi(1)$ because $f(1)=1$ and $F=f(\mathbb{D})$ lies in a Stolz angle by Theorem 4.2. Hence we obtain from (4.5), (4.6) and (4.10) that

$$
(1-w)^{\alpha-1} h(w) \sim \chi(1)(1-w)^{1+\frac{\gamma-1}{\beta}} b^{\frac{\gamma}{\beta}}(1-w)^{-\frac{\gamma}{\beta}} \beta^{-1} b^{-\frac{1}{\beta}}(1-w)^{\frac{1}{\beta}-1}
$$

which converges to $\chi(1) \beta^{-1} b^{(\gamma-1) / \beta}$ as $w \rightarrow 1$. We shall verify (3.10) in part (b). Then it follows from (3.11) that

$$
\begin{equation*}
c_{n} \sim c n^{(\gamma-1) / \beta} \text { as } n \rightarrow \infty \tag{4.13}
\end{equation*}
$$

where c is the factor in (4.11), and (4.11) now is a consequence of (2.3) (with $m=0$) in the Bürmann-Lagrange formula.
(b) Since the angular limit $\chi(1)$ exists, we have $(1-z) \chi^{\prime}(z) \rightarrow 0[\mathrm{Po} 92$, Prop. 4.8] and thus, by (4.10),

$$
\begin{equation*}
\psi^{\prime}(z)=\frac{\gamma \chi(z)+(1-z) \chi^{\prime}(z)}{(1-z)^{\gamma+1}}=O\left(\frac{1}{|1-z|^{\gamma+1}}\right) \tag{4.14}
\end{equation*}
$$

as $z \rightarrow 1, z \in F=f(\mathbb{D})$. Hence we obtain from Theorem 4.2 that

$$
\begin{align*}
h^{\prime}(w) & =\psi(f(w)) f^{\prime}(w)+w \psi^{\prime}(f(w)) f^{\prime}(w)^{2}+w \psi(f(w)) f^{\prime \prime}(w) \\
& =O\left(|1-f(w)|^{-\gamma-1+2-2 \beta}\right)+O\left(|1-f(w)|^{-\gamma}|1-w|^{\frac{1}{\beta}-2}\right. \\
& =O\left(|1-w|^{(1-\gamma) / \beta-2}\right)=O\left(|1-w|^{-\alpha}\right) \tag{4.15}
\end{align*}
$$

as $w \rightarrow 1, w \in \mathbb{D}$. It follows that $|1-w|^{\alpha}\left|h^{\prime}(w)\right|$ is bounded for $w \in \mathbb{D},|w-1| \leq$ δ for some $\delta>0$.

Furthermore f is continuous and injective in $\overline{\mathbb{D}}$. Since $f(1)=1$ it follows that $|1-f(w)|$ is bounded away from 0 in $U=\{w \in \mathbb{D}:|w-1|>\delta\}$. By assumption we have $\overline{f(\mathbb{D})} \subset \mathbb{D} \cup\{1\}$ and it follows from $[\mathrm{MePo} 05$, Th. 2.2] that f is analytic in \bar{U}. Moreover $\psi^{\prime}(f(w))$ is bounded in U. Hence we see from (4.15) that $|1-w|^{\alpha}\left|h^{\prime}(w)\right|$ is bounded also in U.

5. Applications to probability theory

Now we assume that φ has the form

$$
\begin{equation*}
\varphi(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{k} \geq 0 \quad(k=0,1, \ldots) \tag{5.1}
\end{equation*}
$$

and satisfies $\varphi(0) \neq 0, \varphi(1)=1$ and $\varphi^{\prime}(1)=1$. Thus φ is the generating function of a random variable X with values in \mathbb{N}_{0} and expectation $\mathbb{E}(X)=$ $\varphi^{\prime}(1)=1$. Let

$$
S_{n}=X_{1}+\ldots+X_{n} \quad(n=0,1, \ldots)
$$

where the X_{ν} are independent random variables with $\mathbb{P}\left(X_{\nu}=k\right)=a_{k}$ for all ν and k. Since the X_{ν} are independent, the power $\varphi(z)^{n}$ has the coefficients $\mathbb{P}\left(S_{n}=k\right)$ and thus, by (2.1)

$$
\begin{equation*}
a_{n, k}=\mathbb{P}\left(S_{n}=k\right) \text { for } n, k \in \mathbb{N}_{0} \tag{5.2}
\end{equation*}
$$

Proposition 5.1. Let φ be given by (5.1) with $\varphi(1)=\varphi^{\prime}(1)=1$ and suppose that

$$
\begin{equation*}
\sum_{k=1}^{m} k^{2} a_{k} \sim c m^{2-\beta} \quad(m \rightarrow \infty) \tag{5.3}
\end{equation*}
$$

where $1<\beta \leq 2$ and $0<c<\infty$. Then condition (A) of Section 4 is satisfied with

$$
\begin{equation*}
b=\frac{c \Gamma(3-\beta)}{\beta(\beta-1)} . \tag{5.4}
\end{equation*}
$$

An explicit example is given [MePo05, Ex. 6.2] by

$$
\varphi(z)=z+(2 \beta)^{-1}(1-z)^{\beta}+\frac{1}{4}(1-z)^{2} .
$$

Proof. The case $\beta=2$ is easy. Therefore we assume that $1<\beta<2$. It follows from (5.3) and (3.7) that

$$
\sum_{k=1}^{m} k(k-1) a_{k} \sim c \Gamma(3-\beta)(-1)^{m}\binom{\beta-3}{m}
$$

and therefore, as $x \rightarrow 1$,

$$
\frac{\varphi^{\prime \prime}(x)}{1-x}=\sum_{m=2}^{\infty}\left(\sum_{k=1}^{m}(k-1) k a_{k}\right) x^{m-2} \sim \frac{c \Gamma(3-\beta)}{(1-x)^{3-\beta}} .
$$

Now we multiply by $1-x$ and integrate twice using $\varphi^{\prime}(1)=1$ and $\varphi(1)=1$. We obtain (4.1) with b given by (5.4).

The generating function φ is called aperiodic if there does not exist $q>1$ such that $a_{k}=0$ for $k \not \equiv 0 \bmod q$. If φ is aperiodic then $|\varphi(z)|<1$ for $z \in \overline{\mathbb{D}}, z \neq 1$, see e.g. [MePo05, Sect.7]. Thus the condition $\overline{f(\mathbb{D})} \subset \mathbb{D} \cup\{1\}$ of Theorem 4.3 is satisfied. Hence we obtain from Theorem 4.3:

Theorem 5.2. Let the generating function φ be aperiodic and let condition (A) of Section 4 be satisfied. Let $\gamma \geq 0$ and

$$
\begin{equation*}
\psi(z)=\frac{\chi(z)}{(1-z)^{\gamma}}=\sum_{k=0}^{\infty} b_{k} z^{k} \tag{5.5}
\end{equation*}
$$

where χ is analytic in \mathbb{D} and $\chi(1) \neq 0$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k-1} \mathbb{P}\left(S_{n}=n-k\right) \sim \frac{\chi(1) b^{\frac{\gamma-1}{\beta}}}{\beta \Gamma(1+(\gamma-1) / \beta)} n^{\frac{\gamma-1}{\beta}} \text { as } n \rightarrow \infty \tag{5.6}
\end{equation*}
$$

If the variance σ^{2} of X is finite then we see from (4.4) that $\beta=2$ and $b=\sigma^{2} / 2$. Hence (5.6) becomes

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k-1} \mathbb{P}\left(S_{n}=n-k\right) \sim \frac{\chi(1) \sigma^{\gamma-1}}{2^{(\gamma+1) / 2} \Gamma((1+\gamma) / 2)} n^{\frac{\gamma-1}{2}} \tag{5.7}
\end{equation*}
$$

Now we give some specific applications where we always assume that condition (A) holds and that φ is aperiodic.
5.1. The limit behaviour of S_{n}. Let Z be any random variable with values in \mathbb{N}_{0} that is independent of the sums S_{n}. We apply Theorem 5.2 with $\gamma=0$ and χ the generating function of Z. Then $\chi(1)=1$ and the sum in (4.11) becomes

$$
\sum_{k=1}^{n} \mathbb{P}(Z=k-1) \mathbb{P}\left(S_{n}=n-k\right)
$$

Since the Z and S_{n} are independent we obtain

$$
\begin{equation*}
\mathbb{P}\left(S_{n}+Z=n\right) \sim \frac{b^{-1 / \beta}}{\beta \Gamma(1-1 / \beta)} n^{-\frac{1}{\beta}} \text { as } n \rightarrow \infty . \tag{5.8}
\end{equation*}
$$

5.2. Asymmetry near the equilibrium. Since $\mathbb{E}\left(S_{n}\right)=n$ the equilibrium is reached if $S_{n}=n$. Now we apply Theorem 5.2 with $\gamma=1$ and $\chi(z)=1$. We obtain

$$
\mathbb{P}\left(S_{n}<n\right)=\sum_{k=1}^{n} \mathbb{P}\left(S_{n}=n-k\right) \rightarrow \frac{1}{\beta} \text { as } n \rightarrow \infty
$$

This value is $>\frac{1}{2}$ if $\beta<2$. This does not contradict the law of large numbers because this law only says that $S_{n} / n \rightarrow 1$ but does not say anything about $\mathbb{P}\left(S_{n} / n<1\right)$.

We introduce random variables T_{n} with values in $\{1, \ldots, n\}$ by $T_{n}=n-S_{n}$ for $S_{n}<n$ and $\mathbb{P}\left(T_{n}=k\right)=\mathbb{P}\left(S_{n}=n-k \mid S_{n}<n\right)$. It follows from Theorem 5.2 with $\psi(z)=(1-z)^{-2}$ and $\psi(z)=2(1-z)^{-3}$ that

$$
\mathbb{E}\left(T_{n}\right) \sim \frac{b^{1 / \beta}}{\Gamma(1+1 / \beta)} n^{\frac{1}{\beta}}, \mathbb{V}\left(T_{n}\right) \sim\left(\frac{2 b^{2 / \beta}}{\Gamma(1+2 / \beta)}-\frac{b^{2 / \beta}}{\Gamma(1+1 / \beta)^{2}}\right) n^{\frac{2}{\beta}}
$$

5.3. The first return to equilibrium. Now we introduce a random variable N with values in \mathbb{N} by

$$
N=n \Leftrightarrow S_{n}=n, S_{\nu} \neq \nu \quad(1 \leq \nu<n) .
$$

Thus N is when S_{n} reaches its equilibrium for the first time.
Now $\left(S_{n}=n\right)$ is a recurrent event [Fe68, p. 311] and we see from (1.3) and from (2.5) with $k=0$ that

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(S_{n}=n\right) w^{n}=\frac{1}{1-w \varphi^{\prime}(f(w))}
$$

Hence it follows [Fe68, p. 311] that

$$
\begin{equation*}
w \varphi^{\prime}(f(w))=\sum_{n=1}^{\infty} \mathbb{P}(N=n) w^{n} \tag{5.9}
\end{equation*}
$$

Since $\varphi^{\prime}(1)=1$ and thus $f(1)=1$, we see that the random variable N is not defective.

Now we argue as in the proof of Theorem 4.3 with $\psi=\varphi^{\prime \prime}$. It follows from (5.9) that

$$
\begin{equation*}
h(w)=w \varphi^{\prime \prime}(f(w)) f^{\prime}(w)=\sum_{n=0}^{\infty} n \mathbb{P}(N=n+1) w^{n} \tag{5.10}
\end{equation*}
$$

this notation agrees with (4.12). We consider $\alpha=1+\frac{1}{\beta}>1$. It follows from Proposition 4.1 and Theorem 4.2 that, as $w \rightarrow 1-$,

$$
\begin{aligned}
(1-w)^{\alpha-1} h(w) & \sim(1-w)^{\frac{1}{\beta}} \beta(\beta-1) b(1-f(w))^{\beta-2} f^{\prime}(w) \\
& \rightarrow(\beta-1) b^{\frac{1}{\beta}}
\end{aligned}
$$

With some effort the condition (3.10) is verified as in part (b) of the proof of Theorem 4.3. Hence we obtain from (5.10) and Theorem 3.3 that

$$
n \mathbb{P}(N=n+1) \sim(\beta-1) b^{\frac{1}{\beta}} \Gamma(1 / \beta)^{-1} n^{\frac{1}{\beta-1}}
$$

and therefore

$$
\mathbb{P}(N=n) \sim \frac{(1-\beta) b^{1 / \beta}}{\Gamma(1 / \beta)} n^{\frac{1}{\beta}-2} \text { as } n \rightarrow \infty
$$

If σ is finite then $\beta=2$ and we obtain $\mathbb{P}(N=n) \sim \frac{\sigma}{\sqrt{2 \pi}} n^{-3 / 2}$.
5.4. The total progeny in a branching process. We consider a Galton-Watson branching process [Fe68] [AtNe72]. Let Z_{k} denote the number of individuals in the k-th generation where $Z_{0}=q$ is given; in general it is assumed that $Z_{0}=1$. These individuals reproduce independently and the number of children of each individual is distributed like X. Then

$$
Y=\sum_{k=0}^{\infty} Z_{k} \leq \infty
$$

is the total progeny, that is the total number of all individuals over all generations; see e.g. [Fe68, p. 298] [KaNa94]. It was shown in [MePo05, Sect. 6] that the fixed point function f of φ is the generating function of Y if $Z_{0}=1$. Since we now start with q individuals reproducing independently, we have

$$
f(w)^{q}=\sum_{n=q}^{\infty} \mathbb{P}(Y=n) w^{n}
$$

Hence we obtain from (2.6) and (5.8) that

$$
\begin{equation*}
\mathbb{P}(Y=n)=\frac{q}{n} \mathbb{P}\left(S_{n}=n-q\right) \sim \frac{q b^{-1 / \beta}}{\beta \Gamma(1-1 / \beta)} n^{-\frac{1}{\beta-1}} \tag{5.11}
\end{equation*}
$$

If $\sigma<\infty$ we have $\mathbb{P}(Y=n) \sim \frac{q}{\sqrt{2 \pi} \sigma} n^{-3 / 2}$.

6. The case $\varphi^{\prime}(1)<1$

Let φ again be analytic in \mathbb{D} and $\varphi(\mathbb{D}) \subset \mathbb{D}, \varphi(0) \neq 0$ and $\varphi(1)=1$. Now we assume that

$$
\begin{equation*}
\varphi^{\prime}(z) \rightarrow \mu<1 \text { as } z \rightarrow 1, z \in \mathbb{D} \tag{6.1}
\end{equation*}
$$

The fixed point function f satisfies $f(1)=1$ and now

$$
\begin{equation*}
f^{\prime}(w) \rightarrow \frac{1}{1-\mu}, \frac{1-f(w)}{1-w} \rightarrow \frac{1}{1-\mu} \text { as } w \rightarrow 1, w \in \mathbb{D} \tag{6.2}
\end{equation*}
$$

by (1.3). Hence $f(\mathbb{D})$ is tangential to $\partial \mathbb{D}$ at 1 [Po92, p. 80]. This is the reason why we have to allow unrestricted approach in (6.1). The situation is more complicated than for $\varphi^{\prime}(1)=1$ and we only prove one result.

Theorem 6.1. Suppose that $1<\beta<2, c \in \mathbb{C}, c \neq 0$ and

$$
\begin{equation*}
\varphi^{\prime \prime}(z) \sim c(1-z)^{\beta-2}, \varphi^{\prime \prime \prime}(z)=O\left(|1-z|^{\beta-3}\right) \tag{6.3}
\end{equation*}
$$

as $z \rightarrow 1, z \in \mathbb{D}$. If $\overline{f(\mathbb{D})} \subset \mathbb{D} \cup\{1\}$ then, for every $k \in \mathbb{Z}$,

$$
\begin{equation*}
a_{n, n-k} \sim \frac{c(1-\mu)^{-\beta-1}}{\Gamma(2-\beta)} n^{-\beta} \text { as } n \rightarrow \infty \tag{6.4}
\end{equation*}
$$

Proof. We have $\alpha=3-\beta>1$ because $\beta<2$. We apply Theorem 3.3 to

$$
\begin{equation*}
h(w)=\frac{d}{d w}\left(f^{\prime}(w) f(w)^{k-1}\right)=\sum_{n=k}^{\infty}(n-1) a_{n, n-k} w^{n-2} \tag{6.5}
\end{equation*}
$$

see (2.5). We restrict ourselves to the case $k=1$ to simplify some technical details.

It follows from (4.9), (6.2) and (6.3) that

$$
\begin{equation*}
h(w)=f^{\prime \prime}(w) \sim c(1-\mu)^{-\beta-1}(1-w)^{\beta-2} \text { as } w \rightarrow 1, w \in \mathbb{D} . \tag{6.6}
\end{equation*}
$$

Now we differentiate (4.9) and obtain from (6.3) that

$$
\begin{aligned}
h^{\prime}(w) & =f^{\prime \prime \prime}(w)=O\left(f^{\prime \prime}(w) \varphi^{\prime \prime}(f(w))\right)+O\left(\varphi^{\prime \prime \prime}(f(w))\right. \\
& =O\left(|1-w|^{2 \beta-4}\right)+O\left(|1-w|^{\beta-3}\right)=O\left(|1-w|^{-\alpha}\right)
\end{aligned}
$$

because $\beta>1$. As in part (b) of the proof of Theorem 4.3, we see that (3.10) holds. Hence it follows from (3.11), (6.5) and (6.6) that

$$
(n-1) a_{n, n-1} \sim \frac{c(1-\mu)^{-\beta-1}}{\Gamma(2-\beta)} n^{1-\beta} \text { as } n \rightarrow \infty
$$

which implies (6.4) for $k=1$.
Now let φ be an aperiodic probability generating function with $\mathbb{E}(X)<1$ that satisfies (6.3) with $1<\beta<2$. Then it follows from (6.4) that

$$
\begin{equation*}
\mathbb{P}\left(S_{n}=n-q\right) \sim c_{1} n^{-\beta} \quad(n \rightarrow \infty), c_{1} \neq 0 \tag{6.7}
\end{equation*}
$$

and we obtain from (5.11) that the total progeny Y in a branching process satisfies $\mathbb{P}(Y=n) \sim c_{2} n^{-\beta-1}, c_{2} \neq 0$.

The relation is not always (or never ?) true if $\beta=2$, that is for finite variance. Consider for instance the case that φ is analytic in $\{|z|<R\}$ with $R>1$. Then large deviation theory shows that

$$
\mathbb{P}\left(S_{n}=n-1\right)=O\left(\rho^{n}\right) \quad(n \rightarrow \infty) \text { for some } \rho<1
$$

which is very much smaller than (6.7). See e.g. [Gä77] and see [MePo05, Sect. 7] for details.

References

[AtNe72] K. B. Athreya \& P. E. Ney, Branching processes, Springer, Berlin, 1972.
[Fe68] W. Feller, An introduction to probability theory and its applications I, John Wiley \& Sons, New York, 1968.
[Gä77] J. GÄRTNER, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1977), 24-39.
[KaNa94] A. V. Karpenko \& V. Nagaev, Limit theorems for the total number of descendants for the Galton-Watson branching process, Theory Probab. Appl. 38 (1994), 433-455.
[MePo05] D. Mejía \& Ch. Pommerenke, The analytic fixed point function in the disk, Comput. Methods Funct. Theory, 5 no. 2 (2005), 275-299.
[Pe75] V. V. Petrov, Sums of independent random variables, Springer, Berlin, 1975.
[PoSz25] G. Póya \& G. Szegö, Aufgaben und Lehrsätze aus der Analysis I, Springer, Berlin, 1925.
[Po92] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992.
(Recibido en febrero de 2006. Aceptado en abril de 2006)

Escuela de Matemáticas
Universidad Nacional de Colombia
A.A. 3840

Medellin, Colombia
e-mail: dmejia@unal.edu.co
Institut für Mathematik MA 8-2
Technische Universität
D-10623 Berlin, Germany
e-mail: pommeren@math.tu-berlin.de

[^0]: *Supported by COLCIENCIAS.
 ${ }^{\dagger}$ Supported by Deutsche Forschungsgemeinschaft (DFG).

