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Resumen. Nosotros damos una aproximación auto-contenida y constructiva
para reducir una transformación lineal auto-adjunta definida sobre un espacio
pseudo-unitario (resp. pseudo-euclidiano) a una forma canónica.

1. Introduction

Using pencils of matrices the simultaneous reduction of a pair of real symmetric
matrices to a normal form was first developed by Weierstrass [9] and Kronecker
[4]. Since then several authors, e.g., [2], [6], and [8], have studied the canonical
forms for a pair of structured matrices. In this paper, we show that a com-
plex (resp. real) self-adjoint linear transformation on a pseudo-unitary (resp.
pseudo-euclidean) space can be brought to a canonical form via a basis that
is orthonormal with respective to the inner product. Following a different ap-
proach than the authors mentioned above, we provide an explicit construction
that produces an orthonormal basis relative to which the given linear trans-
formation has a canonical form. In the complex case, the orthonormal basis is
a modification of a Jordan basis, whereas in the real case, our basis will be a
modification of a basis associated with the real Jordan form.
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We are very grateful to the referee for making a number of useful remarks
and suggestions that significantly helped to improve the final version of the
paper.

2. Definitions and preliminaries

A complex linear space E of dimension n is called pseudo-unitary if there is a
non-degenerate, indefinite, Hermitian form defined on it. This form is called
an inner product and is denoted by 〈, 〉. When the inner product is positive
definite then the space E is simply a unitary space. We denote ‖x‖ = 〈x, x〉
and call it the norm of x. Two vectors x and y in E are called orthogonal if
〈x, y〉 = 0. A basis {ei}, (1 ≤ i ≤ n) is called an orthonormal basis if for some
p, 1 ≤ p ≤ n,

〈ei, ei〉 =
{

1 for 1 ≤ i ≤ p ,
−1 for p + 1 ≤ i ≤ n ,

and 〈ei, ej〉 = 0 for i 6= j.

Given a pseudo-unitary space, it is well known that an orthonormal basis
{ei} can always be constructed and that p is a fixed number, ([3]; 9.8, pp.
267-8). In this basis, if we write v =

∑n
i=1 viei and w =

∑n
i=1 wiei then

〈v, w〉 = v1w1 + v2w2 + · · ·+ vpwp − vp+1wp+1 − · · · − vnwn.

A linear transformation, T, on E is called self-adjoint if 〈Tx, y〉 = 〈x, Ty〉.
When E is a unitary space, T is called symmetric.

We now make analogous definitions for a real vector space. A real n-
dimensional vector space, V, is called pseudo-euclidean if there is a non-degenerative,
indefinite, symmetric bilinear form defined on it. As before, we call this bilinear
form an inner product and denote it by 〈, 〉. When the inner product is positive
definite the space is a euclidean space. Orthogonal vectors, norm, orthonormal
basis, and self-adjoint linear transformations are defined as above. Again, it is
well known that an orthonormal basis exists ([3]; 9.8, pp. 267-8). If {ei} is an
orthonormal basis of V, and if x =

∑n
i=1 xiei, y =

∑n
i=1 yiei, then

〈x, y〉 = x1y1 + x2y2 + · · ·+ xpyp − xp+1yp+1 − · · · − xnyn.

In Section 3, we consider a self-adjoint, linear transformation T acting on
a pseudo-unitary space E. Our goal is to construct an orthonormal basis of
E such that the matrix of T with respect to this basis is of a normal form.
We begin by showing that E is a direct sum of invariant, mutually orthogonal
subspaces where the restriction of T to each subspace has either a single real or
a single pair of complex conjugate eigenvalues. This will essentially reduce our
problem to two cases: (1) T has a single real eigenvalue, and (2) T has a single
pair of complex conjugate eigenvalues. In each of these cases, a modification
of the standard Jordan basis produces the desired orthonormal basis.

In Section 4 we consider a self-adjoint linear transformation acting on a
pseudo-euclidean space. Here again, we show that our vector space is a direct
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sum of invariant, mutually orthogonal subspaces where the restriction of T to
each subspace has either a single real or a single pair of complex conjugate
eigenvalues, and this reduces the problem to the two cases mentioned above.
If an eigenvalue is real we use the usual Jordan basis. Otherwise, we use the
basis corresponding to the real Jordan form for a complex eigenvalue.

Below are a number of types of matrices that will be used throughout the
paper. An omitted entry in a matrix is meant to be the entry ‘0’. The super-
script “F” refers either to r = the field of real numbers or to c = the field of
complex numbers. For a matrix A, A∗ will denote its negative transpose. The
matrix In is the identity matrix of dimension n.

The following are square matrices:

(Ay)F (x) =




x 1
2

1
2

. . .
. . .

. . . x 1
2

1
2 x + y

2




(Ây)F (x) =




x − 1
2

1
2

. . .
. . .

. . . x − 1
2

1
2 x + y

2




BF (x) =




x 1
2

1
2

. . .
. . .

. . . x 1√
2

1√
2

x




(yA)F (x) =




x + y
2

1
2

1
2 x

. . .

. . .
. . . 1

2
1
2 x




yD̂F =




− 1
2

. .
. 1

2

− 1
2

. .
.

y
2

1
2




LF (x) =




x 1√
2

. . . 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1√
2

1
2 x




Mr(α) =




x 1√
2

1√
2

. . . 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2 x




.

When x = 0 or y = 0 we simply drop the zero, e.g., we write (Ay)F for
(Ay)F (0) and AF (x) for (A0)F (x).
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The following matrices are of dimension l x (l + 1):

K̂F =




− 1
2

1
2

. . .

. . . − 1
2

− 1√
2

1
2




Ê =




− 1
2

. .
. 1

2

− 1
2

. .
.

− 1√
2

1
2




.

The following matrices are of dimension (l + 1) x l:

GF (x) =




1√
2

x 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2 x




ĈF =




− 1
2

1
2

. . .

. . . − 1
2

1
2

1√
2




N̂r =




1
2

. .
. 1

2

− 1
2

. .
.

1
2

1√
2




.

3. Self-adjoint linear transformations
on a pseudo-unitary Space

Let E be a pseudo-unitary space and let T be a self-adjoint linear transforma-
tion on E. It is known (See [1], Theorem 3.3, pp. 35) if α 6= β̄ are eigenvalues
of T then the corresponding eigenspaces Eα and Eβ are perpendicular. This
along with non-degeneracy of the inner product implies that complex eigenval-
ues of T appear in complex conjugate pairs, and we can decompose E into a
direct sum of invariant and pairwise orthogonal subspaces

E = E1 + · · ·+ Es,

where each Ei is either an eigenspace of T corresponding to a real eigenvalue or
is the sum of eigenspaces corresponding to a single pair of complex conjugate
eigenvalues. Therefore, our study of the transformation T , is reduced to its
action on each subspace Ep. We consider two cases.

Case I: TTT has a single real eigenvalue.
The next lemma shows that a particular kind of Jordan basis can be chosen on
each subspace Ep.
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Lemma 3.1. Let T be a self-adjoint, linear transformation on the pseudo-
unitary space E, with a single real eigenvalue α. Then, E can be decomposed
into the direct sum of pairwise orthogonal, invariant subspaces, E = E1 +E2 +
· · · + Et, where the restriction of T to each subspace produces a Jordan block.
The Jordan basis

v1 = v, v2 = (T − αI)v1, · · · , vk = (T − αI)vk−1,

for an orthogonal subspace Ep can be chosen such that

〈vi, vj〉 = 〈v1, vk〉 = ε if i + j = k + 1 ,

where ε = ±1 and
〈vi, vj〉 = 0 if i + j 6= k + 1.

(Note: The sign of 〈v1, vk〉, known as the sign characteristic of the inner prod-
uct on Ep is determined by the transformation T and cannot be changed.)

Proof. See [5] page 244. ¤X

Next we construct an orthonormal basis for each Ep.

Proposition 3.1. Let Ep be an invariant subspace of E with associated real
eigenvalue α as in Lemma 3.1. Then the Jordan basis given in this lemma can
be modified to get an orthonormal basis β of Ep such that the matrix of T with
respect to β is

a) for k = 2l even

 (Aε)r(α)

(
Âε

)r

((
Âε

)r)∗
(A−ε)r(α)


 .

(Each block is of dimension l).
b) for k = 2l + 1 odd and the sign characteristic is positive

[
Br(α) Ĉr(
Ĉr

)∗
Ar(α)

]
.

(Br(α) is of dimension l + 1, Ar(α) is of dimension l).
c) for k = 2l + 1 odd and the sign characteristic is negative

[
Ar(α) K̂r(
K̂r

)∗
Lr(α)

]
.

(Ar(α) is of dimension l, Lr(α) is of dimension l + 1).

Proof. Suppose k = 2l is even and the sign characteristic is positive. Then the
following is an orthonormal basis

a1 =
1√
2
(v1 + v2l), a2 =

1√
2
(v2 + v2l−1), · · · , al =

1√
2
(vl + vl+1),



20 S. AHDOUT & S. ROTHMAN

al+1 =
1√
2
(v1 − v2l), al+2 =

1√
2
(v2 − v2l−1), · · · , a2l =

1√
2
(vl − vl+1).

(If the sign characteristic is negative, replace ai by al+i, and viceversa for
1 ≤ i ≤ l).

If k = 2l+1 is odd and the sign characteristic is positive, then the orthonor-
mal basis is

a1 =
1√
2
(v1 + v2l+1), a2 =

1√
2
(v2 + v2l), · · · , al =

1√
2
(vl + vl+2),

al+1 = vl+1

al+2 =
1√
2
(v1 − v2l+1), al+3 =

1√
2
(v2 − v2l), · · · , a2l+1 =

1√
2
(vl − vl+2).

(If the sign characteristic is negative, replace ai by al+1+i, and viceversa for
1 ≤ i ≤ l). ¤X

Case II: TTT has a single pair of complex conjugate eigenvalues.

Lemma 3.2. Let T be a self-adjoint, linear transformation on the pseudo-
unitary space E with a single pair of complex conjugate eigenvalues λ and
λ. E can be decomposed into a direct sum of orthogonal invariant subspaces,
E = E1 + · · ·+ Er, where the restriction of T to each subspace produces a pair
of Jordan blocks. Jordan bases for a subspace Ep can be chosen such that

v1 = v, v2 = (T − λI)v1, · · · , vk = (T − λI)vk−1;

w1 = w, w2 = (T − λI)w1, · · · , wk = (T − λI)wk−1,

where
〈vi, wj〉 = 〈vk, w1〉 = 1 if i + j = k + 1,

and
〈vi, wj〉 = 0 if i + j 6= k + 1.

Proof. See [5] page 242. ¤X

Proposition 3.2. Let Ep be an invariant orthogonal component with a complex
eigenvalue λ as in Lemma 3.2 and let λ = a+bi, b > 0. The Jordan basis defined
above can be modified to obtain an orthonormal basis of Ep such that T has the
following matrix form [

Ac(a) Âc(bi)
Âc(bi) Ac(a)

]
.

Proof. Let {v1, · · · , vk} and {w1, · · · , wk} be a pair of Jordan bases as in
Lemma 3.2. Since 〈vi, wj〉 = 〈vk, w1〉 = 1 for i + j = k + 1, the following form
an orthonormal basis of Ep

a1 =
1
2
(v1 + wk), a2 =

1
2
(v2 + wk−1), · · ·

ak+1 =
1
2
(v1 − wk), ak+2 =

1
2
(v2 − wk−1), · · ·
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and the matrix of T is given as above. (We note that ||a1|| = · · · = ||al|| = 1
and ||al+1|| = · · · = ||a2l|| = −1). ¤X

Finally in the most general case we obtain an orthonormal basis and con-
struct the normal form of T as follows: First decompose E into the direct sum
of pairwise orthogonal subspaces where each subspace is invariant under T and
the restriction of T to a given subspace is a Jordan block. For each subspace
form the orthonormal basis given by Propositions 3.1 or 3.2 accordingly, then
rearrange these basis elements to construct an orthonormal basis by first listing
the basis elements of norm one corresponding to the real eigenvalues followed
by the basis elements of norm one corresponding to the complex eigenvalues.
Then follow these by the basis elements of norm minus one corresponding first
to the real and then to the complex eigenvalues. This result can be stated as

Theorem 3.3. Let E be a pseudo-unitary space, and let T be a self-adjoint
linear transformation on E with real eigenvalues α1, · · · , αp and complex eigen-
values λ1, · · · , λs with λj = aj + bji and bj > 0. Then, there is an orthonormal
basis β for E such that the transformation is represented by the following matrix
with respect to β: 



er hr

ac (â)c

(hr)∗ gr

(â)c ac


 .

Blocks with the superscript c are associated with the complex eigenvalues, and
blocks with the superscript r are obtained from the real eigenvalues. Further-
more, using the notation of Propositions 3.1 and 3.2 each superscripted lower
case letter is a block diagonal matrix whose structure is given by
(1) er = (Er(α1), . . . , Er(αp)) where:

Er(αj) =





(Aε)r(αj) if k is even;
Br(αj) if k is odd and the sign characteristic is positive;
Ar(αj) if k is odd and the sign characteristic is negative.

(2) hr = (Hr(α1), . . . ,Hr(αp)) where:

Hr(αj) =





(Âε)r if k is even;
Ĉr if k is odd and the sign characteristic is positive;
K̂r if k is odd and the sign characteristic is negative.

(3) gr = (Gr(α1) , . . . , Gr(αp)) where:

Gr(αj) =





(A−ε)r(αj) if k is even;
Ar(αj) if k is odd and the sign characteristic is positive;
Lr(αj) if k is odd and the sign characteristic is negative.

(4) ac = (Ac(a1), . . . , Ac(as)).
(5) (â)c =

(
Âc(b1i), . . . , Âc(bsi)

)
.
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4. Self-adjoint linear transformations
on a pseudo-euclidean space

In this section we consider a self-adjoint, linear transformation T , on a pseudo-
euclidean space V . As in the complex case above, V can be decomposed into the
direct sum of invariant and pairwise orthogonal subspaces where the restriction
of T to each subspace has either a single real eigenvalue or a single pair of
complex, conjugate eigenvalues. This again allows us to reduce the problem
to two cases and to further decompose each subspace into the direct sum of
invariant and pairwise orthogonal subspaces where the restriction of T to each
subspace is now either a real or a generalized real Jordan block. In the case
of a complex eigenvalue, we first complexify the subspace and extend T to the
complexified subspace. We then use the Jordan basis constructed in Section
3 to obtain a real Jordan basis for the real subspace. We next modify this
basis to obtain an orthonormal basis for this subspace. Finally, to obtain the
orthonormal basis in the general case, we combine the basis elements for all the
subspaces. Here, as in the complex case, we list all basis elements of norm−1
after the basis elements of norm 1, and obtain our normal form.

Similar to the complex case we have

Lemma 4.1. If V1 and V2 are eigenspaces of T corresponding to real eigenval-
ues α1 6= α2, then V1 and V2 are orthogonal.

The next lemma shows that the null space corresponding to a complex eigen-
value of T is orthogonal to the eigenspace corresponding to a real eigenvalue
of T .

Lemma 4.2. Let V1 = {x|(T − αI)mx = 0} be the eigenspace of T corre-
sponding to the real eigenvalue α, and let λ and be a complex eigenvalue
of T , and suppose that λ is a root of the polynomial: x2 + ax + b. Let
V2 =

{
y| (T 2 + aT + b

)n
y = 0

}
be the null space of

(
T 2 + aT + b

)n. Then V1

and V2 are orthogonal.

Proof. Choose vectors x ∈ V1 and y ∈ V2. Then (T − αI)mx = 0 and(
T 2 + aT + b

)n
y = 0. We use induction on m + n to show that 〈x, y〉 = 0.

For m + n = 1 then either x = 0 or y = 0, and, hence, 〈x, y〉 = 0. For
m + n > 1, let x1 = (T − αI)x, x2 = (T − αI)2x and y1 =

(
T 2 + aT + b

)
y.

Then, using the induction hypothesis
(i) 〈x1, y〉 = 0; This implies that 〈Tx, y〉 = α 〈x, y〉
(ii) 〈x2, y〉 = 0; This along with (i) implies that

〈
T 2x, y

〉
= α2 〈x, y〉

(iii) Finally, 〈x, y1〉 = 0. Then using the symmetry of T along with the
results of (i) and (ii) we have

(
α2 + aα + b

) 〈x, y〉 = 0.

For α real, α2 + aα + b 6= 0. Thus 〈x, y〉 = 0.

¤X
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Complexification. To continue the rest of our construction, let E = V + iV
be the complexification of V . Then, E is a pseudo-unitary space with the inner
product defined by

〈x1 + iy1, x2 + iy2〉 = (〈x1, x2〉+ 〈y1, y2〉) + (〈y1, x2〉 − 〈x1, y2〉) i.

The transformation T extends to a self-adjoint, linear transformation, which
we again denote by T , via

T (x + iy) = Tx + iTy.

Note that considering T either as a linear transformation on V or as a linear
transformation on the complexification E, it has the same eigenvalues. Next
we prove that null spaces corresponding to distinct non-conjugate complex
eigenvalues of T are orthogonal.

Lemma 4.3. Let λ = a + ib and γ = c + id be distinct, and non-conjugate,
complex eigenvalues of T. Let

V1 =
{

x | [(T − a)2 + b2
]m

x = 0
}

,

and

V2 =
{

x
′ | [(T − c)2 + d2

]n
x
′
= 0

}
,

be subspaces of V . Then V1 and V2 are orthogonal.

Proof. Let E1 ⊆ E be the sum of the eigenspaces corresponding to λ and λ.
Similarly, let E2 ⊆ E be the sum of the eigenspaces corresponding to γ and γ.
We have v = x + iy ∈ E1 if and only if x, y ∈ V1 and w = x′ + iy′ ∈ E2 if and
only if x′, y′ ∈ V2. Since v ∈ E1 as well, we have 〈v, w〉 = 0 and 〈v, w〉 = 0.
This implies that 〈x, y〉 = 0, 〈x′, y〉 = 0, 〈x, y′〉 = 0, and 〈x′, y′〉 = 0, and thus
proves the lemma. ¤X

The nondegeneracy of the inner product implies that complex eigenvalues
of T come in conjugate pairs, and therefore, we can state the following:

Proposition 4.1. Let T be a self-adjoint, linear transformation on a pseudo-
euclidean space V . Then V can be decomposed into the direct sum of pairwise
orthogonal, invariant subspaces, V = V1 +V2 + · · ·+Vs, where the restriction of
T to each Vi has either a single real eigenvalue α or a pair of complex conjugate
eigenvalues λ and λ.

Thus, we reduce our construction of an orthonormal basis to two cases.
Case I. TTT has a single real eigenvalue.

Similar to the case of a pseudo-unitary space we construct a special Jordan
basis as follows:

Lemma 4.4. Let T be a self-adjoint, linear transformation on a pseudo-
euclidean space V with a single real eigenvalue α. Then V = V1 +V2 + · · ·+Vr

is the direct sum of orthogonal, invariant subspaces such that the restriction of
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T to each subspace produces a Jordan block. The Jordan basis, {x1, · · · , xk},
for a subspace Vp, is chosen such that 〈xi, xj〉 = 〈x1, xk〉 = ε if i + j = k + 1,
where again ε = ±1, is called the sign characteristic of the inner product on
Ep and 〈xi, xj〉 = 0 otherwise.

Proof. Choose k such that (T − αI)k−1 6= 0 and (T − αI)k = 0. Define
B(x, y) =

〈
(T − αI)k−1x, y

〉
. Since T is self-adjoint, (and the inner product is

non-degenerative) B is a symmetric bilinear form on V which is not identically
zero. Thus there is an x ∈ V such that B(x, x) = r 6= 0. By replacing x with

x√
|r| if necessary we can assume that B(x, x) = ε. Let x1 = x, xp = (T−αI)xp−1

for 2 ≤ p ≤ k. Then 〈xi, xj〉 = 0 if i + j > k + 1 and 〈xi, xj〉 = 〈x1, xk〉 =
B(x, x) = ±1 if i + j = k + 1. Replace x1 with a suitable linear combination
of x1, x2, · · · , xk (as is necessary) to have 〈xi, xj〉 = 0 if i + j 6= k + 1 and
〈xi, xj〉 = 〈x1, xk〉 = ε for i + j = k + 1. Let V1 = span{x1, · · · , xk}. V1 is
invariant under T , and {x1, · · · , xk} is a Jordan basis. The restriction of T to
this subspace is a Jordan block. Decompose V = V1 +V ⊥

1 and repeat the same
construction on V ⊥

1 . ¤X

Proposition 4.2. Let Vp be an invariant subspace of dimension k with a single
real eigenvalue α as in Lemma 4.4. Then, there is an orthonormal basis β of
Vp such that the matrix of T with respect to β is:

a) for k = 2l even
[

(Aε)r(α) (εD̂)r

(εD̂
r)∗ (−εAr)(α)

]
,

(Each square block is of dimension l.) where again ε = ±1.
b) for k = 2l + 1 odd and the sign characteristic is positive

[
Br(α) N̂r

(N̂r)∗ Ar(α)

]
.

(Ar(α) and Br(α) are square matrices of dimensions l and l + 1 re-
spectively).

c) for k = 2l + 1 odd and the sign characteristic is negative
[

Ar(α) Êr

(Êr)∗ Mr(α)

]
.

(Ar(α) and Mr(α) are square matrices of dimension l and l+1 respec-
tively).

Proof.
(1) If k = 2l is even, and the sign characteristic is positive, then let

a1 =
1√
2
(x1 + x2l), a2 =

1√
2
(x2 + x2l−1), · · · , al =

1√
2
(xl + xl+1),
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a2l =
1√
2
(x1 − x2l), a2l−1 =

1√
2
(x2 − xk−1), · · · , al+1 =

1√
2
(xl − xl+1).

The set {ai}, 1 ≤ i ≤ 2l, form the orthonormal basis. If the sign
characteristic is negative then replace ai by a2l+1−i and viceversa for
1 ≤ i ≤ l.

(2) If k = 2l + 1 is odd and the sign characteristic is positive, let

a1 =
1√
2
(x1 + x2l+1), a2 =

1√
2
(x2 + x2l), · · · , al =

1√
2
(xl + xl+2),

al+1 = xl+1,

a2l+1 =
1√
2
(x1 − x2l+1), a2l =

1√
2
(x2 − x2l), · · · , al+2 =

1√
2
(xl − xl+2).

If the sign characteristic is negative then replace ai by a2l+2−i and
viceversa for 1 ≤ i ≤ l.

¤X

Case II. TTT has a single pair of complex conjugate eigenvalues.
The following derivation of the real Jordan form, (see [7]), will help us to

construct the orthonormal basis in Proposition 4.3.

Lemma 4.5. Let T be a self-adjoint, linear transformation on a pseudo-
euclidean space V with λ = a + bi and λ = a− bi the only eigenvalues. Then,
V = V1 + · · · + Vr is the direct sum of orthogonal, invariant subspaces, and
the matrix of T when restricted to each subspace produces a “generalized real
Jordan block” of the form




a b
−b a
1 0 a b
0 1 −b a

1 0 a b
0 1 −b a

. . .
. . .

1 0 a b
0 1 −b a




.

Proof. Let E be the complexification of V . Choose k such that (T − λI)k = 0
and (T − λI)k−1 6= 0. Consider B(v, w) =

〈
(T − λI)k−1v, w

〉
. Since T is self-

adjoint, B is Hermitian, and because the inner product is non-degenerate it is
not identically zero, and so we can choose v

′
such that B

(
v
′
, v
′
)

= ζ 6= 0. Let
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v = v
′

√
ζ
. Then

B(v, v) = B

(
v
′

√
ζ
,

v
′

√
ζ

)
=

〈
(A− λI)k−1 v

′

√
ζ
,

v′√
ζ

〉

=
1
ζ

〈
(A− λI)k−1v

′
, v′

〉
=

ζ

ζ
= 1.

Thus, in the proof of Lemma 3.2 we can choose w = v and decompose E into
the direct sum of orthogonal, invariant subspaces, i.e., E = E1 +E2 + · · ·+Er,
where the restriction of T to each subspace produces a pair of Jordan blocks.
For example, the Jordan basis chosen for Ep is

v1 = v, vi = (T − λI)vi−1,

w1 = v, wi = (T − λ)wi−1 = vi, 2 ≤ i ≤ k,

and
〈vi, vj〉 = 〈vi, vj〉 = 0 for all i, j,

〈vi, vj〉 = 1 for i + j = k + 1,

〈vi, vj〉 = 0 for i + j 6= k + 1.

Now let vr
j = 1

2 (vj + vj) and vc
j = 1

2i (vj − vj). Then

β = {vr
1, v

c
1, v

r
2, v

c
2, · · · , vr

k, vc
k}

form a real Jordan basis for V1, a subspace of V , and the matrix of T with
respect to β is as claimed. ¤X

Proposition 4.3. Let Vp be an invariant subspace with a single pair of complex
eigenvalues, λ = a+bi and λ = a−bi with b > 0 as in Lemma 4.5, and assume
it is of dimension 2k. Then there is an orthonormal basis β of Vp such that the
matrix of T with respect to β is

a) for k = 2l even [
W c(a) Y c(b)

(Y c(b))∗ W c(a)

]
,

where

W c(a) =
[
(A1)c(a)

(A−1)c(a)

]
Y c(b) =


 bIl

(
−Â1

)c

((
−Â1

)c)∗
−bIl


 .

b) for k = 2l + 1 odd [
P c(a) Qc(b)

(Qc(b))∗ P c(a)

]
,

where

P c(a) =
[
Bc(a)

Ac(a)

]
Qc(b) =

[
bIl+1 −Ĉc(
−Ĉc

)∗
−bIl

]
.
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Proof. Notice that 〈vi, vj〉 = 1 for i + j = k + 1. This implies that
〈
vr

i , vr
j

〉 −〈
vc

i , v
c
j

〉
= 1. Similarly, since 〈vi, vj〉 = 0, we get

〈
vr

i , vr
j

〉
+

〈
vc

i , v
c
j

〉
= 0. Thus

〈
vr

i , vr
j

〉
=

1
2

and
〈
vc

i , v
c
j

〉
= −1

2
for i + j = k + 1.

Again, from 〈vi, vj〉 = 0, we have
〈
vc

i , v
r
j

〉
=

〈
vr

i , vc
j

〉
= 0 for all i, j,

and 〈
vr

i , vr
j

〉
=

〈
vc

i , v
c
j

〉
= 0 if i + j 6= k + 1.

We construct an orthonormal basis, β, as follows:
Case A: k = 2l is even, i.e., dim(V ) = 4l. Let

x1 = vr
1 + vr

2l, x2 = vr
2 + vr

2l−1, · · · , xl = vr
l + vr

l+1,

xl+1 = −vc
1 + vc

2l, xl+2 = −vc
2 + vc

2l−1, · · · , x2l = −vc
l + vc

l+1,

x2l+1 = vc
1 + vc

2l, x2l+2 = vc
2 + vc

2l−1, · · · , x3l = vc
l + vc

l+1,

x3l+1 = −vr
1 + vr

2l, x3l+2 = −vr
2 + vr

2l−1, · · · , x4l = −vr
l + vr

l+1.

Case B: k = 2l + 1 odd, i.e., dim(V ) = 4l + 2. Then the orthonormal basis is

x1 = vr
1 + vr

2l+1, x2 = vr
2 + vr

2l, · · · , xl = vr
l + vr

l+2,

xl+1 =
√

2vr
l+1,

xl+2 = −vc
1 + vc

2l+1, · · · , x2l+1 = −vc
l + vc

l+2,

x2l+2 = vc
1 + vc

2l+1, · · · , x3l+1 = vc
l + vc

l+2,

x3l+2 =
√

2vc
l+1,

x3l+3 = −vr
1 + vr

2l+1, · · · , x4l+2 = −vr
l + vr

l+2.

¤X

Finally, when T has several eigenvalues, as in the complex case above, we
decompose V into the direct sum of pairwise, orthogonal subspaces such that
each subspace is invariant under the transformation T and the restriction of
T to each subspace is given by a Jordan block. We use Propositions 4.2 and
4.3 accordingly to construct the orthonormal basis on each subspace and form
an orthonormal basis for V by listing all the basis elements of norm −1 after
listing the basis elements of norm +1.

Theorem 4.4. Let V be a pseudo-euclidean space, and let T be a self-adjoint
linear transformation on V with real eigenvalues α1, · · · , αp and complex eigen-
values λ1, · · · , λs with λj = aj + bji and bj > 0. Then, there is an orthonormal
basis β for E such that the transformation is represented by the following matrix
with respect to β: 



er hr

ac (â)c

(hr)∗ gr

(â)c
ac


 .
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Blocks with the superscript c are associated with the complex eigenvalues, and
blocks with the superscript r are obtained from the real eigenvalues.

Furthermore, using the notation of Propositions 4.2 and 4.3 each super-
scripted lower case letter is a block diagonal matrix whose structure is given
by

(1) er = (Er(α1), · · · , Er(αp)) where:

Er(αj) =





(Aε)r(αj) if k is even;
Br(αj) if k is odd and the sign characteristic is positive;
Ar(αj) if k is odd and the sign characteristic is negative.

(2) hr = (Hr(α1), · · · ,Hr(αp)) where:

Hr(αj) =





(
εD̂

)r

if k is even;

N̂r if k is odd and the sign characteristic is positive;
Êr if k is odd and the sign characteristic is negative.

(3) gr = (Gr(α1), · · · , Gr(αp)) where:

Gr(αj) =





−ε(Ar)(αj) if k is even;
Ar(αj) if k is odd and the sign characteristic is positive;
Mr(αj) if k is odd and the sign characteristic is negative.

(4) ac = (U c(a1), · · · , U c(as)) where:

U c(aj) =
{

W c(aj) if k is even;
P c(aj) if k is odd.

(5) (â)c = (V c(b1), . . . , V c(bs)) where:

V c(bj) =
{

Y c(bj) if k is even;
Qc(bj) if k is odd.
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