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Rigidity of minimal hypersurfaces
of spheres with constant

ricci curvature

Oscar Perdomo

Universidad del Valle, Cali

Abstract. Let M be a compact oriented minimal hypersurface of the unit n-
dimensional sphere Sn. In this paper we will point out that if the Ricci curvature
of M is constant, then, we have that either Ric ≡ 1 and M is isometric to an

equator or, n is odd, Ric ≡ n−3
n−2

and M is isometric to S
n−1

2 (
√

2
2

)× S
n−1

2 (
√

2
2

).

Next, we will prove that there exists a positive number ε(n) such that if the
Ricci curvature of a minimal hypersurface immersed by first eigenfunctions
M satisfies that n−3

n−2
− ε(n) ≤ Ric ≤ n−3

n−2
+ ε(n) and the average of the scalar

curvature is n−3
n−2

, then, the ricci curvature of M must be constant and therefore

M must be isometric to S
n−1

2 (
√

2
2

)× S
n−1

2 (
√

2
2

).
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1. Introduction

Let φ : M −→ Sn be a minimal immersion of a compact oriented (n − 1)-
dimensional manifold into the unit sphere. We will identify M with the set
φ(M) ⊂ Rn+1, and the space TmM with the linear subspace dφm(TmM) of
Rn+1. The easiest examples of these immersions are the equators, i.e. the
totally geodesic Sn−1’s in Sn, and the Clifford hypersurfaces, Mkl, which are
product of spheres, namely: For every pair of positive integers k and l with
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k + l = n− 1,

Mkl = {(x, y) ∈ Rk+1 ×Rl+1 : |x|2 =
k

n− 1
and |y|2 =

l

n− 1
}

Let ν be a unit normal vector field along M . Notice that ν : M −→ Sn satisfies
that 〈ν(m),m〉 = 0. For any tangent vector v ∈ TmM , m ∈ M , the shape oper-
ator A is given by A(v) = −∇̄vν, where ∇̄ denotes the Levi Civita connection
in Sn. The shape operator at each m ∈ M defines a symmetric linear trans-
formation from TmM to TmM , the eigenvalues of this linear transformation,
κ1(m), . . . κn−1(m), are known as the principal curvatures of M at m. Let us
fix some notation: we will denote by ∆ the laplacian on M ; ‖A‖2 =

∑n−1
i=1 κ2

i

will denote the square of the norm of the shape operator, notice that since the
second fundamental form II is given by II(v) = 〈A(v), v〉, then ‖A‖2 = ‖II‖2;
given two linearly independent vectors v, w ∈ TmM , k(v, w) will represent
the sectional curvature of the plane spanned by v and w; for any unit vector
v ∈ TmM , the Ricci curvature is defined by

Ric(v) =
1

n− 2

n−2∑

i=1

k(v, vi)

where {v, v1, . . . , vn−2} is an orthonormal basis of TmM ; the scalar curvature
is defined by

R =
1

n− 1

n−1∑

i=1

Ric(vi)

where {v1, . . . , vn−1} is any orthonormal basis of TmM . It is known that if
‖A‖2 = n − 1 for all m ∈ M , then M is isometric to a minimal Clifford
hypersurface ([3], [7]). We also have that if M is neither an equator nor a
Clifford hypersurface, then ‖A‖2(m) > (n − 1) for some m ∈ M [11]. In this
paper we will pose the following conjecture:

Conjeture 1.1. If M is a non-equatorial closed minimal embedded hypersur-
face in Sn, then

∫
M
‖A‖2 ≥ ∫

M
(n − 1) with equality only if M is a minimal

Clifford hypersurface.

For n = 3, i.e. for surfaces, we have, by the Gauss-Bonnet theorem and the
minimality of M , that

∫

M

‖A‖2 =
∫

M

2 + 8π(g − 1)

where g is the genus of the surface [10], therefore
∫

M
‖A‖2 ≤ ∫

M
2 only when

M is a sphere or M is a torus; we also have that, if M is a sphere immersed
in S3, then M is an equator [1], therefore, in this case, the conjecture 1.1 is
equivalent to the Lawson conjecture: the only embedded minimal torus in S3

is the Clifford torus.
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Remark 1.1. If true, Conjecture 1.1 provides a new proof of Simons’ key
inequality λ1 < −2(n − 1) [11] (here λ1 is the first eigenvalue of the stabil-
ity operator). For any estimate of the form

∫
M
‖A‖2 ≥ ∫

M
α , (α constant)

immediately bounds λ1 from above:

λ1 ≤
∫

M
J(f)f∫

M
f2

=
− ∫

M
‖A‖2 − ∫

M
(n− 1)∫

M
1

≤ −(n− 1 + α).

Simons’ inequality is the crucial step in ruling out any stable minimal hyper-
cones in Rn other than hyperplanes, when n < 8. This result in turn has
powerful consequences such as the Bernstein theorem in dimensions n < 9 and
the codimension 7 regularity result ultimately proved by Federer [4]. Moreover,
suppose one could strengthen Conjecture 1.1 to the effect that if M is neither
Clifford nor equatorial, then

∫

M

‖A‖2 >

∫

M

(n− 1 + 1/4).

Combining this with Simons’ paper and the theorem of Simon & Solomon in
[12], one would then obtain a complete classification of area-minimizing hyper-
surfaces in R8, a major advance.

In this paper we will prove that if the first eigenvalue of the laplacian of M
is n− 1 and the Ricci and scalar curvature satisfy the inequality

R ≤ n− 3
n− 1

+
2Ric(v)
n− 1

for any v ∈ TM with |v| = 1 (?)

then
∫

M
‖A‖2 ≥ ∫

M
(n − 1) with equality only if M is Clifford. In particular,

for embedded hypersurfaces that satisfy the inequality (?), we have that Yau’s
conjecture, “the first eigenvalue of the laplacian of an embedded hypersurface
in Sn is n− 1”, implies the conjecture 1.1. Recently, Huang, X. [5] have pub-
lished an article on the web with a proof of Yau’s conjecture for all dimensions
except for surfaces, i.e., in our notation, for n ≥ 4. Using Huang Theorem
and ours we will obtain that if an embedded minimal hypersurface M in Sn

with n ≥ 4 satisfies the condition ?, and
∫

M
‖A‖2 =

∫
M

(n − 1), then M is
a Clifford hypersurface. There is a large variety of minimal hypersurfaces in
Sn that satisfies the inequality (?), for example, we will show that if for ev-
ery m ∈ M , each eigenvalue of the shape operator has multiplicity at least 2,
then the condition (?) is satisfied with the strict inequality, in particular, the
Clifford hypersurfaces Mk,l with k and l greater than 1 satisfy the condition
(?) with the strict inequality. We also have that for surfaces, the condition (?)
is trivially true because the scalar curvature and the Ricci curvature are the
same. Therefore, in this case we obtain the following result that was already
proved by Montiel and Ros [9]:
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If M is a compact minimal torus immersed in S3 by first eigenfunctions of the
laplacian, then M is isometric to the Clifford torus.

Before I proceed, I would like to thank my advisor, Professor Bruce Solomon,
for his lessons on mathematics and his comments on this paper. I would like
also to thank Colciencias for its financial support.

2. Preliminaries

Let φ : M −→ Sn be a minimal immersion of a compact oriented (n − 1)-
dimensional manifold into the unit sphere. We will identify M with the set
φ(M) ⊂ Rn+1 and the space TmM with the linear subspace dφm(TmM) of
Rn+1. Let w ∈ Rn+1 be fixed. We will define the functions lw : M −→ R and
fw : M −→ R by

lw(m) = 〈m,w〉
fw(m) = 〈ν(m), w〉

}
for all m ∈ M.

A direct computation using the minimality of M and the Codazzi equations
gives us:

Proposition 2.1. The gradient and the laplacian of the functions lw and fw

are given by:

∇lw = wT ∇fw = −A(wT )

−∆lw = (n− 1)lw −∆fw = ‖A‖2fw

Here wT denotes the tangential component of w on the tangent space TmM .

The following lemma is based on the minimax characterization of eigenvalues
for elliptic operators.

Lemma 2.1. Let M ⊂ Sn be a minimal compact oriented hypersurface. If
the first eigenvalue of −∆ on M is (n − 1), then for every smooth function
f : M −→ R with

∫
M

f = 0 we have that
∫

M

|∇f |2 ≥ (n− 1)
∫

M

f2 with equality only if −∆f = (n− 1)f.

Our main theorem is based on a technique that uses the group of conformal
applications from Sn to Sn; this technique was introduced by Li and Yau in
[8]. Let Bn+1 be the open unit ball in Rn+1. For each point g ∈ Bn+1 we
consider the map

Fg(p) =
p + (µ〈p, g〉+ λ)g

λ(〈p, g〉+ 1)
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for all p ∈ Sn, where λ = (1−|g|2)− 1
2 and µ = (λ−1)|g|−2. A direct verification

([9]) shows that Fg is a conformal transformation from Sn to Sn and, for every
v, w ∈ TpS

n, its differential dFg satisfies

〈dFg(v), dFg(w)〉 =
1− |g|2

(〈p, g〉+ 1)2
〈v, w〉.

In [8], Li and Yau proved that if φ : M −→ Sn is a conformal immersion, then
there exists g ∈ Bn+1 such that

∫
M

Fg ◦ φ = (0, . . . , 0). In this paper we will
need the same result for immersion which may not be conformal.

Lemma 2.2. Let M be a compact riemannian manifold. If φ : M −→ Sn is a
continuous map such that for every b ∈ Sn, the volume of φ−1(b) = {m ∈ M :
φ(m) = b} vanishes, then there exists g ∈ Bn+1 such that

∫
M

Fg◦φ = (0, . . . , 0).

Proof. For every measurable set T ⊂ M we will denote its volume by |T |. Let
us define the map H : Bn+1 −→ Bn+1 in the following way

H(g) =
1
|M |

∫

M

Fg ◦ φ =
1
|M |

( ∫

M

〈Fg ◦ φ, e1〉, . . . ,
∫

M

〈Fg ◦ φ, e1〉
)

where e1 = (1, 0, . . . , 0), . . . , en+1 = (0, . . . , 0, 1). Notice that H(g) ∈ Bn+1

since

∣∣H(g)
∣∣2 =

1
|M |2

n+1∑

i=1

( ∫

M

〈Fg ◦ φ, e1〉
)2

≤ 1
|M |2

n+1∑

i=1

( ∫

M

12
)( ∫

M

〈Fg ◦ φ, e1〉2
)

=
1
|M |

n+1∑

i=1

( ∫

M

〈Fg ◦ φ, e1〉2
)

=
1
|M |

∫

M

1 = 1.

We need to show that H(g) = (0, . . . , 0) for some g ∈ Bn+1. We will achieve
this by showing that H can be extended continuously to ∂Bn+1 = Sn with
H(b) = b for all b ∈ Sn since every continuous map from Bn+1 to Bn+1 which
fixes ∂Bn+1 = Sn must be onto. Using the hypothesis of the lemma we have

∀b0 ∈ Sn lim
k→∞

|{m : 1 + 〈φ(m), b0〉 <
1
k
}| = |φ−1(−b0)| = 0 (1)

For every b ∈ Sn and δ > 0 let us define Mδ(b) = {m ∈ M : 〈φ(m), b〉+1 < δ}.
Let b0 be a fixed vector in Sn and ε be a positive number. By (1) we can find a
positive integer k such that k > 1

ε and |M 1
k
(b0)| < ε

8 |M |. A direct verification
shows that if b ∈ Sn and |b− b0| < 1

2k then M 1
2k

(b) ⊂ M 1
k
(b0).
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We will prove the lemma by showing that there exists a positive number δ
such that for any g ∈ Bn+1 with | g

|g| − b0| < 1
2k and |g| > 1− δ we have:

〈H(g),
g

|g| 〉 > 1− ε

2
. (2)

Once we have (2), the lemma will follow by noticing that

〈H(g), b0〉 = 〈H(g),
g

|g| 〉+ 〈H(g), b0〉 − 〈H(g),
g

|g| 〉

> 1− ε

2
− |〈H(g),

g

|g| − b0〉|

> 1− ε

2
− 1

2k
> 1− ε.

Let us start the proof of (2). Notice that for every m /∈ M 1
2k

( g
|g| ) we have

1
2k

≤ 1 + 〈φ(m),
g

|g| 〉 =
|g| − 1 + 1 + 〈φ(m), g〉

|g| .

Then,
1
2k
|g|+ (1− |g|) ≤ 1 + 〈φ(m), g〉

and therefore,
1− |g|2

|g|(1 + 〈φ(m)〉) ≤
1− |g|2

( 1
2k |g|+ (1− |g|))|g|

For a fixed g ∈ Bn+1 with | g
|g| − b0| < 1

2k , we will use the inequality above to
estimate the function 〈Fg(φ(m)), g

|g| 〉 defined on the complement of M 1
2k

( g
|g| ).

〈Fg(φ(m)),
g

|g| 〉 =
〈φ(m), g

|g| 〉+ (µ〈φ(m), g〉+ λ)|g|
λ(〈φ(m), g〉+ 1)

=
〈φ(m), g〉+ (λ− 1)〈φ(m), g〉+ λ|g|2

|g|λ(〈φ(m), g〉+ 1)

=
1
|g| −

1− |g|2
|g|(〈φ(m), g〉+ 1)

≥ 1
|g| −

1− |g|2
|g|( 1

2k |g|+ (1− |g|)) .

Since the last expression is independent of m and converge to 1 when |g| goes
to 1, we can find δ > 0 such that for all m /∈ M 1

2k
( g
|g| ), if 1− δ < |g| then

〈Fg(φ(m)),
g

|g| 〉 > 1− ε

4
.

Hence for any g ∈ Bn+1 with | g
|g| − b0| < 1

2k and |g| > 1− δ we have:
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〈H(g),
g

|g| 〉 =
1
|M |

( ∫

M\M 1
2k

( g
|g| )

〈Fg ◦ φ,
g

|g| 〉+
∫

M 1
2k

( g
|g| )

〈Fg ◦ φ,
g

|g| 〉
)

≥ 1
|M | (1−

ε

4
)(|M | − |M 1

2k
(

g

|g| )|)−
1
|M |

∣∣M 1
2k

(
g

|g| )
∣∣

> 1− ε

4
− 2

1
|M |

∣∣M 1
2k

(
g

|g| )
∣∣

> 1− ε

4
− 2

1
|M |

∣∣M 1
k
(b0)

∣∣

> 1− ε

2
.

This completes the proof of (2) and henceforth the proof of the lemma. ¤X

3. The average of the norm of the shape operator of a
minimal hypersurface of the unit sphere

In this section we will make some estimates on the average of the norm of the
shape operator av =

∫
M
‖A‖2∫

M
1

for minimal hypersurface on spheres that satisfies

the condition (?). We will prove that av ≥ n−1
2 for these immersions, moreover,

if the immersion is given by first eigenfunctions, then, av ≥ n−1 with equality
only if M is a Clifford hypersurface. We start this section with the following
lemmas.

Lemma 3.1. Let M be an oriented closed minimal hypersurface in Sn. If
w ∈ Rn+1 is a fixed vector such that the function 1 + fw(m) is always positive
on M , then

∫

M

‖A‖2 =
∫

M

1− |w|2
(1 + fw)2

‖A‖2 +
∫

M

|wT |2‖A‖2 + l2w‖A‖2 − 2|A(wT )|2
(1 + fw)2

.

Proof. Let us define f : M −→ R by f = ln(1 + fw). A direct verification
shows that ∇f = ∇fw

(1+fw) and

∆f = div∇f =
−‖A‖2fw

1 + fw
− |∇fw|2

(1 + fw)2
= −1

2
(2‖A‖2fw(fw + 1) + 2|∇fw|2

(1 + fw)2
)

= −1
2
( (2fw + f2

w + f2
w + 1− 1 + |w|2 − |w|2 + l2w − l2w)‖A‖2 + 2|∇fw|2

(1 + fw)2
)

= −1
2
(‖A‖2 +

(|w|2 − 1)‖A‖2 − (|w|2 − f2
w − l2w)‖A‖2 − l2w‖A‖2 + 2|∇fw|2

(1 + fw)2
)

= −1
2
(‖A‖2 +

(|w|2 − 1)‖A‖2 − |wT |2‖A‖2 − l2w‖A‖2 + 2|A(wT )|2
(1 + fw)2

)
.

Since
∫

M
∆f = 0, then the lemma follows ¤X
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Lemma 3.2. Let φ : M −→ Sn be a smooth map, g ∈ Bn+1 and {ei}n+1
i=1

be an orthonormal basis of Rn+1. If we define hi : M −→ R by hi(m) =
〈Fg(φ(m)), ei〉 and si : M −→ R by si(m) = 〈φ(m), ei〉, then

n+1∑

i=1

|∇hi|2(m) =
1− |g|2

(1 + 〈φ(m), g〉)2
n+1∑

i=1

|∇si|2(m).

Proof. Let {vi}n−1
i=1 be an orthonormal basis of TmM . We have that

|∇hi|2(m) =
n−1∑

j=1

(
vj(hi)

)2

=
n−1∑

j=1

(〈(dFg)φ(m)(dφ(vj)), ei〉
)2

.

Therefore,
n+1∑

i=1

|∇hi|2(m) =
n+1∑

i=1

n−1∑

j=1

(〈(dFg)φ(m)(dφ(vj)), ei〉
)2

=
n−1∑

j=1

‖(dFg)φ(m)(dφ(vj))‖2

=
n−1∑

j=1

1− |g|2
(1 + 〈φ(m), g〉)2 ‖dφ(vj)‖2

=
n−1∑

j=1

1− |g|2
(1 + 〈φ(m), g〉)2

n+1∑

i=1

(
vj(si)

)2

=
1− |g|2

(1 + 〈φ(m), g〉)2
n+1∑

i=1

|∇si|2(m).

¤X

Theorem 3.1. Let M be a compact oriented minimal hypersurface immersed in
Sn by first eigenfunctions of the laplacian. Denote by {κi(m)}n−1

i=1 the eigenval-
ues of the shape operator at m ∈ M . If M is not totally geodesic and κ2

i (m) ≤
‖A‖2(m)

2 = 1
2

∑n−1
j=1 κ2

j (m) for every m ∈ M and every i ∈ {1, . . . , n − 1},
then

∫
M
‖A‖2 ≥ (n − 1)|M | with equality only if M is isometric to a Clifford

hypersurface.

Proof. Let ν : M −→ Sn be the Gauss map. We will start the proof verifying
that the map ν satisfies the hypothesis of the Lemma 2.2. For any b ∈ Sn let
us take a vector w0 ∈ Sn such that 〈w0, b〉 = 0, since ν−1(b) ⊂ f−1

w0
(0) and fw0

satisfies and elliptic equation then the nodal set f−1
w0

(0) has measure 0 in M
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[2], therefore |ν−1(b)| = 0. Since ν satisfies the hypothesis of the Lemma 2.2,
we can find g ∈ Bn+1 such that

∫

M

(Fg ◦ ν) = (0, . . . , 0)

The equality above implies that the functions hi = 〈Fg(ν(m)), ei〉 are perpen-
dicular to the constant function, i.e.

∫
M

hi = 0. By the Lemma 2.1 we have
that

n+1∑

i=1

|∇hi|2 ≥ (n− 1)
n+1∑

i=1

∫

M

h2
i = (n− 1)|M |

with equality only if −∆hi = (n− 1)hi. On the other hand by the Lemma 3.2
we have that

n+1∑

i=1

|∇hi|2 =
1− |g|2

(1 + 〈ν(m), g〉)2
n+1∑

i=1

|∇fei
|2 =

1− |g|2
(1 + 〈ν(m), g〉)2 ‖A‖

2.

Therefore, using Lemma 3.1 we get that

(n− 1)|M | ≤
∫

M

(1− |g|2)‖A‖2
(1 + 〈ν(m), g〉)2

=
∫

M

‖A‖2 −
∫

M

|gT |2‖A‖2 + l2g‖A‖2 − 2|A(gT )|2
(1 + fg)2

with equality only if −∆hi = (n − 1)hi. Notice that the hypothesis on the
eigenvalues of the shape operator A implies that the expression

∫

M

|gT |2‖A‖2 + l2g‖A‖2 − 2|A(gT )|2
(1 + fg)2

is positive unless g = 0. Therefore, we have that
∫

M
‖A‖2 ≥ (n − 1)|M |.

Moreover if
∫

M
‖A‖2 = (n − 1)|M | then g = 0; therefore, for i = 1, . . . , n + 1

we have that hi = fei and

(n− 1)hi = (n− 1)fei = −∆hi = −∆fei = ‖A‖2fei

The equality above implies that ‖A‖2 ≡ n− 1. Therefore, M is isometric to a
Clifford hypersurface. ¤X

Corollary 3.2. If M ⊂ S3 is a compact minimal torus immersed by first
eigenfunctions, then M is a Clifford torus.

Corollary 3.3. Let M be a compact oriented minimal hypersurface immersed
in Sn by first eigenfunctions. If M is not totally geodesic and the Ricci and
scalar curvatures satisfy the inequality

R ≤ n− 3
n− 1

+
2Ric(v)
n− 1

for any v ∈ TM with |v| = 1 (?)
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then
∫

M
‖A‖2 ≥ (n − 1)|M | with equality only if M is isometric to a Clifford

hypersurface.

Proof. Let {κi}n−1
i=1 be the eigenvalues of A. Let {vi}n−1

i=1 be an orthonormal
basis of TmM such that A(vi) = κivi for i = 1, . . . , n − 1. By the Gauss
equation we have that for i 6= j the sectional curvature k(vi, vj) = 1 + κiκj .
Using this expression we get

κ2
i = κi(−

∑

i 6=j

κj) = (n− 2)−
∑

i 6=j

k(vi, vj) = (n− 2)− (n− 2)Ric(vi) (1)

From the equation above we obtain that ‖A‖2 = (n− 1)(n− 2)(1−R). Using
the hypothesis of the corollary we get

κ2
i = (n− 2)− (n− 2)Ric(vi)

≤ (n− 2) + (n− 2)
(n− 3

2
− n− 1

2
R

)

= (n− 2) +
(n− 2)(n− 3)

2
− (n− 1)(n− 2)

2
+
‖A‖2

2

=
‖A‖2

2
.

Therefore the hypothesis of Theorem 3.1 is satisfied and the corollary follows.
¤X

4. Minimal hypersurfaces with constant ricci curvature

Let us start by classifying the minimal hypersurfaces on spheres with constant
ricci curvature. Using the equation (1) in §3 we have that the ricci curvature of
any minimal hypersurface on Sn can not be greater than 1, moreover if the ricci
curvature is constant, then we have that the principal curvatures of M must also
be constant and they can only take the values ±

√
(n− 2)(1− Ric). This obser-

vation forces M to be an isoparametric hypersurface with either one principal
curvature or two principal curvatures, i.e. M is either an equator or a Clifford
hypersurface. A direct computation shows that the only Clifford hypersurfaces
with constant ricci curvature are those of the form S

n−1
2 (

√
2

2 )×S
n−1

2 (
√

2
2 ) with

n odd. Therefore, if the ricci curvature of a minimal hypersurface in Sn is
constant, this constant must be either 1 or n−3

n−2 . Let ε(n) = 2n−3
(n−2)(2n−1) . We

will show that if M ⊂ Sn is a minimal hypersurface immersed by first eigen-
values with |Ricm(v) − n−3

n−2 | ≤ ε(n) for all (m, v) ∈ TM , |v| = 1, and with∫
M
|A|2 =

∫
M

(n − 1) (or equivalent with
∫

M
R =

∫
M

n−3
n−2 ), then, n must be

odd and M must be isometric to the Clifford hypersurface Mn−1
2 , n−1

2
. Namely

we have the following theorem:
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Theorem 4.1. Let M ⊂ Sn be a minimal compact hypersurface immersed by
first eigenfunctions. If the average of the scalar curvature is n−3

n−2 and for every
unit vector v in TM

|Ric(v)− n− 3
n− 2

| ≤ ε(n) =
2n− 3

(n− 2)(2n− 1)

then n must be odd and M must be isometric to S
n−1

2 (
√

2
2 )× S

n−1
2 (

√
2

2 ).

Proof. By Theorem 3.1, it is enough to show that if κ1, . . . κn−1 denote the prin-
cipal curvatures of M , then κi ≤ 1

2 |A|2. Let {v1, . . . , vn−1} be an orthonormal
bases of TmM such that Am(vi) = κi(m)vi. The bounds on the ricci curvature
imply the same kind of bounds for the scalar curvature R, namely we have that
|R− n−3

n−2 | ≤ ε(n), since ‖A‖2 = (n− 1)(n− 2)(1−R) then we get that

|A|2 ≥ (n− 1)(n− 2)(1− n− 3
n− 2

− ε(n)) = 2
n− 1
2n− 1

(2)

On the other hand, using the equation (1) in §3 and the bounds on the ricci
curvature we get,

κ2
i = (n− 2)(1− Ric(vi))

≤ (n− 2)(1 + ε(n)− n− 3
n− 2

)

≤ 4
n− 1
2n− 1

≤ 2|A|2.

In the last inequality we have used the equation (2). ¤X

Notice that by the corollary 3.3, we can remove the condition on the ricci
curvature when n = 3. The following example shows that the condition on the
first eigenvalue of the laplacian is necessary.

Example 4.1. Let us consider the following family of minimal genus zero
surfaces studied by Lawson in [6]. For any pair of relative prime integers r and
s, let us define:

Trs = {φ(x, y) = (cos rx cos y, sin rx cos y, cos sx sin y, sin sx sin y)} : x, y ∈ R}
The immersion φ satisfies that |φx|2 = E = r2 cos y + s2 sin y, 〈φx, φy〉 = 0 and
|φy|2 = 1, here φx and φy denote the partial derivatives with respect to x and
y respectively. A direct computation shows that the vector

ν(x, y) =
r2 − s2

rs
√

E
sin y cos yφx +

√
E

rs
φxy
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defines a unit normal vector of Trs as a submanifold of S3 because |ν| = 1 and
〈ν, φx〉 = 〈ν, φy〉 = 〈ν, φ〉 = 0. We also have that

A(φx) = −νx =
rs√
E

φy,

A(φy) = −νy =
rs√
E3

φx.

If we write the matrix of the linear transformation A : TmTrs → TmTrs in the
orthonormal base {E− 1

2 φx, φy} we can deduce that the principal curvatures of
Trs at φ(x, y) are ±ars(x, y) where ars = rsE−1. Notice that if r = s+1, then
ars goes uniformly to 1 when r goes to infinity. Since a2 = (1−Ric), then the
ricci curvature of Trs goes uniformly to zero when r = s + 1 goes to infinity.

Remark 4.1. For n = 3 the Clifford torus is the only minimal surface with
constant ricci curvature equal to n−3

n−2 = 0. The example above shows that there
exist infinitely many immersed minimal surfaces in S3 with ricci curvature
arbitrarily close to zero and with zero average of the scalar curvature. By the
corollary 3.3, the first eigenvalue of the laplacian of these examples is less than
2. Therefore, at least for the case n = 3, we have that the condition on the first
eigenvalue of the Theorem 4.1 is necessary.
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