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Abstract. Let A be a matrix such that the diagonal matrix D with the same
diagonal as A is invertible. It is well known that if (1) A satisfies the Sassenfeld
condition then its Gauss-Seidel scheme is convergent, and (2) if D−1A certifies
certain classical diagonal dominance conditions then the Jacobi iterations for A
are convergent. In this paper we generalize the second result and extend the
first result to irreducible matrices satisfying a weak Sassenfeld condition.
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1. Introduction

Consider the system of linear equations:

n∑

j=1

aijuj = bi, i = 1, . . . , n. (1.1)

If the n by n matrix A = (aij) has an invertible diagonal D =Diag(a11, . . . , ann)
then we can express these equations in the equivalent form

ui = (bi −
∑

j 6=i

aijuj)/aii
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which immediately suggests well-known iterative schemes (cf. [1–5; 7–8]):

u
(m+1)
i = (bi −

∑

j 6=i

aiju
(m)
j )/aii, i = 1, . . . , n, (1.2)

u
(m+1)
i = (bi −

∑

j<i

aiju
(m+1)
j −

∑

j>i

aiju
(m)
j )/aii, i = 1, . . . , n,

(1.3)

referred to, respectively, as the Jacobi method and the Gauss-Seidel method.
In spite of their simplicity, these schemes are among the most popular iterative
schemes for the solution of linear equations (cf. [1–5; 7-8]). It is not possible
to say outright that one of these methods is better than the other, since there
are situations in which each converges and the other does not (cf. [4, Chapter
4]). However, the Jacobi method is usually the preferred method for parallel
computations, and the Gauss-Seidel is the usual choice for use on sequential
computers.

Convergence results on the schemes (1.2) – (1.3) can be found in [1–5;7–8].
In particular, it is well known that if A satisfies the Sassenfeld condition then its
Gauss-Seidel scheme is convergent, and if D−1A satisfies the certain diagonal
dominance conditions (cf. (2.2) – (2.4) below) then the Jacobi iterations for A
converge.

However, in this area – as in other parts of Numerical Analysis – there is
still a wide gap between theory and practice, and there are many matrices like

A =




1 −1 0
1 2 1
0 −1 2


 (1.4)

for which one or both of the schemes (1.2) – (1.3) converge, and which are not
covered by the available convergence theory. Our aim in the present paper is
to reduce this gap a little bit, by generalizing the second result in the previous
paragraph, and extending the first result to irreducible matrices satisfying a
weak Sassenfeld condition (this includes the matrix in equation (1.4)).

2. The convergence results

In the sequel we will make use of the scalar product (x, y) =
∑n

i=1 xiyi in Rn

and the norms ‖x‖∞ = max
1≤i≤n

|xi| and, when 1 ≤ p < ∞, ‖x‖p = (
∑n

i=1 |xi|p)1/p.

The following gives the basic estimate from which our first convergence result
will be derived.
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Theorem 2.1. For a fixed b = (b1, . . . , bn) ∈ Rn, let Jx = ((Jx)1, . . . , (Jx)n),
∀x = (x1, . . . , xn) ∈ Rn, where (Jx)i ≡ µi(bi−

∑

j 6=i

aijxj) and µi ≡ 1/aii. Then

‖J(x)− J(y)‖p ≤ αp‖x− y‖p, ∀x, y ∈ Rn,

where

αp =





max
1≤j≤n

∑
i6=j |aij ||µi|, if p = 1

[
∑n

1=1(
∑

j 6=i |aij |q)
p
q |µi|p]

1
p , if 1 < p < ∞, 1

p + 1
q = 1

max
1≤i≤n

∑
j 6=i |aij ||µi|, if p = ∞.

(2.1)

Proof. Since |(Jx)i − (Jy)i| ≤ |µi|
∑

j 6=i

|aij ||xj − yj | ≤ |µi|(
∑

j 6=i

|aij |)‖x − y‖∞,

i = 1, . . . , n, we have

‖Jx− Jy‖∞ ≤ max
1≤i≤n

(
∑

j 6=i

|aij ||µi|)‖x− y‖∞ = α∞‖x− y‖∞,

which proves the result when p = ∞.
The result also holds when p = 1 since:

n∑

i=1

|(Jx)i − (Jy)i| ≤
n∑

i=1

∑

j 6=i

|µi||aij ||xj − yj | =
n∑

j=1

∑

i 6=j

|µi||aij ||xj − yj |

≤ ( max
1≤j≤n

∑

i 6=j

|aij ||µi|)
n∑

j=1

|xj − yj | = α1‖x− y‖1.

For the case 1 < p < ∞ we set (1/p) + (1/q) = 1. Then it follows from
Hölder’s inequality (cf. [6, Chapter 9]) that |(Jx)i − (Jy)i| ≤ |µi|

∑

j 6=i

|aij ||xj −

yj | = (z(i), w) ≤ ‖z(i)‖q‖w‖p = ‖z(i)‖q‖x − y‖p, where wj ≡ |xj − yj |, z
(i)
j =

|aij ||µi| if j 6= i and z
(i)
i = 0. Hence

n∑

i=1

|(Jx)i − (Jy)i|p ≤
n∑

i=1

‖z(i)‖p
q‖x− y‖p

p.

This implies that ‖Jx− Jy‖p ≤ (
n∑

i=1

‖z(i)‖p
q)

1/p‖x− y‖p, and proves the result

when 1 < p < ∞. ¤X
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Corollary 2.1. If αp < 1, for any 1 ≤ p ≤ ∞, then the Jacobi iterates in (1.2)
converge in the ‖ · ‖p norm to the unique solution of problem (1.1).

Proof. The results follows immediately from Theorem 2.1 and Banach’s con-
traction mapping Theorem (cf. [6, Appendix 1]). ¤X

Remark 2.1. If the matrix D−1A is diagonally dominant in any of the senses:

∑

j 6=i

|aij |/|aii| < 1, i = 1, . . . , n, (2.2)

∑

i 6=j

|aij |/|aii| < 1, j = 1, . . . , n, (2.3)

n∑
1=1

∑

j 6=i

|aij |2|/|aii|2 < 1, (2.4)

then α∞ < 1 or α1 < 1 or α2 < 1, respectively. So it follows from Corollary
2.1 that the Jacobi iterates in (1.2) converge in the ‖ · ‖p norm – for some
p ∈ {1, 2,∞} – to the unique solution of problem (1.1). This is a well known
classical result (cf. [4, Theorem 4.1]). However, the case (1 < p < ∞ and p 6= 2)
of Corollary 2.1 appears to be new.

As a simple illustration, we observe that for the matrix

A =




2 −1 0
−1 2 −1
0 −1 2


 ,

we have α1 = α2 = α∞ = 1, so that the classical diagonal dominance results
do not apply. However, it is easy to verify that when 2 < p < ∞ we have

αp = (2 + 2p/q)1/p/2 = (2 + 2p−1)1/p/2 < 1,

so we can deduce the convergence of the Jacobi scheme in the ‖ · ‖p norm from
Corollary 2.1.

Remark 2.2. An n by n matrix A is said to be irreducible if for any proper
disjoint union {1, . . . , n} = W ∪ Z there exist i0 ∈ W , j0 ∈ Z such that
ai0,j0 6= 0. It is well known (cf. [4, Theorem 4.7] and [6, Theorem 4.9]) that
when A is irreducible and weakly rowwise diagonally dominant in the sense
that ∑

j 6=i

|aij | ≤ |aii|, i = 1, . . . , n, (2.5)

with strict inequality for at least one index i, the Jacobi and Gauss-Seidel
iterates in (1.2) – (1.3) converge.
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It is also known (cf. [4, Theorem 4.3]) that whenever A satisfies the Sassen-
feld conditions:

p1 ≡ (
∑

j>1

|a1j |)/|a11| < 1,

pi ≡ (
∑

j<i

|aij |pj +
∑

j>i

|aij |)/|aii| < 1, i = 2, . . . , n,
(2.6)

the Gauss-Seidel iterates in (1.3) converge to the unique solution of problem
(1.1). In the following (new) theorem we show that a weak Sassenfeld condition
is sufficient for convergence if A is irreducible.

Theorem 2.2. Suppose that A is irreducible and satisfies the weak Sassenfeld
conditions:

p1 ≡ |µ1|(
∑

j>1

|a1j |) ≤ 1,

pi ≡ |µi|(
∑

j<i

|aij |pj +
∑

j>i

|aij |) ≤ 1, i = 2, . . . , n,

p = min
1≤i≤n

pi < 1, (2.7)

where µi ≡ 1/aii. Then the Gauss-Seidel iterates in (1.3) converge.

Proof. The solution u = (u1, . . . , un) of (1.1) is a fixed point of the operator
defined, for x ∈ Rn, by Gx = ((Gx)1, . . . , (Gx)n), where

(Gx)i ≡ µi(bi −
∑

j<i

aij(Gx)j −
∑

j>i

aijxj).

Let Cx = ((Cx)1, . . . , (Cx)n), where

(Cx)i ≡ µi(
n∑

j<i

aij(Cx)j +
n∑

j>i

aijxj)

and let r(C) designate the spectral radius of C.
We prove by induction that the estimate

|(Cx)i| ≤ pi‖x‖∞, ∀x ∈ Rn (2.8)

holds for all i. It is obviously true if i = 1, because of the definitions of C and
p1. Suppose k > 1 and that (2.8) holds for all i < k. Then

|(Cx)k| ≤ |µk|(
∑

j<k

|akj ||(Cx)j |+
∑

j>k

|akj ||xj |)

≤ |µk|(
∑

j<k

pj |akj |+
∑

j>k

|akj |)‖x‖∞ = pk‖x‖∞.
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This proves, by induction, that (2.8) holds for i.
Since 0 ≤ pi ≤ 1 for all i, it follows from the hypotheses that |(Cx)i| ≤ pi ≤ 1

whenever ‖x‖∞ = 1, and hence, that r(C) ≤ ‖C‖∞ ≤ 1.
To see that r(C) < 1 (which implies the convergence of the Gauss-Seidel

scheme), we suppose, by contradiction, that Cv = sv for some v such that
‖v‖∞ = 1 = |s|. Then |vi| = |s||vi| ≤ |µi|(

∑

j<i

|aij |pj +
∑

j<i

|aij |)‖v‖∞ =

|µi|(
∑

j<i

|aij |pj +
∑

j<i

|aij |) = pi ≤ 1, for i = 1, . . . , n. Let W = {i : |vi| = 1}.

Then W 6= ∅ since ‖v‖∞ = 1. For each i ∈ W , we have 1 = |µi|(
∑

j<i

|aij |pj +

∑

j>i

|aij |) = pi ≤ 1. Hence pi = 1, so it follows from the weak Sassenfeld

condition (2.7) that Z ≡ {1, . . . , n}rW 6= ∅.
Since A is irreducible, there exist i0 ∈ W , j0 ∈ Z such that ai0,j0 6=

0. We have |ai0j0 ||vj0 | < |ai0j0 |, which implies that 1 = |vi0 | = |s||vi0 | =
|µi0 |(

∑

j<i0

pj |ai0j ||vj |+
∑

j>i0

|ai0j ||vj |) < |µi0 |(
∑

j<i0

pj |ai0j |+
∑

j>i0

|ai0j |) = pi0 ≤ 1.

This contradiction shows that we must have r(C) < 1. That concludes the
proof. ¤X

Remark 2.4. The matrix in (1.4) does not satisfy the classical Sassenfeld
condition (2.6). However, it is irreducible and satisfies the weak Sassenfeld
condition (2.7), and it is easy to verify that its Gauss-Seidel iterations are
convergent.
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