
Revista Colombiana de Matemáticas
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Abstract. An optimal 2-point quadrature formula of open type is derived. It is
shown that the optimal quadrature formula has a better error bound than the
well-known 2-point Gauss quadrature formula. Various error inequalities for
this formula are established. Applications in numerical integration are given.
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1. Introduction

In recent years a number of authors have considered an error analysis for quad-
rature rules of Newton-Cotes type. In particular, the mid-point, trapezoid and
Simpson rules have been investigated more recently ([2], [3], [4], [5], [6], [11],
[14]) with the view of obtaining bounds on the quadrature rule in terms of a
variety of norms involving, at most, the first derivative. Gauss-like quadrature
rules are considered in [12] and [15] from an inequalities point of view. These
results enlarge the applicability of the mentioned quadrature rules.

In this paper we derive an optimal 2-point quadrature formula of open type.
It is optimal in the sense that it has a minimal error bound. In Section 2
we derive the optimal quadrature formula. We show that this formula has a
better estimation of error than the well-known 2-point Gaussian quadrature
rule (which is also 2-point quadrature formula of open type). In section 3 we
establish some error bounds for the optimal formula. Similar estimations can be
found in [11], [12], [13] and [14], where some different quadrature formulas are
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94 NENAD UJEVIĆ

considered. These estimations ensure that we can apply the optimal quadrature
formula to different classes of functions. In Section 4 we give applications of
the above mentioned results in numerical integration.

2. An optimal quadrature formula

Here we seek an optimal quadrature formula of the type

1∫

−1

f(t)dt− f(x)− f(y) =

1∫

−1

K(x, y, t)f ′′(t)dt (2.1)

where x, y ∈ [−1, 1], x < y. We define

K(x, y, t) =





1
2 (t− α)2 + α1, t ∈ [−1, x]
1
2 (t− β)2 + β1, t ∈ (x, y)
1
2 (t− γ)2 + γ1, t ∈ [x, 1] ,

where α, α1, β, β1, γ, γ1 ∈ R are parameters which have to be determined such
that (2.1) is optimal, i.e. that it has a minimal error bound. Integrating by
parts, we obtain

1∫

−1

K(x, y, t)f ′′(t)dt =

x∫

−1

[
1
2
(t− α)2 + α1

]
f ′′(t)dt

+

y∫

x

[
1
2
(t− β)2 + β1

]
f ′′(t)dt +

1∫

y

[
1
2
(t− γ)2 + γ1

]
f ′′(t)dt

= −f ′(−1)
[
1
2
(1 + α)2 + α1

]

+f ′(x)
[
1
2
(x− α)2 + α1 − 1

2
(x− β)2 − β1

]

+f ′(y)
[
1
2
(y − β)2 + β1 − 1

2
(y − γ)2 − γ1

]

+f ′(1)
[
1
2
(1− γ)2 + γ1

]

−
x∫

−1

(t− α)f ′(t)dt−
y∫

x

(t− β)f ′(t)dt−
1∫

y

(t− γ)f ′(t)dt

= −f ′(−1)
[
1
2
(1 + α)2 + α1

]

+f ′(x)
[
1
2
(x− α)2 + α1 − 1

2
(x− β)2 − β1

]
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+f ′(y)
[
1
2
(y − β)2 + β1 − 1

2
(y − γ)2 − γ1

]

+f ′(1)
[
1
2
(1− γ)2 + γ1

]

−f(−1)(1 + α) + f(x)(α− β) + f(y)(β − γ) + f(1)(1− γ)

+

1∫

−1

f(t)dt.

We require that
1
2
(1 + α)2 + α1 = 0,

1
2
(x− α)2 + α1 − 1

2
(x− β)2 − β1 = 0,

1
2
(y − β)2 + β1 − 1

2
(y − γ)2 − γ1 = 0,

1
2
(1− γ)2 + γ1 = 0,

1 + α = 0,

α− β = −1,

β − γ = −1,

1− γ = 0.

From the above equations we easily find

α = −1, γ = 1, α1 = 0, γ1 = 0, β = 0, β1 = x +
1
2

= −y +
1
2

which implies x = −y. Hence, we get

K(x, y, t) =





1
2 (t + 1)2, t ∈ [−1, x]
1
2 t2 + x + 1

2 , t ∈ (x, y)
1
2 (t− 1)2, t ∈ [x, 1]

. (2.2)

We now consider the quadrature formula
1∫

−1

f(t)dt− f(x)− f(y) =

1∫

−1

K(x, y, t)f ′′(t)dt,

where K(x, y, t) is given by (2.2). We have
∣∣∣∣∣∣

1∫

−1

K(x, y, t)f ′′(t)dt

∣∣∣∣∣∣
≤ ‖K(x, y, ·)‖2 ‖f ′′‖2 ,

where

‖f ′′‖22 =

1∫

−1

f ′′(t)2dt.
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We define

g(x) = ‖K(x, y, ·)‖22 =

=
1
4

x∫

−1

(t + 1)4dt +

−x∫

x

(
1
2
t2 + x +

1
2
)2dt +

1
4

1∫

−x

(t− 1)4dt

= −1
6
x4 − 4

3
x3 − x2 +

1
10

and seek x such that g(x) → min, i.e. we seek a global minimum of the
function g on the interval [−1, 1]. For that purpose, we calculate

g′(x) = −2
3
x3 − 4x2 − 2x.

From the equation g′(x) = 0 we find the solutions: x1 = 0, x2 =
√

6 − 3 and
x3 = 3−√6. We have

g(0) =
1
10

,

g(
√

6− 3) =
98
5
− 8

√
6,

g(−1) =
4
15

,

g(1) = −12
5

.

We conclude that x =
√

6−3 is the point of global minimum. For x =
√

6−3
we get

1∫

−1

f(t)dt− f(
√

6− 3)− f(3−
√

6) =

1∫

−1

K(
√

6− 3, 3−
√

6, t)f ′′(t)dt

and ∣∣∣∣∣∣

1∫

−1

K(
√

6− 3, 3−
√

6, t)f ′′(t)dt

∣∣∣∣∣∣
≤

√
98
5
− 8

√
6 ‖f ′′‖2 .

We now summarize the above obtained results.

Theorem 1. Let I ⊂ R be an open interval such that [−1, 1] ⊂ I and let
f : I → R be a twice differentiable function such that f ′′ ∈ L2(−1, 1). Then we
have

1∫

−1

f(t)dt− f(
√

6− 3)− f(3−
√

6) = R2(f) (2.3)

and

|R2(f)| ≤
√

98
5
− 8

√
6 ‖f ′′‖2 . (2.4)
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Remark 1. The quadrature formula (2.3) is optimal in the sense mentioned
in Section 1.

We now compare the above result with the 2-point Gauss formula. We have
∥∥∥∥∥K(−

√
3

3
,

√
3

3
, ·)

∥∥∥∥∥

2

2

= − 34
135

+
4
27

√
3

Thus,
∣∣∣∣∣∣

1∫

−1

f(t)dt− f(−
√

3
3

)− f(
√

3
3

)

∣∣∣∣∣∣
≤

√
− 34

135
+

4
27

√
3 ‖f ′′‖2 . (2.5)

Hence, the estimate (2.4) is better than the estimate (2.5), since
√

98
5 − 8

√
6 <√

− 34
135 + 4

27

√
3. If we consider the above problem on the interval [a, b] then

we get the following result.

Theorem 2. Let I ⊂ R be an open interval such that [a, b] ⊂ I and let f : I →
R be a twice differentiable function such that f ′′ ∈ L2(a, b). Then we have

b∫

a

f(t)dt = f(x1) + f(x2) + R(f),

where

x1 =
b− a

2
x +

a + b

2
, x2 =

a− b

2
x +

a + b

2
, x =

√
6− 3 (2.6)

and

|R(f)| ≤
√

49
80
− 1

4

√
6 ‖f ′′‖2 (b− a)5/2.

3. Error inequalities

First we consider some basic properties of the spaces Lp(a, b), for p = 1, 2,∞.
As we know, X = (L2(a, b), (·, ·)) is a Hilbert space with the inner product

(f, g) =
∫ b

a

f(t)g(t)dt. (3.1)

In the space X the norm ‖·‖2 is defined in the usual way,

‖f‖2 =

(∫ b

a

f(t)2dt

)1/2

. (3.2)
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We also consider the space Y = (L2(a, b), 〈·, ·〉) where the inner product 〈·, ·〉
is defined by

〈f, g〉 =
1

b− a

∫ b

a

f(t)g(t)dt. (3.3)

It is not difficult to see that Y is a Hilbert space, too. In the space Y the norm
‖·‖ is defined by

‖f‖ =
√
〈f, f〉. (3.4)

We also define the Chebyshev functional

T (f, g) = 〈f, g〉 − 〈f, e〉 〈g, e〉 , (3.5)

where f, g ∈ L2(a, b) and e = 1. This functional satisfies the pre-Grüss inequal-
ity ([9, p. 296]),

T (f, g)2 ≤ T (f, f)T (g, g). (3.6)
Specially, we define

σ(f) = σ(f ; a, b) =
√

(b− a)T (f, f). (3.7)

The space L1(a, b) is a Banach space with the norm

‖f‖1 =
∫ b

a

|f(t)| dt (3.8)

and the space L∞(a, b) is also a Banach space with the norm

‖f‖∞ = ess sup
t∈[a,b]

|f(t)| . (3.9)

If f ∈ L1(a, b) and g ∈ L∞(a, b) then we have

|(f, g)| ≤ ‖f‖1 ‖g‖∞ . (3.10)

More about the above mentioned spaces can be found, for example, in [1].
Finally, we define the functional

Q(f) = Q(f ; a, b) (3.11)

=
∫ b

a

f(t)dt− b− a

2
[f (x1) + f (x2)] ,

where x1, x2 are given by (2.6). We also need the following lemma.

Lemma 1. Let

f(t) =





f1(t), t ∈ [a, x1]
f2(t), t ∈ (x1, x2]
f3(t), t ∈ (x2, b]

, (3.12)

where x1, x2 ∈ [a, b], x1 < x2 , f1 ∈ C1 [a, x1], f2 ∈ C1 [x1, x2], f3 ∈ C1 [x2, b].
If f1(x1) = f2(x1) and f2(x2) = f3(x2) then f is an absolutely continuous
function.

A variant of this lemma can be found in [15].
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Theorem 3. Let f : [−1, 1] → R be a function such that f ′ ∈ L1(−1, 1). If
there exists a real number γ1 such that γ1 ≤ f ′(t), t ∈ [−1, 1] , then

|Q(f ;−1, 1)| ≤ 2(3−
√

6)(S − γ1), (3.13)

and if there exists a real number Γ1 such that f ′(t) ≤ Γ1, t ∈ [−1, 1] , then

|Q(f ;−1, 1)| ≤ 2(3−
√

6)(Γ1 − S), (3.14)

where Q(f ;−1, 1) is defined by (3.11) and S = [f(1)− f(−1)] /2. If there exist
real numbers γ1,Γ1 such that γ1 ≤ f ′(t) ≤ Γ1, t ∈ [−1, 1], then

|Q(f ;−1, 1)| ≤
(

25
2
− 5

√
6
)

(Γ1 − γ1) . (3.15)

Proof. We first prove that (3.15) holds. We define the function

p1(t) =





t + 1, t ∈ [−1, x]
t, t ∈ (x, y]
t− 1, t ∈ (y, 1]

. (3.16)

where x =
√

6− 3 and y = −x. It is easy to verify that

(p1, f
′) = −Q(f ;−1, 1). (3.17)

On the other hand, we have(
f ′ − Γ1 + γ1

2
, p1

)
= (f ′, p1), (3.18)

since (p1, e) = 0. From (3.10) we get∣∣∣∣
(

f ′ − Γ1 + γ1

2
, p1

)∣∣∣∣ ≤
∥∥∥∥f ′ − Γ1 + γ1

2

∥∥∥∥
∞
‖p1‖1 ≤

(
25− 10

√
6
) Γ1 − γ1

2
,

(3.19)
since ∥∥∥∥f ′ − Γ1 + γ1

2

∥∥∥∥
∞
≤ Γ1 − γ1

2
and

‖p1‖1 = 25− 10
√

6.

From (3.17)-(3.19) we see that (3.15) holds. We now prove that (3.13) holds.
We have

|(f ′ − γ1, p1)| ≤ ‖p1‖∞ ‖f ′ − γ1‖1 = 2(3−
√

6)(S − γ1),

since
‖p1‖∞ = 3−

√
6

and

‖f ′ − γ1‖1 =
∫ 1

−1

(f ′(t)− γ1)dt = f(1)− f(−1)− 2γ1

= 2(S − γ1).

In a similar way we can prove that (3.14) holds. ¤X
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Remark 2. Note that we can apply the estimate (3.15) only if the first de-
rivative f ′ is bounded. It means that we cannot use (3.15) to estimate directly
the error when approximating the integral of such a well-behaved function as
f(t) =

√
t on [0, 1], (since f ′(t) = 1/(2

√
t) is unbounded on [0, 1]). On the

other hand, we can use the estimation (3.13), (since γ1 = 1/2 on [0, 1] for the
given function).

Remark 3. In [12] we can find the following result for the 2-point Gaussian
quadrature formula,∣∣∣∣∣∣

f(−
√

3
3

) + f(
√

3
3

)−
1∫

−1

f(t)dt

∣∣∣∣∣∣
≤ Γ− γ

6
(5− 2

√
3). (3.20)

We see that (3.15) is better than (3.20), since 25
2 − 5

√
6 < 5−2

√
3

6 .

Theorem 4. Let f : [a, b] → R be a function such that f ′ ∈ L1(a, b). If there
exists a real number γ1 such that γ1 ≤ f ′(t), t ∈ [a, b], then

|Q(f ; a, b)| ≤ 3−√6
2

(S − γ1)(b− a)2, (3.21)

and if there exists a real number Γ1 such that f ′(t) ≤ Γ1, t ∈ [a, b] , then

|Q(f ; a, b)| ≤ 3−√6
2

(Γ1 − S)(b− a)2, (3.22)

where Q(f ; a, b) is defined by (3.11) and S = (f(b) − f(a))/(b − a). If there
exist real numbers γ1,Γ1 such that γ1 ≤ f ′(t) ≤ Γ1, t ∈ [a, b], then

|Q(f ; a, b)| ≤
(

25
8
− 5

4

√
6
)

(Γ1 − γ1) (b− a)2. (3.23)

Theorem 5. Let f : [−1, 1] → R be an absolutely continuous function such
that f ′ ∈ L2(−1, 1). Then

|Q(f ;−1, 1)| ≤
√

74
3
− 10

√
6 σ(f ′;−1, 1), (3.24)

where σ(f ;−1, 1) is defined by (3.7). The inequality (3.24) is sharp in the sense

that the constant
√

74
3 − 10

√
6 cannot be replaced by a smaller one.

Proof. Let p1 be defined by (3.16). We have

〈p1, f
′〉 = −1

2
Q(f ; 0, 1),

since (3.17) holds and 〈f, g〉 = 1
2 (f, g) if [a, b] = [−1, 1]. On the other hand, we

have
〈p1, f

′〉 = T (f ′, p1),
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since 〈p1, e〉 = 0. From (3.6) it follows

|T (f ′, p1)| ≤
√

T (p1, p1)
√

T (f ′, f ′) =
1
2
‖p1‖2 σ(f ′;−1, 1)

=
1
2

√
74
3
− 10

√
6σ(f ′;−1, 1),

since

‖p1‖2 =

√
74
3
− 10

√
6.

Hence, the inequality (3.24) is proved. We have to prove that this inequality is
sharp. For that purpose, we define the function

f(t) =





1
2 (t + 1)2, t ∈ [−1, x]
1
2 t2, t ∈ (x, y]
1
2 (t− 1)2, t ∈ (y, 1]

(3.25)

such that f ′(t) = p1(t). From Lemma 1 we see that the function f , defined
by (3.25), is an absolutely continuous function. For this function the left-hand
side of (3.24) becomes

L.H.S.(3.24) =
74
3
− 10

√
6.

The right-hand side of (3.24) becomes

R.H.S.(3.24) =
74
3
− 10

√
6.

We see that L.H.S.(3.24) = R.H.S.(3.24). Thus, (3.24) is sharp. ¤X

Theorem 6. Let f : [a, b] → R be an absolutely continuous function such that
f ′ ∈ L2(a, b). Then

|Q(f ; a, b)| ≤
√

37
12
− 5

4

√
6 σ(f ′; a, b)(b− a)3/2, (3.26)

where σ(f ; a, b) is defined by (3.7). The inequality (3.26) is sharp in the sense

that the constant
√

37
12 − 5

4

√
6 cannot be replaced by a smaller one.

Remark 4. The estimate (3.23) is better than the estimate (3.26). However,
note that the estimate (3.23) can be applied only if f ′ is bounded. On the other
hand, the estimate (3.26) can be applied for an absolutely continuous function
if f ′ ∈ L2(a, b).

There are many examples where we cannot apply the estimate (3.23) but we
can apply (3.26).
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Example 1. Let us consider the integral
1∫
0

3
√

sin t2dt. We have

f(t) = 3
√

sin t2 and f ′(t) =
2t cos t2

3 3
√

sin2 t2

such that f ′(t) →∞, t → 0 and we cannot apply the estimate (3.23). On the
other hand, we have

1∫

0

[f ′(t)]2 dt ≤ 4
9

max
t∈[0,1]

t2 cos t2

sin t2

1∫

0

dt
3
√

sin t2
≤ 16

9
,

i.e. ‖f ′‖2 ≤ 4
3 and we can apply the estimate (3.26).

4. Applications in numerical integration

Let π = {x0 = a < x1 < · · · < xn = b} be a given subdivision of the interval
[a, b] such that hi = xi+1 − xi = h = (b− a)/n. From (3.11) we get

Q(f ; xi, xi+1)

=
∫ xi+1

xi

f(t)dt− h

2
[f(x1i) + f(x2i)] ,

where

x1i =
h

2
x +

xi + xi+1

2
, x2i = −h

2
x +

xi + xi+1

2
, x =

√
6− 3.

If we now sum the above relation over i from 0 to n− 1 then we get
n−1∑

i=0

Q(f ; xi, xi+1)

=
∫ b

a

f(t)dt− h

2

n−1∑

i=0

[f(x1i) + f(x2i)] .

We introduce the notation

S(f ; a, b) =
n−1∑

i=0

Q(f ;xi, xi+1). (4.1)

We also define

σn(f) =
n−1∑

i=0

√
b− a

n
‖f ′‖22 − [f(xi+1)− f(xi)]

2 (4.2)

and

ωn(f) =
[
(b− a) ‖f ′‖22 −

1
n

(f(b)− f(a))2
]1/2

. (4.3)
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Theorem 7. Under the assumptions of Theorem 2 we have
∣∣∣∣∣∣

b∫

a

f(t)dt− h

2

n−1∑

i=0

[
f

(
3xi + xi+1

4

)
+ f

(
xi + 3xi+1

4

)]∣∣∣∣∣∣

≤
√

49
80
− 1

4

√
6
‖f ′′‖2
n
√

n
(b− a)5/2.

Proof. Apply Theorem 2 to the intervals [xi, xi+1] and sum. ¤X

Theorem 8. Under the assumptions of Theorem 4 we have

|S(f ; a, b)| ≤
(

25
8
− 5

4

√
6
)

Γ1 − γ1

n
(b− a)2,

|S(f ; a, b)| ≤
(
3−

√
6
) S − γ1

2n
(b− a)2,

|S(f ; a, b)| ≤
(
3−

√
6
) Γ1 − S

2n
(b− a)2,

where S(f ; a, b) is defined by (4.1) and {a = x0 < x1 < · · · < xn = b} is a uni-
form subdivision of [a, b], i.e. xi = a + ih, h = (b− a)/n, i = 0, 1, ..., n.

Proof. Apply Theorem 4 to the intervals [xi, xi+1] and sum. Note that
n−1∑

i=0

[f(xi+1)− f(xi)] = f(b)− f(a).

¤X

Theorem 9. Under the assumptions of Theorem 6 we have

|S(f ; a, b)| ≤
√

37
12
− 5

4

√
6
b− a

n
σn(f) ≤

√
37
12
− 5

4

√
6
b− a√

n
ωn(f), (4.4)

where S(f ; a, b), σn(f) and ωn(f) are defined by (4.1), (4.2) and (4.3), respec-
tively and {a = x0 < x1 < · · · < xn = b} is a uniform subdivision of [a, b], i.e.
xi = a + ih, h = (b− a)/n, i = 0, 1, ..., n.

Proof. We apply Theorem 6 to the interval [xi, xi+1] and sum. Then we have

|S(f ; a, b)|

≤
√

37
12
− 5

4

√
6 h3/2

n−1∑

i=0

[
‖f ′‖22 −

1
h

(f(xi+1)− f(xi))
2

]1/2

.

From the above relation and the fact h = (b − a)/n we see that the first
inequality in (4.4) holds.
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Using the Cauchy inequality we get
n−1∑

i=0

[
‖f ′‖22 −

1
h

(f(xi+1)− f(xi))
2

]1/2

(4.5)

≤ n

[
‖f ′‖22 −

1
b− a

n−1∑

i=0

(f(xi+1)− f(xi))
2

]1/2

≤ n

[
‖f ′‖22 −

1
b− a

1
n

(f(b)− f(a))2
]1/2

.

Thus the second inequality in (4.4) holds, too. ¤X
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[12] N. Ujević, Inequalities of Ostrowski-Grüss type and applications, Appl. Math.,
4, (2002), 465–479.
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