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1. Introduction

Let X = {Xt : t ≥ 0} be a recurrent one-dimensional diffusion living on an
interval I ⊂ IR, with X0 = 0. Csáki and Salminen in [3], established strong
approximations results for additive functionals of the form

Zt =
∫ t

0

f(Xs)ds =
∫

I

f(x)Lx
t m(dx), (1)

where f(x), x ∈ I is a locally integrable real valued function with the property∫
I
|f(x)|m(dx) ≤ ∞, Lx

t is the local time of Xt at every point x ∈ I and m is
the speed mesure of X.

Our aim is to establish the asymptotic behavior of the increments of additive
functionnals defined as in (1) by using strong approximations results established
in [3]. Our arguments are based on well known results for the increments of
Brownian motion and those of local times.
In the sequel we consider log t = log(sup(t, e)).
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Let Au = A0
u be the right continuous inverse of Lt = L0

t and S the scale
function of X. If we put t = Au in (1), then we have

ZAu
=

∫ Au

0

f(Xs)ds =
∫

I

f(x)LAu
t m(dx),

and {ZAu , u ≥ 0} is a process with independent and stationary increments
(see, Csáki and al., (1992), Csáki and Csörgő (1995) and Csáki and Salminen
(1996)). Moreover, we have

EZAu = uf̄ ,

where

f̄ =
∫

I

f(x)m(dx), (2)

and
V arZAu

= uσ2,

where

σ2 = 2
∫∫

I×I∩{xy>0}

f(x)f(y)min(|S(x)|, |S(y)|)m(dx)m(dy). (3)

Two cases was considered in [3]: firstly, the case of positive recurrence (i.e.
µ = EA1 = m{I} < ∞); secondly the case of null recurrence (i.e. m{I} = ∞).

The following strong approximation result was established in the case of
positive recurrence.

Theorem 1. Assume that

E(A1)
q

< ∞ for some 1 < q ≤ 2. (4)

(i) If

E

(∫ A1

0

|f(Xs)|ds

)2+δ

< ∞,

for some δ > 0, then on a suitable probability space one can construct a
diffusion process Xt and a standard Brownian motion W (t) such that

|Zt − f̄L0
t −

σ√
µ

W (t)| = O
(
tβ log t

)
a.s., (5)

as t →∞, where

β = max(
1

2 + δ
,

1
2q

), (6)

and σ2 is defined as in (3).
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(ii) If

E

(∫ A1

0

|f(Xs)− f̄

µ
|ds

)2+δ

< ∞, (7)

for some δ > 0, then on a suitable probability space one can construct a
diffusion process Xt and a standard Brownian motion W (t) such that

|Zt − f̄
t

µ
− σ1√

µ
W (t)| = O

(
tβ log t

)
a.s.,

as t →∞, where β is defined by (6) and

σ2
1 = 2

∫∫

I×I∩{xy>0}

(f(x)− f̄

µ
)(f(y)− f̄

µ
)min(|S(x)|, |S(y)|)m(dx)m(dy).

In the case of null recurrence (i.e. m{I} is infinite) under assumption that
on a suitable probability space one can construct a diffusion process X and a
stable process Tu of order α (cf. Samorodnitski and Taqqu (1994)) such that

|Au − Tu| = O(uk) a.s., (8)

as u →∞ for some 0 ≤ k < 1/α (see, [1]), the following result was established
in [3].

Theorem 2. Assume that X is a null recurrent diffusion process on an interval
I, 0 ∈ I with local time Lx

t and such that (7) and (8) are both satisfies. Then
on a suitable probability space one can construct a diffusion process Xt and
a standard Brownian motion W (u) and a non-decreasing stable process Tu of
order α, such that W and T are independent and for ε > 0 small enough, we
have

|Zt − f̄L0
t − σW (Vt)| = O

(
tα/2−ε

)
a.s.,

as t → ∞, where Vt is the (continuous) inverse of Tu and Zt, f̄ and σ are
defined by (1), (2) and (3) respectively.

2. Main results

Proposition 1. Under conditions i) and ii) of Th.1, let hT be a real function
satisfying hT → +∞, hT /T is non-increasing and log(T

h )/log log T = ∞ as
T →∞. Then we have

sup
0≤t≤T−hT

(Zt+hT − Zt) = O(di(T )) a.s.,

where
d1(T ) = sup(hT , T β log T ),

under i) and
d2(T ) = hT /µ + T β log T,

under ii).
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Proposition 2. Under conditions of Theorem 2, let hT = T β, we have

sup
0≤t≤T−hT

(Zt+hT
− Zt) = O(T β+ε) a.s. (9)

3. Proofs

Proof of Proposition 1. (i) Put h = hT , by (5), we have

|Zt+h − Zt| ≤
f̄ |Lt+h − Lt|+ σ√

µ
|W (t + h)−W (t)|+ O((t + h)β log (t + h)) a.s.

(10)

It is clear that we only study the first two terms of the right hand side of (10).
We begin by stating that

|Lt+h − Lt| = O(d0(t)) a.s.

Put t + h = Au+h in |Lt+h − Lt|. Under condition (4), we have

Au = µu + O(u1/q(log u)1/2) a.s., (11)

as u →∞ and consequently

Lt =
t

µ
+ O(t1/q(log t)1/2) a.s.,

as t →∞. By relations (10) and (11), we have as u →∞ that

LAu+h
= LAu+h a.s.

By Proposition (2.1) of Csáki and Salminen (1996), we have

LAu = lau a.s.,

where lt = l0t is the local time of the Wiener process W (t) and at their inverse
right continuous function, then we can consider

|LAu+h − LAu | = |lau+h − lau | a.s. (12)

By using results for the increments of the local time process of the Wiener
process (see, Csáki et al., (1992)), we have

lim sup
t→∞

sup0≤s≤t−h(ls+h − ls)
d0(t)

= 1 a.s.,

where d0(t) =
√

h(log(t/h) + 2 log log t) and if log(t/h)/ log log t = ∞ then

lim sup
t→∞

sup0≤s≤t−h(ls+h − ls)√
h log(t/h)

= 1 a.s.

If in the right term of (12) we put t = au, then we have

|lt+h − lt| = O(d0(t)) a.s. (13)
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This last result is sufficient for to get the announced result.
For the remaining term, by Theorem 1.2.1 of Csörgő and Révész (1981), we
have

|W (t + h)−W (t)| = O(d0(t)) a.s., (14)
and by condition h/T is non-increasing when T → ∞, we have that the O( )
term in (10) is an O(T β log T ). With this last result and by (13) and (14), we
get the expected result. ¤X

The proof of part ii) is close to the previous proof.

Proof of Proposition 2. In the same way as in Proposition 1, we have

|Zt+h − Zt| ≤ f̄ |Lt+h − Lt|+ σ|W (Vt+h)−W (Vt)|+ O(tα/2−ε) a.s. (15)

For to study the right term of (15), we recall some results given in Csáki and
Salminen (1996) : for 0 < β < 1 and ε > 0, the following relations are satisfied

sup
0≤s≤t

(Vs+tβ − Vs) = O(tαβ+ε) a.s., (16)

sup
0≤s≤t

(Ls+tβ − Ls) = O(tαβ+ε) a.s., (17)

|Vt − Lt| = O(tαβ+ε) a.s.

By (15), (16) and (17), we can deduce (9). ¤X
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