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Stable minimal cones in R
8 and R

9

with constant scalar curvature

Oscar Perdomo*
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Abstract. In this paper we prove that if M ⊂ R
n, n = 8 or n = 9, is a

n − 1 dimensional stable minimal complete cone such that its scalar curvature
varies radially, then M must be either a hyperplane or a Clifford minimal cone.
By Gauss’ formula, the condition on the scalar curvature is equivalent to the
condition that the function κ1(m)2 + · · · + κn−1(m)2 varies radially. Here the
κi are the principal curvatures at m ∈ M . Under the same hypothesis, for
M ⊂ R

10 we prove that if not only κ1(m)2 + · · · + κn−1(m)2 varies radially
but either κ1(m)3 + · · ·+ κn−1(m)3 varies radially or κ1(m)4 + · · ·+ κn−1(m)4

varies radially, then M must be either a hyperplane or a Clifford minimal cone.

Keywords and phrases. Clifford hypersurfaces, minimal hypersurfaces, shape
operator.
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1. Introduction

Let M be an n-dimensional Riemannian manifold. A natural problem in geom-
etry is that of finding k-dimensional submanifolds N ⊂ M with the property
that for any bounded open set U in M , the k-volume of N ∩ U is less than
or equal to the volume of any other submanifold in M with boundary equal
to ∂(N ∩ U). The submanifolds of M with the above property are called
area-minimizing. Notice that when k = 1, area-minimizing submanifolds are
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geodesics. Locally, the problem reduces to the one of finding minimal subman-
ifolds, manifolds for which the mean curvature vector vanishes; globally, the
problem of finding complete area-minimizing submanifolds is a difficult one,
even in the case when M is the Euclidian space R

n. It is clear that planes
in R

3 are area-minimizing. In general, hyperplanes in R
n are area-minimizing

hypersurfaces.

A family of hypersurface of R
n which is important in the study of area-

minimizing hypersurfaces are the cones: N ⊂ R
n is a cone if for every a > 0,

ap ∈ N any time p ∈ N . The study of cones is important for two reasons, the
first one is that if p ∈ N is a singular point of a area-minimizing hypersurface S,
then there is an area-minimizing tangent cone, which makes the role of tangent
space at p, with the property that p ∈ S is a removable singularity if and
only if this tangent cone is a hyperplane. The second reason area-minimizing
cones are important is that if S is a complete area-minimizing hypersurface,
then there is an area-minimizing cone that makes the role of tangent cone at
infinity; this cone is a hyperplane if and only if S is a hyperplane.

A giant step toward this problem of classifying area-minimizing hypersur-
faces in Euclidean spaces was made by James Simons in 1968 [S]. He showed
that the only area-minimizing complete hypersurfaces in R

n, with n ≤ 7, are
the hyperplanes. On the other hand, Bombieri-De Giorgi-Guisti showed that
the hypercone

C4,4 = {(x, y) ∈ R
4 × R

4 : |x|2 = |y|2} ⊂ R
8

is area-minimizing. They also found a family of complete, smooth, area-
minimizing hypersurfaces in R

8 (notice that, in general, cones are not smooth
at the origin). These area-minimizing hypersurfaces found in [B-DG-G] con-
verges at infinity to C4,4. An open and important question in this direction
is the one of classifying all area-minimizing hypersurfaces in R

8. A reasonable
conjecture is the claim that the only complete area-minimizing hypersurfaces
in R

8 are the ones found in [B-DG-G].

In this paper we prove, for n = 8 and n = 9, that if M is an area-minimizing
cone and the scalar curvature of M varies radially, then M is isometric to a
Clifford cone, i.e. a cone of the form

Cl,k = {(x, y) ∈ R
k+1 × R

l+1 : l|x|2 = k|y|2}
where k and l are positive integers with k + l = n − 1. These cones are called
Clifford minimal cones.

2. Preliminaries

Let M ⊂ R
n be a smooth hypersurface, i.e. a immersion with codimension

1. For any p ∈ M we will denote by TpM the tangent space of M at p. We
will think of this space as a n − 1 dimensional subspace of R

n. Since the
codimension of TpM ⊂ R

n is one then we can find a unit vector ν(p) ∈ R
n
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such that ν(p) is perpendicular to TpM ; it is not difficult to see that there
are just two possibilities for this vector. M is orientable if and only if we can
pick the vector ν(p) in a continuous way over all M . In this case, the map
ν : M → Sn−1 ⊂ R

n, where Sk = {x ∈ R
k+1 : |x| = 1}, turns out to be not

only continuous but differentiable. Since every manifold is locally orientable,
then we can always define the map ν locally. The map ν is called the Gauss
map.

Let ∇ be the Levi Civita connection in R
n, defined by the directional de-

rivative, i.e. if X, Y : R
n → R

n are vector fields on R
n then ∇XY (p) is the

derivative in the direction X(p) of the function Y at p. Recall that we can
compute this derivative either by multiplying the Jacobian matrix of Y at p

with the vector X(p) or by taking any curve α : (−ε, ε) → R
n with α(0) = p

and α′(0) = X(p) and then computing the derivative at t = 0 of the curve
β(t) = Y (α(t)). An important fact about the Levi Civita connection is that
in order to compute ∇XY (p) it is enough to know X(p) and to know Y along
any curve passing through p with velocity X(p) at p.

The shape operator of the manifold M at p is the linear map A : TpM → R
n

defined by A(v) = −∇vν for any v ∈ TpM . Since the norm of ν is always 1, it
is not difficult to show that the image of A is a subspace of TpM , therefore A

is actually a map from TpM to itself. The map A turns out to be a symmetry
linear transformation [D], i.e. if 〈 . , . 〉 denotes the inner product in R

n then
for any pair of vectors v, w ∈ TpM we have that 〈A(v), w〉 = 〈v, A(w)〉. By
linear algebra, A has n − 1 real eigenvalues κ1, . . . , κn−1. This eigenvalues are
known as the principal curvatures of M at p. We define the functions mean

curvature, H : M → R, and the norm of the shape operator |A| : M → R by

H(p) =
κ1 + · · · + κn−1

n − 1

and

|A|(p) =
√

κ2
1 + · · · + κ2

n−1

for any p ∈ M .

Let us denote by C∞
0 (M) the set of smooth functions with compact support.

Given any function f : M −→ R
1 we can form the 1-parameter variational

family defined by

Mt = {p + tf(p)ν(p) : p ∈ M}.
Notice that M0 = M and that Mt agrees with M outside a compact set.
By using the implicit function theorem we have that there exists ε > 0 such
that the sets Mt are hypersurfaces for every t ∈ (−ε, ε). Let W ⊂ M be an
open set with finite n-dimensional area that contains the support of f . Let
Vf : (−ε, ε) → R be the real function that assigning the n − 1 dimensional
volume of Mt ∩ W to any t ∈ (−ε, ε). It is well known (see e.g. [S]) that the
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function V satisfies:
1

2

dVf

dt

∣

∣

∣

t=0
= −

∫

M

fH. (1)

Notice that the mean curvature function H of a manifold M vanishes at every
point if and only if Vf has a critical point at t = 0 for every f ∈ C∞

0 . Subman-
ifolds whose mean curvature function vanishes identically are called minimal

submanifolds. Equation (1) tell us that minimal submanifold are critical points
of the area functional. Notice that if M is an area-minimizing hypersurface
then for any f ∈ C∞

0 (M) the volume of Mt is greater than or equal to the
volume of M = M0, i.e., Vf (t) ≥ Vf (0). Therefore, if M is area-minimizing we
have that:

(i) V ′
f (0) = 0 for any function f i.e M is minimal.

(ii) V ′′
f (0) ≥ 0 for any function f .

Minimal submanifolds satisfying condition (ii) above are called minimal stable
submanifolds. The formula for V ′′

f (0) is given by the following equation; its

proof can be found in [S].

d2Vf

dt2
(0) =

∫

M

J(f)f (second variation formula) (2)

where J is the stability operator on M , given by

J = −∆ − ‖A‖2
.

The operator ∆ is the Laplacian of M , which can be defined as follows: Let
p0 ∈ M be a point in M and let f : M → R be a smooth function. Let
{e1, . . . , en−1} be vector fields defined in an open neighborhood U in R

n of p0

such that 〈ei, ej〉 = δij for every point in U and such that {e1(p), . . . , en−1(p)}
form a base for TpM for every point p ∈ M ∩ U .

The gradient of f at p0 is given by

∇f(p0) = e1(f)(p0)e1(p0) + · · · + en−1(f)(p0). (3)

Here, ei(f)(p) is the directional derivative of f at p in the direction ei(p).
Notice that ∇f defines a vector field on M ∩ U .

The Laplacian of f is given by

∆(f)(p0) = 〈∇e1
∇f, e1〉(p0) + · · · + 〈∇en−1

∇f, en−1〉(p0). (4)

From now on we will assume that M is a cone in R
n such that M is a smooth

minimal hypersurface without boundary and M∪{0} is topologically complete.
We will refer to these sets just as minimal complete cones with codimension 1.
We will state some facts about M . Notice that we can build back M just by
knowing the set M ∩ Sn−1 = N . Let p ∈ M be any point in M , since M is
a cone, we have that TpM is equal to T p

|p|
M ; recall that we are viewing these

tangent spaces as vector subspaces of R
n.

The following lemma gives a relation between the shape operator at p ∈ M

and the shape operator at ap for any a > 0.
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Lemma 2.1. If M is smooth hypersurface which is a cone, then for any p ∈ M

we have that

|A|2(ap) =
1

a2
|A|2( p

|p| ) for any a > 0.

Proof. Let ν be the Gauss map defined in a neighborhood of p
|p| . If {e1, . . . , en−1}

is an orthonormal bases of T p

|p|
M then A(ei)(

p
|p| ) = β′(0), where β(t) = ν(α(t))

and α(t) is a curve on M with α(0) = p
|p| and α′(0) = ei. Since M is a cone then

the curve ᾱ(t) = aα(t) is a curve on M . Notice that ᾱ(0) = p and ᾱ′(0) = aei.
This fact gives us what we have pointed out before: TpM = T p

|p|
M , hence

ν(p) = ν( p
|p| ) and,

A(p)(aei) =
dν

( ¯α(t)
)

dt

∣

∣

∣

t=0
=

dν
(

α(t)
)

dt

∣

∣

∣

t=0
= A

( p

|p|
)

(ei).

Using the above equation we get

|A|2(p) =

n−1
∑

i=1

∣

∣A(ei)(p)
∣

∣

2
=

n−1
∑

i=1

1

a2

∣

∣

∣
A(ei)

( p

|p|
)
∣

∣

∣

2

=
1

a2
|A|2

( p

|p|
)

.

This completes the proof of the lemma. �X

Given a complete minimal cone M , let us define N = Sn−1 ∩M . Under the
conditions we have imposed on M we can deduce that N is a complete smooth
manifold on Sn−1. The following lemma gives us a formula for the integral of
a function over M in terms of integrals over N .

Lemma 2.2. Let N ⊂ Sn−1 be a smooth manifold of dimension n − 2. For
any 0 < ε < 1, let us define Mε = {tp : p ∈ N and t ∈ [ε, 1]}. If f : Mε → R

is a smooth function then
∫

Mε

f =

∫ 1

ε

∫

N

tn−2ft(p)

where ft : N → R is defined by ft(p) = f(tp).

Proof. Without loss of generality (otherwise consider a partition of the unit
of N) we may assume that N = φ(U) where U is an open set of R

n−2 and
φ : U → R

n is a parametrization of N that induces coordinates y1, . . . , yn−2

on N . Let us define bij = 〈 ∂φ
∂yi

, ∂φ
∂yj

〉 for i, j ∈ {1, . . . , n − 2}. Since φ is a

parametrization, we have that the matrix B = {bij} is a symmetric positive
defined matrix. Moreover,

∫

N

g =

∫

U

g(φ(y))
√

det (B) dy, for any g : N → R.

Now, if we define ρ : (ε, 1) × U → Mε by ρ(t, y) = tφ(y), then it is clear

that ρ defines a parametrization on Mε. We define cij = 〈 ∂ρ
∂yi

, ∂ρ
∂yj

〉 where

i, j ∈ {0, 1, . . . , n − 2}; here we are identifying the y0 coordinate with the t
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coordinate. Since N ⊂ Sn−1, c00(tφ(y)) = 〈φ(y), φ(y)〉 = 1 and for any j 6= 0,
c0j(tφ(y)) = cj0(tφ(y)) = 0; moreover, if i, j ∈ {1, . . . , n−2}, cij(tφ(y)) = t2bij .

Therefore, if C = {cij} we get

det (C)(tφ(y)) = t2(n−2) det (B)(y).

Using the above equation, we have that
∫

Mε

f =

∫ 1

0

∫

U

f(ρ(t, y))
√

detCdydt =

∫ 1

0

∫

U

tn−2ft

√
detBdydt

=

∫ 1

0

∫

N

tn−2ftdydt.

This equation completes the proof of the lemma. �X

Lemma 2.3. Under the same hypothesis of the previous lemma we have that
if f : Mε → R satisfies that f(tp) = h(t) for every t ∈ [ε, 1] and p ∈ N , then

∆f(tp) = h′′(t) +
(n − 2)

t
h′(t), for every t ∈ (ε, 1) and p ∈ N .

Proof. Let {e0, e1, . . . , en−2} be an orthonormal frame defined in a neighbor-
hood of tp such that e0(x) = x

|x| and ei(tp) = ei(p) for every p ∈ N , t ∈ [ε, 1]

and i = 1, . . . , n − 2. We have that

∇f(x) = {e0(f)e0 + e1(f) + · · · + en−1(f)en−1}
∣

∣

x
.

If we take α(s) = |x| x
|x| + s x

|x| , then α(0) = x and α′(0) = e0(x). Therefore

e0(f)(x) = β′(0) where β(s) = f(α(s)) = h(|x|+ s) and e0(f)(x) = h′(|x|). On
the other hand, since the frame is orthonormal, for every i = 1, . . . , n − 2 we
may choose curves αi(t) such that αi(0) = x, α′

i(0) = ei(x) and |αi(t)| = |x|
for all t. Under this choice of curves, we have, by using the hypothesis on the
function f , that ei(f)(x) = 0 for i ≥ 1. Therefore,

∇f(x) = h′(|x|) x

|x| . (5)

We will use the same curves αi’s to compute ∇ei
(∇f). Notice that ∇ei

e0(x) =
ei

|x| for every i ∈ {1, . . . , n − 2}. If we make tp = p0 then,

∆(f)(p0) = 〈∇e0
∇f, e0〉(p0) + · · · + 〈∇en−2

∇f, en−1〉(p0)

= 〈∇e0
(h′(|x|)e0(x)), e0〉(p0) + · · · + 〈∇en−2

(h′(|x|)e0(x)), en−1〉(p0)

= e0(h
′(|x|)) + h′(t)〈∇e0

e0, e0〉(p0) + e1(h
′(|x|)) + h′(t)〈∇e1

e0, e1〉(p0)

+ · · · + en−2(h
′(|x|)) + h′(t)〈∇en−2

e0, en−2〉(p0)

= h′′(t) +
1

t
h′(t) + · · · + 1

t
h′(t) = h′′(t) +

(n − 2)

t
h′(t). �X

We will also need the following results.
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Theorem 2.1. Let M ⊂ R
n be a complete minimal cone and let N = M ∩

Sn−1.

(a) ([C-D-K], [L]) |A|2(p) = n−2 for any p ∈ N if and only if M is isometric
to a Clifford minimal cone.

(b) [Y-C] If the function |A|2(p) is constant for all p ∈ N and this constant

is smaller than 4(n−2)
3 on N , then M is either part of a hyperplane or

M is a Clifford cone.
(c) [Y-C] Let {κ1(m), . . . , κn−1(m) be the principal curvatures at m ∈ M ,

i.e. they are the eigenvalues of the shape operator A(m) : TmM →
TmM . If (i) the function |A|2(p) is constant for all p ∈ N and this

constant is smaller than 5(n−2)
3 on N and (ii) κ1(m)3 + · · ·+κn−1(m)3

is constant for all m ∈ N or κ1(m)4 + · · ·+κn−1(m)4 is constant for all
m ∈ N , then M is either part of a hyperplane or M is a Clifford cone.

3. Main result

In this section we will state and prove the main results of this paper. The idea
in the proof of these theorems is the one used by James Simons in [S].

Theorem 3.1. Let M ⊂ R
n, with n = 8 or n = 9, be a complete minimal

cone with codimension 1. If (i) the norm of the shape operator is constant on
the points of M with norm 1, i.e |A|2(m) = c for every m ∈ M ∩ Sn−1 = N ;
and (ii) M is stable, then M must be either a hyperplane or a Clifford minimal
cone.

Proof. Let us assume that M is not a hyperplane or a Clifford minimal cone;
we will show that M can not be stable. We will do this by showing a function
with compact support such that V ′′

f (0) < 0. Let us define f : M → R by

f(x) =

{

0, if |x| ≤ ε or |x| ≥ 1,

h(x), for ε < |x| < 1,

where h : [ε, 1] → R is a smooth function such that h(ε) = h(1) = 0. We will
define the function h later on. By using Lemma 2.1 we get that the stability
operator J is given by

J(f)(tp) = −(∆f)(tp) − 1

t2
cf(tp), for every t ∈ (0, 1) and p ∈ N.

By using equation (2), Lemma 2.3 and Lemma 2.2, we obtain that:
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d2Vf

dt2
(0) =

∫

M

J(f)f

=

∫

Mε

(

−(∆f)(tp) − 1

t2
cf(tp)

)

f(tp)

=

∫

Mε

(

−h′′(t) − (n − 2)

t
h′(t) − 1

t2
ch(t)

)

h(t)

= −
∫ 1

ε

∫

N

tn−4
(

t2h′′(t) + t(n − 2)h′(t) + ch(t)
)

h(t).

(6)

Since we are assuming that M is neither an equator nor a Clifford hypersurface,

Theorem 2.1 part (b) gives us that c > 4 (n−1)
3 . For n = 8 let us take d =

4(c − 1
3 ) − 25 and ε = exp −2π√

d
. Notice that d > 0 because c > 8. Let us also

define h(t) = t
−5

2 sin (−
√

d
2 ln (t)). Notice that h(ε) = 0 = h(1) and h(t) > 0

for every t ∈ (ε, 1). A direct verification shows that

t2h′′(t) + 6th′(t) + ch(t) =
1

3
h(t).

Replacing the above equation in (6) we obtain:

d2Vf

dt2
(0) =

∫

M

J(f)f =
−1

3

∫

N

∫ 1

ε

t4h(t)2 < 0.

Therefore M is not stable. For n = 9 we define d = 4(c − 1
3 ) − 36 and

ε = exp −2π√
d

. Notice that d > 0 because c > 28
3 . Let us also define h(t) =

t−3 sin (−
√

d
2 ln (t)). Notice that h(ε) = 0 = h(1) and h(t) > 0 for every

t ∈ (ε, 1). A direct verification shows that

t2h′′(t) + 7th′(t) + ch(t) =
1

3
h(t).

Replacing the above equation in (6) results in

d2Vf

dt2
(0) =

∫

M

J(f)f =
−1

3

∫

N

∫ 1

ε

t5h(t)2 < 0.

Therefore M is not stable. �X

Corollary 3.1. Let M ⊂ R
n, with n = 8 or n = 9, be a complete minimal

cone with codimension 1. If

(i) The scalar curvature R is constant on the points of M with norm 1, i.e
R(m) = R0 for every m ∈ M ∩ Sn−1 = N , and

(ii) M is stable.

Then M must be either a hyperplane or a Clifford minimal cone.
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Proof. Let m ∈ M and let {e1, . . . , en−1} be an orthonormal base of TmM such
that A(m)(ei) = κiei. By Gauss’ Theorem, the sectional curvature K(ei, ej)
of the plane spanned by the vectors ei, ej is the product κiκj for every i 6= j.
We have that,

(n − 1)(n − 2)R(m) =
n−1
∑

i,i=1,i6=j

K(ei, ej)

=

n−1
∑

i,i=1,i6=j

κiκj

=

n−1
∑

i,i=1

κiκj −
n−1
∑

i=1

κ2
i

= (κ1 + · · · + κn−1)
2 − |A|2

= −|A|2.

(7)

In the last equality we have used that 0 = (n− 1)H = κ1 + · · ·+ κn−1 because
M is minimal. By equation (7), R is constant on M ∩ Sn−1 if and only if |A|2
is constant on M ∩ Sn−1. The corollary now follows from Theorem 2.1. �X

For the next theorem we will consider stable minimal cones in R
10 with

codimension 1. We will get the same result but with the additional condition
that either the function κ1(m)3 + · · ·+κn−1(m)3 varies radially or the function
κ1(m)4 + · · · + κn−1(m)4 varies radially, namely we will prove:

Theorem 3.2. Let M ⊂ R
10 be a complete minimal cone with codimension

1. If

(i) The norm of the shape operator is constant on the points of M with
norm 1, i.e |A|2(m) = κ1(m)2 + · · · + κn−1(m)2 = c for every m ∈
M ∩ Sn−1 = N ;

(ii) Either κ1(m)3+· · ·+κn−1(m)3 varies radially or κ1(m)4+· · ·+κn−1(m)4

varies radially, and
(iii) M is stable.

Then M must be either a hyperplane or a Clifford minimal cone.

Proof. Let us take d = 4(c− 1
3 )−49 and ε = exp −2π√

d
. Notice that d > 0 because

c > 40
3 by Theorem 2.1 part (c). Let us also define h(t) = t

−7

2 sin (−
√

d
2 ln (t)).

Notice that h(ε) = 0 = h(1) and h(t) > 0 for every t ∈ (ε, 1). A direct
verification shows that

t2h′′(t) + 6th′(t) + ch(t) =
1

3
h(t).

Replacing the above equation in (6) we get

d2Vf

dt2
(0) =

∫

M

J(f)f =
−1

3

∫

N

∫ 1

ε

t4h(t)2 < 0.
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Therefore M is not stable. �X

Remarks.

(a) The isoperimetric hypercone in R
13 with 3 non zero principal curvatures

gives an example of a stable complete minimal cone with codimension
1 which scalar curvature varies radially.

(b) Chern’s conjecture states that if M ⊂ R
n is a n − 1 dimensional com-

plete minimal cone and |A|2(m) = c, with c a constant less than 2(n−1),
for every m ∈ M ∩ Sn−1 = N , then M must be either a hyperplane
or a Clifford minimal cone. Using the same technique we used in the
proof of our theorems we have that the veracity of Chern’s conjecture
implies the veracity of Theorem 2.1 for n = 10 and n = 11.
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