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Infinite sets of positive integers
whose sums are free of powers

Florian Luca
Mathematical Institute, UNAM, Morelia, MÉXICO

Abstract. In this short note, we construct an infinite set S of positive integers
such that for all n ≥ 1 and any n distinct elements x1, . . . , xn of S the sum
∑

n

i=1
xi is not a perfect power.
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Problem 5 proposed at the Fourth Central-American and Carribean Mathemat-

ical Olympiad (Mérida, México, July, 2002) asked the contenders to construct
an infinite set S of positive integers such that the sum of any number of dis-
tinct elements of S is not a perfect square. It is fairly straightforward to check
that an example of such a set S is provided by the set of all Fermat numbers

{Fn}n≥0, where Fn := 22n

+ 1 for n ≥ 0. In this note, we show how to con-
struct an infinite set of positive integers S such that for every n ≥ 1 and any
n distinct elements x1, . . . , xn of S the sum

∑n
i=1 xi is not a perfect power.

For any positive integer k let pk be the kth prime number, and let q > 1 be
any positive integer. The construction of our set S follows somewhat closely
the example provided by the set of Fermat numbers mentioned above and is
contained in the following:

Theorem. For any positive integer m let xm = qp1p2...pm + 1. Then, there

exists an effectively computable constant c1 depending only on q, such that the

set S := {xn | n ≥ c1} has the property that any sum of some distinct elements

of S is not a perfect power.
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Proof. Assume that t ≥ 1 and that n1 < n2 < · · · < nt are such that xn1
+

· · ·+ xnt
= yl for some positive integers y and l with l ≥ 2. Clearly, y > 1 and

we may assume that l is prime. We first show that there exists an effectively
computable constant c1 depending only on q such that l < c1. We may assume
that t ≥ 2, because for t = 1 the above equation reduces to qp1p2···pn1 + 1 = yl

and since p1 = 2 the above equation is a particular case of the Catalan equation
xm + 1 = yl with m even and it is known that this equation has no positive
integer solution (x, y, m, l) with l > 1 (see [1]). We also assume that nt ≥ 4.
We write

yl = xn1
+ · · · + xnt

= qp1p2···pnt + z, (1)

where

1 ≤ t ≤ z ≤ nt +

nt−1
∑

i=1

qp1···pi < 2ntq
p1···pnt−1 < (

√
q)p1p2···pnt . (2)

Indeed, the right most inequality appearing at (2) above is equivalent to

qp1p2···pnt−1

(

pnt
2

−1
)

≥ 2nt, (3)

and since nt ≥ 4 and q ≥ 2 the above inequality will be satisfied provided that

215(pnt
−2) ≥ (2nt)

2, (4)

and inequality (4) can be immediately shown to hold by induction on nt ≥ 4.

At this point, we recall the following result due to Shorey and Stewart (see
[3]).

Lemma. (Shorey-Stewart, [3]). Let (un)n≥0 be a sequence of positive integers

such that there exists a positive integer q > 1 and a constant δ with 0 < δ < 1
such that the inequality

0 < |un − qn| < qδn (5)

holds for all positive integers n. Then, there exists a computable constant c2

depending only on q and δ such that if un = yk with y and k integers and

|y| > 1, then k < c2.

In fact, Shorey and Stewart proved a version of the above Lemma for case
in which (un)n≥0 is a non-degenerate linearly recurrent sequence whose char-
acteristic equation has one simple dominant root, but their argument can be
easily modified to yield the above Lemma (see [2], for example).

From formula (1), inequality (2), and the above Lemma, we get that there
exists a constant c2 depending only on q such that l < c2. Set c1 := c2 and
assume that n1 > c1 holds in formula (1). In this case, nt > n1 > c1, and since
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l is a prime, it follows that l = pi with some i < nt. With N :=
p1p2 · · · pnt

pi
,

equation (1) can be rewritten as

z = qNpi − ypi = (qN − y)(qN(pi−1) + qN(pi−2)y + · · · + ypi−1). (5)

From inequality (2), we get that qN − y > 0 and

qNpi/2 > z = (qN − y)(qN(pi−1) + qN(pi−2)y + · · · + ypi−1) > qN(pi−1),

or
pi

2
> pi − 1,

which is a contradiction. The Theorem is therefore proved. �X

One may ask if the dual statement to our Theorem is also true, i.e., whether
there exist infinite sets S of positive integers such that for all n ≥ 1 and any
distinct elements x1, . . . , xn of S the sum

∑n
i=1 xi is a perfect power. The

answer here is no.

Proposition. There does not exist an infinite set of positive integers S such

that for all n ≥ 1 and any n distinct elements x1, . . . , xn of S the sum
∑n

i=1 xi

is a perfect power.

Proof. Assume that there exists such a set. Let p be any fixed prime. Then,
infinitely many of the elements of S are in the same congruence class modulo p.
Discarding the remaining elements of S, we may assume that all the elements
of S are in the same congruence class modulo p. We label the elements of S as
x1 < x2 < · · · < xn < · · · . For any i ≥ 1, let

yi :=

p
∑

s=1

x(i−1)p+s. (5)

That is, y1 = x1 + x2 + · · · + xp, y2 = xp+1 + xp+2 + · · · + x2p, etc. Clearly,
yi is a multiple of p for all i ≥ 1 and the set S′ := {yi | i ≥ 1} has the same
property that the set S has, namely all the sums of some distinct elements of
S′ are perfect powers. The above argument shows that we may assume that
all the elements of S are multiples of p.

Let i ≥ 1 be arbitrary. Since both xi and x1 + xi are perfect powers, it
follows that the equation

x1 = um − vn (6)

has infinitely many positive integer solutions (u, v, m, n) with min(m, n) ≥ 2
and p divides both u and v. With x1 fixed and variables u, v, m, n in the above
equation (6), the fact that p divides u and v implies that there exists a constant
c3 (depending only on p and x1) such that min(m, n) < c3. In particular,
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equation (6) has infinitely many positive integer solutions (u, v, m, n) with v > 1
and 2 ≤ min(m, n) < c3, which contradicts a classical result from exponential

diophantine equations (see, Theorem 12.2 in [4], for example). �X

A somewhat more direct proof of the above Proposition can be achieved via
a direct application of Faltings’s Theorem. The above Proposition shows that
if S is a set of positive integers such that all the sums of some distinct elements
of S is a perfect power, then the cardinality of S is finite. We suspect that
the cardinality of S is uniformly bounded, that is that there exists an absolute
constant c4 such that if S is a set of positive integers having the property
that all the sums of some distinct elements of S is a perfect power, then the
cardinality of S is bounded by c4, and we leave this as a conjecture for the
reader.
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