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Infinite sets of positive integers
whose sums are free of powers
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ABSTRACT. In this short note, we construct an infinite set S of positive integers
such that for all n > 1 and any n distinct elements x1, ..., zp of S the sum
Z?:I x; is not a perfect power.
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Problem 5 proposed at the Fourth Central-American and Carribean Mathemat-
ical Olympiad (Mérida, México, July, 2002) asked the contenders to construct
an infinite set S of positive integers such that the sum of any number of dis-
tinct elements of § is not a perfect square. It is fairly straightforward to check
that an example of such a set S is provided by the set of all Fermat numbers
{F\}n>0, where F, := 22" 11 for n > 0. In this note, we show how to con-
struct an infinite set of positive integers S such that for every n > 1 and any
n distinct elements z1, ..., x, of S the sum Y . ; x; is not a perfect power.
For any positive integer k let py be the kth prime number, and let ¢ > 1 be
any positive integer. The construction of our set S follows somewhat closely
the example provided by the set of Fermat numbers mentioned above and is
contained in the following:

Theorem. For any positive integer m let x,, = ¢P*P?"Pm 4 1. Then, there
exists an effectively computable constant ¢y depending only on q, such that the
set S := {x, | n > c1} has the property that any sum of some distinct elements
of S is not a perfect power.
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Proof. Assume that t > 1 and that n; < ny < --- < n; are such that z,, +
-+ 1, =y for some positive integers y and [ with [ > 2. Clearly, y > 1 and
we may assume that [ is prime. We first show that there exists an effectively
computable constant ¢; depending only on ¢ such that [ < ¢;. We may assume
that ¢ > 2, because for ¢t = 1 the above equation reduces to ¢P1P2"Pr1 + 1 = ¢/
and since p; = 2 the above equation is a particular case of the Catalan equation
2™ 4+ 1 = y! with m even and it is known that this equation has no positive
integer solution (z,y,m,l) with [ > 1 (see [1]). We also assume that n; > 4.
We write

yl = Tn,y ++1"’nt :qplp2"'Pnt +Za (1)
where
ng—1
L<t<z<m+ Y @077 < 2ngh P < (PP (2)

i=1

Indeed, the right most inequality appearing at (2) above is equivalent to

qulPZ‘“Pntfl(p%—l) Z 2711&; (3)
and since ny; > 4 and ¢ > 2 the above inequality will be satisfied provided that
215(pn, —2) > (2nt)2, (4)

and inequality (4) can be immediately shown to hold by induction on n; > 4.

At this point, we recall the following result due to Shorey and Stewart (see
3)-

Lemma. (Shorey-Stewart, [3]). Let (un)n>0 be a sequence of positive integers
such that there exists a positive integer ¢ > 1 and a constant § with 0 < § < 1
such that the inequality

0 < lup —q" < ¢ (5)

holds for all positive integers n. Then, there exists a computable constant cy
depending only on q and § such that if u,, = y* with y and k integers and
ly| > 1, then k < cs.

In fact, Shorey and Stewart proved a version of the above Lemma for case
in which (up)n>0 is a non-degenerate linearly recurrent sequence whose char-
acteristic equation has one simple dominant root, but their argument can be
easily modified to yield the above Lemma (see [2], for example).

From formula (1), inequality (2), and the above Lemma, we get that there
exists a constant co depending only on g such that | < ¢o. Set ¢; := ¢2 and
assume that n; > ¢; holds in formula (1). In this case, ny > nq > ¢1, and since
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l is a prime, it follows that [ = p; with some i < n;. With N := ]M,
Y2
equation (1) can be rewritten as
5= qui —yPi = (qN _ y)(qN(Pifl) + qN(Pi*Q)y R ypi*1>. (5)

From inequality (2), we get that ¢ —y > 0 and
VP2 > 2= (N — ) (VP 4 NP2y g gpimly s N D),

or

i
EZ > Dpi — 1)
which is a contradiction. The Theorem is therefore proved. ]

One may ask if the dual statement to our Theorem is also true, i.e., whether
there exist infinite sets S of positive integers such that for all n > 1 and any
distinct elements x1,..., z, of S the sum 2?21 x; is a perfect power. The
answer here is no.

Proposition. There does not exist an infinite set of positive integers S such
that for alln > 1 and any n distinct elements x1, ..., x, of S the sum 2?21 T;
is a perfect power.

Proof. Assume that there exists such a set. Let p be any fixed prime. Then,
infinitely many of the elements of S are in the same congruence class modulo p.
Discarding the remaining elements of S, we may assume that all the elements
of S are in the same congruence class modulo p. We label the elements of S as
T <To < - - <xp <---. Forany > 1, let

p
Yi = Zw(ifl)ers- (5)
s=1

That is, y1 = 1 + 22 + -+ Zp, Y2 = Tp41 + Tpr2 + -+ + Top, ete. Clearly,
y; is a multiple of p for all ¢ > 1 and the set S’ := {y; | ¢ > 1} has the same
property that the set S has, namely all the sums of some distinct elements of
S’ are perfect powers. The above argument shows that we may assume that
all the elements of S are multiples of p.

Let ¢ > 1 be arbitrary. Since both z; and z; + x; are perfect powers, it
follows that the equation
1 =u" — " (6)

has infinitely many positive integer solutions (u,v,m,n) with min(m,n) > 2
and p divides both u and v. With z; fixed and variables u, v, m, n in the above
equation (6), the fact that p divides u and v implies that there exists a constant
cs (depending only on p and z7) such that min(m,n) < c3. In particular,
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equation (6) has infinitely many positive integer solutions (u, v, m,n) withv > 1
and 2 < min(m,n) < c3, which contradicts a classical result from exponential
diophantine equations (see, Theorem 12.2 in [4], for example). f

A somewhat more direct proof of the above Proposition can be achieved via
a direct application of Faltings’s Theorem. The above Proposition shows that
if S is a set of positive integers such that all the sums of some distinct elements
of S is a perfect power, then the cardinality of S is finite. We suspect that
the cardinality of S is uniformly bounded, that is that there exists an absolute
constant ¢4 such that if S is a set of positive integers having the property
that all the sums of some distinct elements of S is a perfect power, then the
cardinality of S is bounded by ¢4, and we leave this as a conjecture for the
reader.
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