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1. Introduction

In [1], Caristi proved that a selfmapping T of a complete metric space (X, d)
has a fixed point if there exists a lower semi-continuous function φ : X −→ R

+

such that

d(x, Tx) ≤ φ(x) − φ(Tx), ∀x ∈ X.

This result was frequently used to prove existence theorems in fixed point
theory. However, it is not hard to see that if the graph of T is closed and T
satisfies the above inequality for arbitrary function φ, then T will have a fixed
point x∗ such that x∗ is the limit of the sequence (xn) defined by

{

x0 ∈ X,
xn+1 = Txn.

To support this remark, we give the following example. Let X = [0,+∞[.
Define T and φ by

Tx =
1

2
x, φ(x) =

{

x if x ∈ [0, 1[,
2x if x ∈ [1,+∞[.
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Then we have |x− Tx| = 1

2
x and

φ(x) − φ(Tx) =











1

2
x if x ∈ [0, 1[

3

2
x if x ∈ [1, 2[

x if x ∈ [2,+∞[.

Therefore
|x− Tx| ≤ φ(x) − φ(Tx) for all x ∈ X.

It is easy to see that T has a closed graph and the function φ is not lower
semi-continuous at 1 but T 0 = 0.

On the other hand, Fang [4] introduced the concept of F -type topological
space and gave a characterization of the kind of spaces. The usual metric
spaces, Hausdorff topological vector spaces, and Menger probabilistic metric
spaces are all the special cases of F -type topological Spaces. Furthermore,
Fang established a fixed point theorem in F -type topological spaces which
extends Caristi’s theorem in the following way:

Theorem 1.1 (Fang). Let (X, θ) be a sequentially complete F -type topolog-
ical space generated by the family {dλ, λ ∈ D}. Let k : D −→]0,+∞[ be a
nonincreasing function and φ : X −→ R

+ be a lower semi-continuous function.
Let T be a selfmapping of X such that

dλ(x, Tx) ≤ k(λ)[φ(x) − φ(Tx)], ∀λ ∈ D, ∀x ∈ X.

Then T has a fixed point in X.

The aim of this paper is to give some common fixed point theorems in F -
type topological spaces. To do this, we first recall the definition of this space
as given in [4].

Definition 1.1 (Fang). A topological space (E, θ) is said to be F -type topo-
logical space if it is Hausdorff and for each x ∈ E, there exists a neighborhood
base Fx = {Ux(λ, t)/λ ∈ D, t > 0}, where D = (D,≺) denotes a directed set
such that:

(F1) If y ∈ Ux(λ, t), then x ∈ Uy(λ, t);
(F2) Ux(λ, t) ⊂ Ux(µ, s) for µ ≺ λ, t ≤ s;
(F3) ∀λ ∈ D, ∃µ ∈ D such that λ ≺ µ and Ux(µ, t1) ∩ Uy(µ, t2) 6= ∅ implies

y ∈ Ux(λ, t1 + t2);
(F4) E = ∪t>0Ux(λ, t), ∀λ ∈ D, ∀x ∈ E.

On the other hand, it is proved in [4] that for each F -type topological space
(E, θ), there exists a family M = {dλ, λ ∈ D} of quasi-metrics on E satisfying:

(1) dλ(x, y) = 0 ∀λ ∈ D iff x = y;
(2) dλ(x, y) = dλ(y, x) ∀λ ∈ D;
(3) dλ(x, y) ≤ dµ(x, y) for λ ≺ µ;
(4) ∀λ ∈ D, ∃µ ∈ D such that λ ≺ µ and dλ(x, y) ≤ dµ(x, z) + dµ(z, y) for

all x, y, z ∈ E such that θM = θ.
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For more details we refer to [4].

2. Main results

Theorem 2.1. Let (X, θ) be a sequentially complete F -type topological space
generated by the family {dλ, λ ∈ D}. Let k : D −→]0,+∞[ be a nonincreasing
function and φ : X −→ R

+ be a function. Let T and S be two selfmappings of
X with sequentially complete graphs such that TX ⊂ SX and

max{dλ(Sx, Tx),dµ(Tx, STx), dβ(Sx, TSx)}

≤ max{k(λ), k(µ), k(β)}[φ(Sx) − φ(Tx)],
(1)

for all (λ, µ, β) ∈ D3, for all x ∈ X . Then T and S have a common fixed point
in X.

Proof. Let x0 ∈ X . Choose x1 ∈ X such that Tx0 = Sx1. Choose x2 ∈ X
such that Tx1 = Sx2. In general, choose xn ∈ X such that Txn−1 = Sxn. Let
(λ, µ, β) ∈ D3. From (1), it follows

dλ(Sxn, Sxn+1) = dλ(Sxn, Txn) ≤ max{k(λ), k(µ), k(β)}[φ(Sxn) − φ(Txn)]

≤ max{k(λ), k(µ), k(β)}[φ(Sxn) − φ(Sxn+1].

For all (λ, µ, β) ∈ D3, we consider the nonnegative real sequence (an) defined
by

an = max{k(λ), k(µ), k(β)}φ(Sxn), n = 1, 2, · · · .

It is easy to see that (an) is nonincreasing and bounded bellow by 0. Hence it
is a convergent sequence. On the other hand, for all λ ∈ D, there exists λ1 ∈ D
such that λ ≺ λ1 and

dλ(Sxn, Sxn+m) ≤ dλ1
(Sxn, Sxn+1) + dλ1

(Sxn+1, Sxn+m).

For this λ1, there exists λ2 ∈ D such that λ1 ≺ λ2 and

dλ1
(Sxn+1, Sxn+m) ≤ dλ2

(Sxn+1, Sxn+2) + dλ2
(Sxn+2, Sxn+m).

Continuing in this fashion, there exists (λ1, λ2, · · · , λm−1) ∈ Dm−1 such that
λ ≺ λ1 ≺ λ2 ≺ · · · ≺ λm−1 and

dλ(Sxn, Sxn+m) ≤ dλ1
(Sxn, Sxn+1) + dλ2

(Sxn+1, Sxn+2) + · · ·

+ dλm−1
(Sxn+m−1, Sxn+m).

Hence

dλ(Sxn, Sxn+m) ≤max{k(λ1), k(µ), k(β)}[φ(Sxn) − φ(Sxn+1)]+

max{k(λ2), k(µ), k(β)}[φ(Sxn+1 − φ(Sxn+2)] + · · ·+

max{k(λm−1), k(µ), k(β)}[φ(Sxn+m−1 − φ(Sxn+m)].

Therefore, since the function k is nonincreasing, we have

dλ(Sxn, Sxn+m) ≤ max{k(λ), k(µ), k(β)}[φ(Sxn) − φ(Sxn+m)]
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which implies that (Sxn) is a Cauchy sequence. Since X is sequentially com-
plete, there exists u ∈ X such that lim

n→∞

Sxn = u. Hence

lim
n→∞

Txn = lim
n→∞

Sxn = u.

We shall show that lim
n→∞

STxn = u. Let µ ∈ D. There exists µ1 ∈ D such that

µ ≺ µ1 and

dµ(STxn, u) ≤ dµ1
(STxn, Txn) + dµ1

(Txn, u).

In view of (1), for all µ ∈ D we have

dµ(Txn, STxn) ≤ an − an+1

which implies that lim
n→∞

dµ(Txn, STxn) = 0 ∀µ ∈ D. Therefore lim
n→∞

STxn = u.

Similarly, we show that lim
n→∞

TSxn = u. Now we can show that u is a common

fixed point of T and S. We have lim
n→∞

STxn = u and lim
n→∞

Txn = u. Therefore

since the graph of S is sequentially closed, we conclude that Su = u. On the
other hand, we have lim

n→∞

TSxn = u and lim
n→∞

Sxn = u. Therefore since the

graph of T is sequentially closed, we obtain Tu = u. �X

Setting λ = µ = β and S = IdX , we have the following result which gives
a generalization of our earlier remark.

Corollary 2.1. Let (X, θ) be a sequentially complete F -type topological space
generated by the family {dλ, λ ∈ D}. Let k : D −→]0,+∞[ be a nonincreasing
function and φ : X −→ R

+ be a function. Let T be a selfmapping of X such
that

(1) dλ(x, Tx) ≤ k(λ)[φ(x) − φ(Tx)], ∀λ ∈ D, ∀x ∈ X ;
(2) T has a sequentially closed graph.

Then T has a fixed point in X.

Taking λ = µ = β and T = IdX , we get the following result.

Corollary 2.2. Let (X, θ) be a sequentially complete F -type topological space
generated by the family {dλ, λ ∈ D}. Let k : D −→]0,+∞[ be a nonincreasing
function and φ : X −→ R

+ be a function. Let S be a surjective selfmapping of
X such that:

(1) dλ(x, Sx) ≤ k(λ)[φ(Sx) − φ(x)], ∀λ ∈ D, ∀x ∈ X ;
(2) S has a sequentially closed graph.

Then S has a fixed point in X .

In the setting of metric space, we have the following

Corollary 2.3. Let T and S be two selfmappings of a complete metric space
(X, d). Let φ : X −→ R

+ be a function such that:

(1) max{d(Sx, Tx), d(Tx, STx), d(Sx, TSx)} ≤ φ(Sx) − φ(Tx), ∀x ∈ X ;
(2) TX ⊂ SX ;
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(3) T and S have a sequentially closed graphs.

Then T and S have a common fixed point in X.

Proof. Take an arbitrary directed set D and let

dλ(x, y) = d(x, y) ∀x, y ∈ X, ∀λ ∈ D.

Taking k(λ) = 1 for all λ ∈ D, it is easy to see that all conditions of Theorem

2.1 are satisfied and the conclusion follows from this theorem immediately. �X

As an example let X = [0,+∞[ and consider S, T : X −→ X defined as
follows:

Sx =

{

tanx if x ∈ [0, π/2[,

x if x ∈ [π/2,+∞[

and Tx = arctanx, ∀x ∈ X .

It is easy to see that T and S have closed graphs and TX ⊂ SX . Further-
more

|Sx− Tx| =

{

tanx− arctanx if x ∈ [0, π/2[,

x− arctanx if x ∈ [π/2,+∞[;

|Sx− TSx| =

{

tanx− x if x ∈ [0, π/2[,

x− arctanx if x ∈ [π/2,+∞[

and
|Tx− STx| = x− arctanx ∀x ∈ X.

Therefore

max{|Sx−Tx|, |Tx−STx|, |Sx−TSx|} =

{

tanx− arctanx if x ∈ [0, π/2[,

x− arctanx if x ∈ [π
2
,+∞[.

Consider the function φ defined on X by

φ(x) = 2x.

We have

φ(Sx) − φ(Tx) =

{

2(tanx− arctanx) if x ∈ [0, π/2[,

2(x− arctanx) if x ∈ [π/2,+∞[.

Subsequently, we have

max{|Sx− Tx|, |Tx− STx|, |Sx− TSx|} ≤ φ(Sx) − φ(Tx), ∀x ∈ X.

Therefore all conditions of Theorem 2.1 are verified and T 0 = S0 = 0.

Corollary 2.4. Let (X, θ) be a Hausdorff sequentially complete topological
vectorial space and {Uλ, λ ∈ D} be a balanced neighborhood base of 0 in X.
Let φ : X −→ R

+ be a function and k : D −→]0,+∞[ be a nonincreasing
function. Suppose further that two mappings T, S : X −→ X satisfy the
following conditions:

(1) ψ(x) = φ(Sx) − φ(Tx) ≥ 0, ∀x ∈ X ;
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(2) for all x ∈ X and for all (λ, µ, β) ∈ D3











Tx− Sx ∈ max{k(λ), k(µ), k(β)}ψ(x)Uλ,

Sx− TSx ∈ max{k(λ), k(µ), k(β)}ψ(x)Uµ,

Tx− STx ∈ max{k(λ), k(µ), k(β)}ψ(x)Uβ .

(3) TX ⊂ SX .
(4) T and S have a sequentially closed graphs.

Then T and S have a common fixed point in X.

Proof. As in [4], we define a partial order on D as follows:

λ ≺ µ⇐⇒ Uµ ⊂ Uλ.

Then X is an F -type topological space generated by the family {dλ : λ ∈ D}
where

dλ(x, y) = inf{t > 0|x− y ∈ tUλ}, ∀x, y ∈ X, ∀λ ∈ D.

Therefore ∀(λ, µ, β) ∈ D3 and ∀x ∈ X , we have the following:

max{dλ(Sx, Tx),dµ(Tx, STx), dβ(Sx, TSx)}

≤ max{k(λ), k(µ), k(β)}[φ(Sx) − φ(Tx)]

The conclusion follows immediately from Theorem 2.1. �X

3. Applications

Let (D1,≺D1
) and (D2,≺D2

)) be directed sets.

Theorem 3.1. Let (E, θ1) (resp. (F, θ2)) be a sequentially complete F -type
topological space generated by the family {dλ, λ ∈ D1}(resp. {dµ, µ ∈ D2}).
Let v : E −→ F be a function with sequentially closed graph . Let k1 : D1 −→
R

+ and k2 : D2 −→ R
+ be two nonincreasing functions. Let φ : E −→ R

+ and
ψ : F −→ R

+ be two arbitrary functions. Let T and S be selfmappings of E
with sequentially closed graphs such that TE ⊂ SE and

max{dλ1
(Sx, Tx) + dµ1

(v(Sx), v(Tx)), dλ2
(Sx, TSx)

+ dµ2
(v(Sx), v(TSx)), dλ3

(Tx, STx) + dµ3
(v(Tx), v(STx))}

≤ max{k1(λ1), k1(λ2), k1(λ3)}[φ(Sx) − φ(Tx)]

+ max{k2(µ1), k2(µ2), k2(µ3)}[ψ(v(Sx)) − ψ(v(Tx))],

for all x ∈ E and for all (λ1, λ2, λ3, µ1, µ2, µ3) ∈ D3
1 ×D3

2. Then T and S have
a common fixed point in E.

Proof. We define on D = D1 × D2 a relation “≺D” as follows: (λ1, µ1) ≺D

(λ2, µ2) ⇐⇒ λ1 ≺D1
λ2 and µ1 ≺D2

µ2. For all (λ, µ) ∈ D, we consider the
function ψλ,µ : E × E −→ R

+ defined by

ψλ,µ(x, y) = dλ(x, y) + dµ(v(x), v(y)).



FIXED POINTS IN CERTAIN TOPOLOGICAL SPACES 65

Next we show that ψλ,µ is a quasi-metric on E:

(1) ψλ,µ(x, y) = 0 =⇒ dλ(x, y) = 0 =⇒ x = y.

(2) ψλ,µ(x, y) = ψλ,µ(y, x) , ∀(λ, µ) ∈ D.

(3) Let (λ, α, µ, β) ∈ D1
2×D2

2 such that (λ, µ) ≺D (α, β).Then, ∀(x, y) ∈ E2,
dλ(x, y) ≤ dα(x, y) and dµ(v(x), v(y)) ≤ dβ(v(x), v(y)). Hence ψλ,µ(x, y) ≤
ψα,β(x, y).

(4) Let (λ, µ) ∈ D1 × D2. Then, ∃(α, β) ∈ D1 × D2, such that (λ, µ) ≺D

(α, β), dλ(x, y) ≤ dα(x, z) + dα(z, y) and dµ(v(x), v(y)) ≤ dβ(v(x), v(z)) +
dβ(v(z), v(y)). Therefore, ∀(λ, µ) ∈ D1 ×D2, ∃(α, β) ∈ D1 ×D2, such that
(λ, µ) ≺D (α, β) and ψλ,µ(x, y) ≤ ψα,β(x, z) + ψα,β(z, y), ∀(x, y, z) ∈ E3.

Now we show that E, generated by the family {ψλ,µ : (λ, µ) ∈ D} and which
we denote by E′, is sequentially complete. Let (xn) be a cauchy sequence of
E′. Then (xn) (resp. v(xn)) is a cauchy sequence in (E, θ1) (resp. in (F, θ2)),
which implies that there exists (x, y) ∈ E × F such that lim

n→∞

xn = x ∈ E and

lim
n→∞

v(xn) = y. As the function v has a closed graph, we have v(x) = y. So,

(xn) converges in E′ to x. Therefore E′ is sequentially complete.

Next, it is clear that

max{k1(λ1), k1(λ2), k1(λ3), k2(µ1), k2(µ2), k2(µ3)}

= max{max{k1(λ1), k1(λ2), k1(λ3)},max{k2(µ1), k2(µ2), k2(µ3)}}

= max{max{k1(λ1), k2(µ1)},max{k1(λ2), k2(µ2)},max{k1(λ3), k2(µ3)}}.

On the other hand, we have

max{ψλ1,µ1
(Sx, Tx), ψλ2,µ2

(Sx, TSx), ψλ3,µ3
(Tx, STx)}

≤ max{k(λ1, µ1), k(λ2, µ2), k(λ3, µ3)}[f(Sx) − f(Tx)]

where f : E −→ R
+ and k : D1 ×D2 −→]0,+∞[ are defined by

f(x) = φ(x) + ψ(v(x)), ∀x ∈ E

and

k(λ, µ) = max{k1(λ), k2(µ)}, ∀λ, µ) ∈ D1 ×D2.

It is clear that the function k is nonincreasing. In view of the Theorem 2.1, the
conclusion follows immediately. �X

When λ1 = λ2 = λ3 = λ, µ1 = µ2 = µ3 = µ and S = IdE (resp. T = IdE) ,
we get the following results.

Corollary 3.1. Let (E, θ1) (resp. (F, θ2)) be a sequentially complete F -type
topological space generated by the family {dλ, λ ∈ D1}(resp. {dµ, µ ∈ D2}).
Let v : E −→ F be a function. Let k1 : D1 −→ R

+ and k2 : D2 −→ R
+ be two
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nonincreasing functions. Let φ : E −→ R
+ and ψ : F −→ R

+ be two arbitrary
functions. Let T be a selfmapping of E such that:

(1) dλ(x, Tx) + dµ(v(x), v(Tx))

≤ k1(λ))[φ(x) − φ(Tx)] + k2(µ)[ψ(v(x)) − ψ(v(Tx))],

∀x ∈ E, ∀(λ, µ) ∈ D1 ×D2;

(2) T and v have sequentially closed graphs.

Then T has a fixed point.

Corollary 3.2. Let (E, θ1) (resp. (F, θ2)) be a sequentially complete F -type
topological space generated by the family {dλ, λ ∈ D1}(resp. {dµ, µ ∈ D2}).
Let v : E −→ F be a function. Let k1 : D1 −→ R

+ and k2 : D2 −→ R
+ be two

nonincreasing functions. Let φ : E −→ R
+ and ψ : F −→ R

+ be two arbitrary
functions. Let S be a surjective selfmapping of E such that:

(1) dλ(x, Sx) + dµ(v(x), v(Sx)) ≤

k1(λ))[φ(Sx) − φ(x)] + k2(µ)[ψ(v(Sx)) − ψ(v(x))],

∀x ∈ E, ∀(λ, µ) ∈ D1 ×D2;

(2) S and v have a sequentially closed graphs.

Then S has a fixed point.
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