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Wavelet transforms and
singularities of L-functions in Rn
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Abstract. For a function f in L2(R), a wavelet transform with respect to an
admissible function is defined such that its singularities are precisely the points
where f fails to be smooth.
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Introduction

In this paper a group structure on {(a, b) : a ∈ R+, b ∈ Rn} is used to define
a wavelet transform of a function f ∈ L2(Rn) with respect to an admissible
function h ∈ C∞0 (Rn). For (a, b) in the group and letting (U(a, b)h)(x) =

1
an/2 h(x−b

a ), a representation U of the group acting on the Hilbert space L2(Rn)
is defined.

By means of this representation, I. Daubechies [4] established the following
resolution of the identity: for f, h in L2(Rn), where h is radially symmetric
(i.e., h(x) = η(|x|), so that h(x) depends only on |x|), we have

f =
1

Ch

∫

R+

∫

Rn

〈
f, U(a, b)h

〉
U(a, b)h

1
an+1

db da, (1)

where 〈 , 〉 is the inner product in L2(Rn) and Ch =
∫
R+ |η̂(k)|2 1

kdk < ∞, η̂
being the Fourier transform of η.

With the help of this resolution of the identity, and for (a, b) in the group, a
wavelet transform (Lhf)(a, b) of a function f in L2(Rn) is defined with respect
to an admissible function h in L2(Rn) satisfying

∫
R+ |η̂(k)|2 1

kdk < ∞, such that
the singularities of (Lhf)(a, b) are precisely the singularities of f .
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Notations and definitions. With G we denote the set {(a, b) : a ∈ R+,
b ∈ Rn}. In G we define (a1, b1) · (a2, b2) = (a1a2, a1b2 + b1). With this
operation G becomes a group in which (1, 0) is the identity and (a, b)−1 =
(a−1,−a−1b). Moreover, G turns out to be a locally compact topological group
with d(a, b) = 1

an+1 da db and d1(a, b) = 1
ada db as the left and right Haar

measures, respectively.

Definition 1. For h in L2(Rn) and b in Rn, the traslation operator Tb is
(Tbh)(x) = h(x− b), where x ∈ Rn.

Definition 2. For h in L2(Rn) and a in R+, the dilation operator Ja is
(Jah)(x) = 1

an/2 h(x
a ), where x ∈ Rn.

Definition 3. For h in L2(Rn) and c in Rn, the rotation operator Ec is
(Ech)(x) = e2πix·ch(x), where x ∈ Rn.

Definition 4. For (a, b) in G, define U(a, b) = JaTb. This family of operators
is a representation of G acting on the Hilbert space L2(Rn) by

(U(a, b)h)(x) = (JaTbh)(x) =
1

a
n
2

h
(x− b

a

)
. (2)

Definition 5. A function h in L2(Rn) is said to be admissible if
∫

G

∣∣〈h,U(a, b)h〉∣∣2d(a, b) < ∞. (3)

Lemma 1. A radially symmetric function h in L2(Rn) is admissible if and
only if

Ch ≡
∫

R+
|η̂(k)|2 1

k
dk < ∞, (4)

where ĥ(y) = η̂(|y|).
See the Appendix for the proof.

Definition 6. For a function f in L2(Rn) and (a, b) in G, the wavelet transform
of f with respect to the admissible function h in L2(Rn) is defined as

(Lhf)(a, b) =
〈
f, U(a, b)h

〉
. (5)

We now state and prove the main result of this paper.

Theorem. Suppose that h in C∞0 (Rn) is radially symetric, non-identically
vanishing and such that

∫
Rn h(x) dx = 0. For f in L2(Rn) and (a, b) in G,

let Lα(a, b) = a−1a−
n
2 Dα

b (Lhf)(a, b). Then, for each multi-index α, Lα is
continuous at any point (a1, b1) in G. Furthermore, f is C∞ in a neighborhood
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of x = b0 if and only if for each multi-index α, lim(a,b)→(0,b1) Lα(a, b) exists for
each b1 in a neighborhood of b0.

Proof. First we show that Lα is continuous at (a1, b1) for a1 > 0. Note that

(Lhf)(a, b) =
∫

Rn

1
an2

f(x)h
(

x− b

a

)
dx = (f ∗ (Jah)∼)(b)

where ψ∼(x) = ψ(−x) and ∗ means convolution. Now, since f ∈ L2(Rn) and
h ∈ C∞0 (Rn), it follows that f ∗ (Jah)∼ ∈ C∞(Rn) and Dα

b (f ∗ (Jah)∼)(b) =

(f ∗Dα
b (Jah)∼)(b). Thus, Lα(a, b) = a−1a−

n
2

(−1)|α|

a|α| (f ∗ (JaDαh)∼)(b) is con-
tinuous at (a1, b1) for a1 > 0.

Next we show that the smoothness of f implies the existence of the limit of
Lα(a, b) as (a, b) → (0, b1). Suppose that f is C∞ in a neighborhood of x = b0

containing the closed ball B∆(b0), where ∆ > 0. Take b, b1 in the open ball
B∆

2
(b0). Note that if L > 0 is such that supp h ⊂ BL(0), then

(Lhf)(a, b) =
∫

BL(0)

a
n
2 f(b + ay)h(y) dy.

Thus, for a such that 0 < a < ∆
2L ,

Dα
b (Lhf)(a, b) =

∫

BL(0)

a
n
2 Dα

b f(b + ay)h(y) dy.

Now, since f is C∞ at the points in the region of integration, it follows from
Taylor’s formula that

Dα
b f(b + ay) = Dαf(b) +

∫ 1

0

∑

|β|=1

1
β!

Dβ+α
b f(b + tay)a|β|yβdt,

for y in BL(0), so that

Lα(a, b) =a−1a−
n
2 Dα

b (Lhf)(a, b)

=a−1

∫

BL(0)

Dαf(b)h(y)dy

+
∫

BL(0)

∫ 1

0

∑

|β|=1

Dβ+α
b f(b + tay)yβh(y)dtdy.

Then, since
∫

BL(0)
h(y)dy = 0 and Dβ+αf is continuous near b1, it follows that

lim
(a,b)→(0,b1)

Lα(a, b) =
∫

BL(0)


 ∑

|β|=1

Dβ+α
b f(b1)


 yβh(y)dy

=


 ∑

|β|=1

Dβ+α
b f(b1)




∫

BL(0)

h(y)yβdy.

(6)
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Therefore, lim(a,b)→(0,b1) Lα(a, b) exists for each b1 in B∆
2
(b0).

Now we show that the existence of the limit implies the smootness of f .
Suppose that Lα(b1) := lim(a,b)→(0,b1) Lα(a, b) exists for each b1 in an open
neighborhood containing the closed ball BR(b0), where R > 0.

For fixed x in the open ball BR(b0), let

Iα(a, x, y) =
{

h(−y)Lα(a, x + ay) if a > 0
h(−y)Lα(x) if a = 0,

(7)

where supp h ⊂ BL(0), L > 0. Note that for such x, Iα is well-defined for all a
and y. Furthermore, for fixed y and a 6= 0, Iα(a, x, y) is infinitely differentiable
in the variable x, and we have the following three claims.

Claim 1. Iα is continuous at (a1, x1, y1) for all a1 in R+, x1 in BR(b0) and y1

in Rn.

In fact, if a1 6= 0, Iα(a, x, y) is continuous at (a1, x1, y1). Thus, we only need
to consider the limit as (a, x, y) → (0, x1, y1). But

lim
(a,x,y)→(0,x1,y1)

Iα(a, x, y) = lim
(a,b)→(0,x1)

h(−y)Lα(a, b)

=h(−y)Lα(0, x1) = Iα(0, x1, y1).

Then, Iα is continuous at all (a1, x1, y1) in R+ × BR(b0) × Rn. This proves
Claim 1.

Claim 2. Iα is in L1(R+ × Rn) for fixed x in BR(b0).

In fact, for a 6= 0,

Iα(a, x, y) = h(−y)a−1a−
n
2 Dα

x (Lhf)(a, x + ay).

Then

|Iα(a, x, y)| = |h(−y)| a− 2+n
2

∣∣∣∣
(−1)|α|

a|α|
〈f, Tx+ayDαJah〉

∣∣∣∣
≤ |h(−y)|a− 2+n

2 a−|α|‖f‖2‖Dαh‖2.

Now let

Gα(a, y) =
{ |Iα(a, x, y)| if 0 < a ≤ 1

|h(−y)| a− 2+n
2 −|α| ‖f‖2 ‖Dαh‖2 if a > 1.

(8)
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Then |Iα(a, x, y)| ≤ Gα(a, y) for all (a, y) in R+ ×Rn, and we can see that Gα

is in L1(R+ × Rn) as follows:
∫

R+

∫

Rn

|Gα(a, y)|dyda

=
∫ 1

0

∫

BL(0)

|Iα(a, x, y)|dyda

+
∫ ∞

1

∫

BL(0)

|h(−y)| a− 2+n
2 −|α| ‖f‖2 ‖Dαh‖2dyda

=
∫ 1

0

∫

BL(0)

|Iα(a, x, y)|dyda

+ ‖f‖2 ‖Dαh‖2
(∫

BL(0)

|h(−y)|dy

)(∫ ∞

1

a−
2+n

2 −|α|da

)
.

Since Iα(·, x, ·) is continuous on [0, 1] × BL(0) and
∫∞
1

a−
2+n

2 −|α|da < ∞, it
follows that Gα ∈ L1(R+×Rn). Hence, Iα(·, x, ·) ∈ L1(R+×Rn). This proves
Claim 2.

Claim 3. For x in the open ball BR(b0), let w(x) =
∫
R+

∫
Rn I0(a, x, y) dyda

and Iα(x) =
∫
R+

∫
Rn Iα(a, x, y) dyda. Then Dαw(x) = Iα(x) for any multi-

index α.

In fact, let x be in the open ball BR(b0). By Claim 1, Iα is continuous on
R+ × BR(b0) × Rn, and by Claim 2, |Iα(a, x, y)| ≤ S a−

2+n
2 −|α| ‖f‖2 ‖Dαh‖2,

for a 6= 0, where S = Sup{|h(−y)| : y ∈ BL(0)}. Thus,

Sup{|Iα(a, x, y)| : a ∈ R+, x ∈ BR(b0), y ∈ BL(0)}
exists.

Note that, by Claim 2, for x in BR(b0), Iα(a, x, y) is integrable and DxIα

(a, x, y) exists and is uniformly bounded for (a, y) in R+×Rn. It follows that for
each x in BR(b0), DxIα(a, x, y) is integrable and Dx

∫
R+

∫
Rn Iα(a, x, y)dyda =∫

R+

∫
Rn DxIα(a, x, y)dyda. Thus, Dαw(x) = Iα(x) for any multi-index α. This

proves Claim 3.
Now, for l > 0 and any x, define

Ul(x) =
∫ l

1
l

∫

Rn

h(−y)a−1a−
n
2 (Lhf)(a, x + ay) dyda. (9)

Then, by Claim 3, for every x in BR(b0), liml→∞ Ul(x) = w(x). That is,
Ul → w pointwise on BR(b0) as l →∞. On the other hand, by (1), Ul → Chf
weakly in L2(R+ × Rn) as l → ∞. Then f = C−1

h w almost everywhere on
BR(b0), and because of Claim 3, f is C∞ on BR(b0). This completes the proof
of our main theorem. ¤X
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Appendix

Proof of Lemma 1. Suppose that h in L2(Rn) is admissible. Then
∫

G

|〈h,U(a, b)h〉|2d(a, b) < ∞,

and we have
∫

G

∣∣〈h,U(a, b)h〉∣∣2d(a, b)

=
∫

Rn

∫

R+

∣∣〈ĥ, ĴaTbh
〉∣∣2 1

an+1
da db =

∫

Rn

∫

R+

∣∣∣〈ĥ, E−bJ 1
a
ĥ〉

∣∣∣
2 1

an+1
da db

=
∫

Rn

∫

R+

∣∣∣∣
∫

Rn

ĥ(ξ)E−bJ 1
a
ĥ(ξ) dξ

∣∣∣∣
2 1

an+1
da db

=
∫

Rn

∫

R+

∣∣∣∣
∫

Rn

ĥ(ξ)e−2πib·ξJ 1
a
ĥ(ξ) dξ

∣∣∣∣
2 1

an+1
da db

=
∫

Rn

∫

R+

∣∣∣∣
∫

Rn

e−2πib·ξĥ(ξ)J 1
a
ĥ(ξ) dξ

∣∣∣∣
2

1
an+1

da db

=
∫

Rn

∫

R+

∣∣∣∣
∫

Rn

e−2πib·ξ
(
ĥJ 1

a
ĥ
)

(ξ) dξ

∣∣∣∣
2 1

an+1
da db

=
∫

Rn

∫

R+

∣∣∣∣
̂(
ĥJ 1

a
ĥ
)
(b)

∣∣∣∣
2 1

an+1
da db =

∫

R+

(∫

Rn

∣∣∣∣
̂

(ĥJ 1
a
ĥ)(b)

∣∣∣∣
2

db

)
1

an+1
da

=
∫

R+

(∫

Rn

∣∣∣(ĥJ 1
a
ĥ)(y)

∣∣∣
2

dy

)
1

an+1
da

=
∫

R+

(∫

Rn

∣∣∣ĥ(y)
∣∣∣
2 ∣∣J 1

a
ĥ(y)

∣∣2dy

)
1

an+1
da

=
∫

R+

(∫

Rn

∣∣ĥ(y)
∣∣2 ∣∣an

2 ĥ(ay)
∣∣2dy

)
1

an+1
da

=
∫

R+

(∫

Rn

∣∣ĥ(y)
∣∣2 ∣∣ĥ(ay)

∣∣2dy

)
1
a
da =

∫

Rn

∣∣ĥ(y)
∣∣2

(∫

R+

∣∣ĥ(ay)
∣∣2 1

a
da

)
dy

Since h is radiallly symmetric, so is ĥ. Then
∫

G

|〈h, U(a, b)h〉|2d(a, b) =
∫

Rn

|ĥ(y)|2
(∫

R+
|η̂(a|y|)|2 1

a
da

)
dy

=
∫

Rn

|ĥ(y)|2
(∫

R+
|η̂(k)|2 1

k
dk

)
dy

=
(∫

Rn

|ĥ(y)|2dy

)
Ch,
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where Ch =
∫
R+ |η̂(k)|2 1

kdk < ∞.

By working backwards, it is proved that if Ch =
∫
R+ |η̂(k)|2 1

kdk < ∞ then
h is admissible. This completes the proof of Lemma 1. ¤X
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