Wavelet transforms and singularities of L_2 -functions in \mathbb{R}^n

Jaime Navarro

Universidad Autónoma Metropolitana, México D. F.

ABSTRACT. For a function f in $L^2(\mathbb{R})$, a wavelet transform with respect to an admissible function is defined such that its singularities are precisely the points where f fails to be smooth.

Key words and phrases. Admissible functions, wavelet transform.

1991 Mathematics Subject Classification. 42A38, 44A05.

Introduction

In this paper a group structure on $\{(a,b): a \in \mathbb{R}^+, b \in \mathbb{R}^n\}$ is used to define a wavelet transform of a function $f \in L^2(\mathbb{R}^n)$ with respect to an admissible function $h \in C_0^\infty(\mathbb{R}^n)$. For (a,b) in the group and letting $(U(a,b)h)(x) = \frac{1}{a^{n/2}}h(\frac{x-b}{a})$, a representation U of the group acting on the Hilbert space $L^2(\mathbb{R}^n)$ is defined.

By means of this representation, I. Daubechies [4] established the following resolution of the identity: for f, h in $L^2(\mathbb{R}^n)$, where h is radially symmetric (i.e., $h(x) = \eta(|x|)$, so that h(x) depends only on |x|), we have

$$f = \frac{1}{C_h} \int_{\mathbb{R}^+} \int_{\mathbb{R}^n} \left\langle f, U(a, b) h \right\rangle U(a, b) h \frac{1}{a^{n+1}} db da, \tag{1}$$

where $\langle \ , \ \rangle$ is the inner product in $L^2(\mathbb{R}^n)$ and $C_h = \int_{\mathbb{R}^+} |\hat{\eta}(k)|^2 \frac{1}{k} dk < \infty$, $\hat{\eta}$ being the Fourier transform of η .

With the help of this resolution of the identity, and for (a, b) in the group, a wavelet transform $(L_h f)(a, b)$ of a function f in $L^2(\mathbb{R}^n)$ is defined with respect to an *admissible* function h in $L^2(\mathbb{R}^n)$ satisfying $\int_{\mathbb{R}^+} |\hat{\eta}(k)|^2 \frac{1}{k} dk < \infty$, such that the singularities of $(L_h f)(a, b)$ are precisely the singularities of f.

Notations and definitions. With G we denote the set $\{(a,b): a \in \mathbb{R}^+, b \in \mathbb{R}^n\}$. In G we define $(a_1,b_1)\cdot (a_2,b_2)=(a_1a_2,a_1b_2+b_1)$. With this operation G becomes a group in which (1,0) is the identity and $(a,b)^{-1}=(a^{-1},-a^{-1}b)$. Moreover, G turns out to be a locally compact topological group with $d(a,b)=\frac{1}{a^{n+1}}da\,db$ and $d_1(a,b)=\frac{1}{a}da\,db$ as the left and right Haar measures, respectively.

Definition 1. For h in $L^2(\mathbb{R}^n)$ and b in \mathbb{R}^n , the traslation operator T_b is $(T_bh)(x) = h(x-b)$, where $x \in \mathbb{R}^n$.

Definition 2. For h in $L^2(\mathbb{R}^n)$ and a in \mathbb{R}^+ , the dilation operator J_a is $(J_a h)(x) = \frac{1}{a^{n/2}} h(\frac{x}{a})$, where $x \in \mathbb{R}^n$.

Definition 3. For h in $L^2(\mathbb{R}^n)$ and c in \mathbb{R}^n , the rotation operator E_c is $(E_c h)(x) = e^{2\pi i x \cdot c} h(x)$, where $x \in \mathbb{R}^n$.

Definition 4. For (a, b) in G, define $U(a, b) = J_a T_b$. This family of operators is a representation of G acting on the Hilbert space $L^2(\mathbb{R}^n)$ by

$$(U(a,b)h)(x) = (J_a T_b h)(x) = \frac{1}{a^{\frac{n}{2}}} h\left(\frac{x-b}{a}\right).$$
 (2)

Definition 5. A function h in $L^2(\mathbb{R}^n)$ is said to be admissible if

$$\int_{G} \left| \langle h, U(a,b)h \rangle \right|^{2} d(a,b) < \infty. \tag{3}$$

Lemma 1. A radially symmetric function h in $L^2(\mathbb{R}^n)$ is admissible if and only if

$$C_h \equiv \int_{\mathbb{R}^+} |\hat{\eta}(k)|^2 \frac{1}{k} dk < \infty, \tag{4}$$

where $\hat{h}(y) = \hat{\eta}(|y|)$.

See the Appendix for the proof.

Definition 6. For a function f in $L^2(\mathbb{R}^n)$ and (a,b) in G, the wavelet transform of f with respect to the admissible function h in $L^2(\mathbb{R}^n)$ is defined as

$$(L_h f)(a,b) = \langle f, U(a,b)h \rangle. \tag{5}$$

We now state and prove the main result of this paper.

Theorem. Suppose that h in $C_0^{\infty}(\mathbb{R}^n)$ is radially symetric, non-identically vanishing and such that $\int_{\mathbb{R}^n} h(x) dx = 0$. For f in $L^2(\mathbb{R}^n)$ and (a,b) in G, let $\mathcal{L}_{\alpha}(a,b) = a^{-1}a^{-\frac{n}{2}}D_b^{\alpha}(L_h f)(a,b)$. Then, for each multi-index α , \mathcal{L}_{α} is continuous at any point (a_1,b_1) in G. Furthermore, f is C^{∞} in a neighborhood

of $x = b_0$ if and only if for each multi-index α , $\lim_{(a,b)\to(0,b_1)} \mathcal{L}_{\alpha}(a,b)$ exists for each b_1 in a neighborhood of b_0 .

Proof. First we show that \mathcal{L}_{α} is continuous at (a_1, b_1) for $a_1 > 0$. Note that

$$(L_h f)(a,b) = \int_{\mathbb{R}^n} \frac{1}{a^{n2}} f(x) \overline{h\left(\frac{x-b}{a}\right)} dx = (f * (J_a \overline{h})^{\sim})(b)$$

where $\psi^{\sim}(x) = \psi(-x)$ and * means convolution. Now, since $f \in L^{2}(\mathbb{R}^{n})$ and $h \in C_{0}^{\infty}(\mathbb{R}^{n})$, it follows that $f * (J_{a}\overline{h})^{\sim} \in C^{\infty}(\mathbb{R}^{n})$ and $D_{b}^{\alpha}(f * (J_{a}\overline{h})^{\sim})(b) = (f * D_{b}^{\alpha}(J_{a}\overline{h})^{\sim})(b)$. Thus, $\mathcal{L}_{\alpha}(a,b) = a^{-1}a^{-\frac{n}{2}}\frac{(-1)^{|\alpha|}}{a^{|\alpha|}}(f * (J_{a}\overline{D^{\alpha}h})^{\sim})(b)$ is continuous at (a_{1},b_{1}) for $a_{1}>0$.

Next we show that the smoothness of f implies the existence of the limit of $\mathcal{L}_{\alpha}(a,b)$ as $(a,b) \to (0,b_1)$. Suppose that f is C^{∞} in a neighborhood of $x=b_0$ containing the closed ball $\overline{B_{\Delta}(b_0)}$, where $\Delta>0$. Take b, b_1 in the open ball $B_{\frac{\Delta}{2}}(b_0)$. Note that if L>0 is such that $\sup h \subset B_L(0)$, then

$$(L_h f)(a,b) = \int_{B_L(0)} a^{\frac{n}{2}} f(b+ay) \overline{h(y)} \, dy.$$

Thus, for a such that $0 < a < \frac{\Delta}{2L}$,

$$D_b^{\alpha}(L_h f)(a,b) = \int_{B_L(0)} a^{\frac{n}{2}} D_b^{\alpha} f(b+ay) \overline{h(y)} \, dy.$$

Now, since f is C^{∞} at the points in the region of integration, it follows from Taylor's formula that

$$D_b^{\alpha} f(b+ay) = D^{\alpha} f(b) + \int_0^1 \sum_{|\beta|=1} \frac{1}{\beta!} D_b^{\beta+\alpha} f(b+tay) a^{|\beta|} y^{\beta} dt,$$

for y in $B_L(0)$, so that

$$\mathcal{L}_{\alpha}(a,b) = a^{-1}a^{-\frac{n}{2}}D_{b}^{\alpha}(L_{h}f)(a,b)$$

$$= a^{-1}\int_{B_{L}(0)}D^{\alpha}f(b)\overline{h(y)}dy$$

$$+\int_{B_{L}(0)}\int_{0}^{1}\sum_{|\beta|=1}D_{b}^{\beta+\alpha}f(b+tay)y^{\beta}\overline{h(y)}dtdy.$$

Then, since $\int_{B_L(0)} h(y)dy = 0$ and $D^{\beta+\alpha}f$ is continuous near b_1 , it follows that

$$\lim_{(a,b)\to(0,b_1)} \mathcal{L}_{\alpha}(a,b) = \int_{B_L(0)} \left(\sum_{|\beta|=1} D_b^{\beta+\alpha} f(b_1) \right) y^{\beta} \overline{h(y)} dy$$

$$= \left(\sum_{|\beta|=1} D_b^{\beta+\alpha} f(b_1) \right) \int_{B_L(0)} \overline{h(y)} y^{\beta} dy.$$
(6)

Therefore, $\lim_{(a,b)\to(0,b_1)} \mathcal{L}_{\alpha}(a,b)$ exists for each b_1 in $B_{\frac{\Delta}{\alpha}}(b_0)$.

Now we show that the existence of the limit implies the smootness of f. Suppose that $L_{\alpha}(b_1) := \lim_{(a,b)\to(0,b_1)} \mathcal{L}_{\alpha}(a,b)$ exists for each b_1 in an open neighborhood containing the closed ball $\overline{B_R(b_0)}$, where R > 0.

For fixed x in the open ball $B_R(b_0)$, let

$$\mathcal{I}_{\alpha}(a, x, y) = \begin{cases} h(-y)\mathcal{L}_{\alpha}(a, x + ay) & \text{if } a > 0\\ h(-y)\mathcal{L}_{\alpha}(x) & \text{if } a = 0, \end{cases}$$
(7)

where $\operatorname{supp} h \subset B_L(0)$, L > 0. Note that for such x, \mathcal{I}_{α} is well-defined for all a and y. Furthermore, for fixed y and $a \neq 0$, $\mathcal{I}_{\alpha}(a, x, y)$ is infinitely differentiable in the variable x, and we have the following three claims.

Claim 1. \mathcal{I}_{α} is continuous at (a_1, x_1, y_1) for all a_1 in \mathbb{R}^+ , x_1 in $\overline{B_R(b_0)}$ and y_1 in \mathbb{R}^n .

In fact, if $a_1 \neq 0$, $\mathcal{I}_{\alpha}(a, x, y)$ is continuous at (a_1, x_1, y_1) . Thus, we only need to consider the limit as $(a, x, y) \rightarrow (0, x_1, y_1)$. But

$$\lim_{(a,x,y)\to(0,x_1,y_1)} \mathcal{I}_{\alpha}(a,x,y) = \lim_{(a,b)\to(0,x_1)} h(-y)\mathcal{L}_{\alpha}(a,b)$$
$$= h(-y)\mathcal{L}_{\alpha}(0,x_1) = \mathcal{I}_{\alpha}(0,x_1,y_1).$$

Then, \mathcal{I}_{α} is continuous at all (a_1, x_1, y_1) in $\mathbb{R}^+ \times \overline{B_R(b_0)} \times \mathbb{R}^n$. This proves Claim 1.

Claim 2. \mathcal{I}_{α} is in $L^1(\mathbb{R}^+ \times \mathbb{R}^n)$ for fixed x in $B_R(b_0)$.

In fact, for $a \neq 0$,

$$\mathcal{I}_{\alpha}(a, x, y) = h(-y)a^{-1}a^{-\frac{n}{2}}D_{x}^{\alpha}(L_{h}f)(a, x + ay).$$

Then

$$|\mathcal{I}_{\alpha}(a, x, y)| = |h(-y)| a^{-\frac{2+n}{2}} \left| \frac{(-1)^{|\alpha|}}{a^{|\alpha|}} \langle f, T_{x+ay} D^{\alpha} J_a h \rangle \right|$$

$$\leq |h(-y)| a^{-\frac{2+n}{2}} a^{-|\alpha|} ||f||_2 ||D^{\alpha} h||_2.$$

Now let

$$G_{\alpha}(a,y) = \begin{cases} |\mathcal{I}_{\alpha}(a,x,y)| & \text{if } 0 < a \le 1\\ |h(-y)| \, a^{-\frac{2+n}{2} - |\alpha|} \, ||f||_2 \, ||D^{\alpha}h||_2 & \text{if } a > 1. \end{cases}$$
(8)

Then $|\mathcal{I}_{\alpha}(a,x,y)| \leq G_{\alpha}(a,y)$ for all (a,y) in $\mathbb{R}^+ \times \mathbb{R}^n$, and we can see that G_{α} is in $L^1(\mathbb{R}^+ \times \mathbb{R}^n)$ as follows:

$$\begin{split} \int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{n}} &|G_{\alpha}(a,y)| dy da \\ &= \int_{0}^{1} \int_{B_{L}(0)} |\mathcal{I}_{\alpha}(a,x,y)| dy da \\ &+ \int_{1}^{\infty} \int_{B_{L}(0)} |h(-y)| \, a^{-\frac{2+n}{2} - |\alpha|} \, \|f\|_{2} \, \|D^{\alpha}h\|_{2} dy da \\ &= \int_{0}^{1} \int_{B_{L}(0)} |\mathcal{I}_{\alpha}(a,x,y)| dy da \\ &+ \|f\|_{2} \, \|D^{\alpha}h\|_{2} \left(\int_{B_{L}(0)} |h(-y)| dy \right) \left(\int_{1}^{\infty} a^{-\frac{2+n}{2} - |\alpha|} da \right). \end{split}$$

Since $\mathcal{I}_{\alpha}(\cdot, x, \cdot)$ is continuous on $[0, 1] \times \overline{B_L(0)}$ and $\int_1^{\infty} a^{-\frac{2+n}{2} - |\alpha|} da < \infty$, it follows that $G_{\alpha} \in L^1(\mathbb{R}^+ \times \mathbb{R}^n)$. Hence, $\mathcal{I}_{\alpha}(\cdot, x, \cdot) \in L^1(\mathbb{R}^+ \times \mathbb{R}^n)$. This proves Claim 2.

Claim 3. For x in the open ball $B_R(b_0)$, let $w(x) = \int_{\mathbb{R}^+} \int_{\mathbb{R}^n} \mathcal{I}_0(a, x, y) \, dy da$ and $I_{\alpha}(x) = \int_{\mathbb{R}^+} \int_{\mathbb{R}^n} \mathcal{I}_{\alpha}(a, x, y) \, dy da$. Then $D^{\alpha}w(x) = I_{\alpha}(x)$ for any multi-index α .

In fact, let x be in the open ball $B_R(b_0)$. By Claim 1, \mathcal{I}_{α} is continuous on $\mathbb{R}^+ \times \overline{B_R(b_0)} \times \mathbb{R}^n$, and by Claim 2, $|\mathcal{I}_{\alpha}(a,x,y)| \leq S a^{-\frac{2+n}{2}-|\alpha|} ||f||_2 ||D^{\alpha}h||_2$, for $a \neq 0$, where $S = \sup\{|h(-y)| : y \in B_L(0)\}$. Thus,

$$\sup\{|\mathcal{I}_{\alpha}(a, x, y)| : a \in \mathbb{R}^+, \ x \in B_R(b_0), \ y \in B_L(0)\}$$

exists.

Note that, by Claim 2, for x in $B_R(b_0)$, $\mathcal{I}_{\alpha}(a,x,y)$ is integrable and $D_x\mathcal{I}_{\alpha}(a,x,y)$ exists and is uniformly bounded for (a,y) in $\mathbb{R}^+ \times \mathbb{R}^n$. It follows that for each x in $B_R(b_0)$, $D_x\mathcal{I}_{\alpha}(a,x,y)$ is integrable and $D_x\int_{\mathbb{R}^+}\int_{\mathbb{R}^n}\mathcal{I}_{\alpha}(a,x,y)dyda = \int_{\mathbb{R}^+}\int_{\mathbb{R}^n}D_x\mathcal{I}_{\alpha}(a,x,y)dyda$. Thus, $D^{\alpha}w(x) = I_{\alpha}(x)$ for any multi-index α . This proves Claim 3.

Now, for l > 0 and any x, define

$$U_l(x) = \int_{\frac{1}{l}}^{l} \int_{\mathbb{R}^n} h(-y)a^{-1}a^{-\frac{n}{2}}(L_h f)(a, x + ay) \, dy da. \tag{9}$$

Then, by Claim 3, for every x in $B_R(b_0)$, $\lim_{l\to\infty}U_l(x)=w(x)$. That is, $U_l\to w$ pointwise on $B_R(b_0)$ as $l\to\infty$. On the other hand, by (1), $U_l\to C_hf$ weakly in $L^2(\mathbb{R}^+\times\mathbb{R}^n)$ as $l\to\infty$. Then $f=C_h^{-1}w$ almost everywhere on $B_R(b_0)$, and because of Claim 3, f is C^∞ on $B_R(b_0)$. This completes the proof of our main theorem. \square

Appendix

Proof of Lemma 1. Suppose that h in $L^2(\mathbb{R}^n)$ is admissible. Then

$$\int_{G} |\langle h, U(a,b)h \rangle|^{2} d(a,b) < \infty,$$

and we have

$$\begin{split} &\int_{G} \left| \langle h, U(a,b)h \rangle \right|^{2} d(a,b) \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \langle \hat{h}, \widehat{J_{a}T_{b}h} \rangle \right|^{2} \frac{1}{a^{n+1}} da \, db = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \langle \hat{h}, E_{-b}J_{\frac{1}{a}}\hat{h} \rangle \right|^{2} \frac{1}{a^{n+1}} da \, db \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \int_{\mathbb{R}^{n}} \hat{h}(\xi) \overline{E_{-b}J_{\frac{1}{a}}\hat{h}(\xi)} \, d\xi \right|^{2} \frac{1}{a^{n+1}} da \, db \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \int_{\mathbb{R}^{n}} \hat{h}(\xi) \overline{e^{-2\pi i b \cdot \xi}} \overline{J_{\frac{1}{a}}\hat{h}(\xi)} \, d\xi \right|^{2} \frac{1}{a^{n+1}} da \, db \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \int_{\mathbb{R}^{n}} e^{-2\pi i b \cdot \xi} \left(\overline{\hat{h}}J_{\frac{1}{a}}\hat{h} \right) (\xi) \, d\xi \right|^{2} \frac{1}{a^{n+1}} da \, db \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \left(\overline{\hat{h}}J_{\frac{1}{a}}\hat{h} \right) (b) \right|^{2} \frac{1}{a^{n+1}} da \, db \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{+}} \left| \left(\overline{\hat{h}}J_{\frac{1}{a}}\hat{h} \right) (b) \right|^{2} \frac{1}{a^{n+1}} da \, db = \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \overline{\hat{h}}J_{\frac{1}{a}}\hat{h} \right) (b) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| J_{\frac{1}{a}}\hat{h}(y) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| a^{\frac{n}{2}}\hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(ay) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(y) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(y) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \left| \hat{h}(y) \right|^{2} \left| \hat{h}(y) \right|^{2} dy \right) \frac{1}{a^{n+1}} da \\ &= \int_{\mathbb{R}^{$$

Since h is radially symmetric, so is \hat{h} . Then

$$\begin{split} \int_{G} |\langle h, U(a,b)h \rangle|^{2} d(a,b) &= \int_{\mathbb{R}^{n}} |\hat{h}(y)|^{2} \left(\int_{\mathbb{R}^{+}} |\hat{\eta}(a|y|)|^{2} \frac{1}{a} da \right) dy \\ &= \int_{\mathbb{R}^{n}} |\hat{h}(y)|^{2} \left(\int_{\mathbb{R}^{+}} |\hat{\eta}(k)|^{2} \frac{1}{k} dk \right) dy \\ &= \left(\int_{\mathbb{R}^{n}} |\hat{h}(y)|^{2} dy \right) C_{h}, \end{split}$$

where
$$C_h = \int_{\mathbb{R}^+} |\hat{\eta}(k)|^2 \frac{1}{k} dk < \infty$$
.

By working backwards, it is proved that if $C_h = \int_{\mathbb{R}^+} |\hat{\eta}(k)|^2 \frac{1}{k} dk < \infty$ then h is admissible. This completes the proof of Lemma 1. \square

References

- A. O. Barut and R. Raczka, Theory of Group Representations and Applications, World Scientific, Singapore, 1986.
- [2] C. K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.
- [3] J. M. Combes, A. Grossmann, and Ph Tchamitchian, Wavelets-Time Frequency Methods and Phase Space, Springer-Verlag, 1989.
- [4] I. Daubechies, Ten Lectures on Wavelets, Siam, Philadelphia, 1992.
- [5] G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, New Jersey, 1976.
- [6] A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, Siam J. Math. Anal. 15 (1984), 723-736.
- [7] A. Grossmann, J. Morlet, and T. Paul, Transforms associated to square integrable group representations, I. General results, J. Math. Phys. 26 (1985), 2473–2479.
- [8] ______, Transforms associated to square integrable group representations, II. Examples, Ann, Inst. H. Poincaré 45 (1986), 293–309.
- [9] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, Siam Review 31 no. 4 (1982), 628–666.

UNIVERSIDAD AUTÓNOMA METROPOLITANA
UNIDAD AZCAPOTZALCO
DIVISIÓN DE CIENCIAS BÁSICAS
APDO. POSTAL 16-306
MÉXICO D.F. 02000
MÉXICO