This is a reprint of the paper The roots of a polynomial depend continuously on its coefficients by Raúl Naulin & Carlos Pabst published in **Rev. Colombiana Mat. 28** (1994), pp. 35–37

THE ROOTS OF A POLYNOMIAL DEPEND CONTINUOUSLY ON ITS COEFFICIENTS

Raúl Naulin* Carlos Pabst[†]

Universidad de Valparaíso, CHILE

ABSTRACT. An elementary proof is given of the continuous dependence of the roots of a polynomial on its coefficients.

Keywords and phrases. Lexicographic order, metric space, normed space, symmetric functions, roots of a polynomial, Fundamental Theorem of Algebra, continuous dependence on coefficients.

1991 Mathematics Subject Classification. Primary 11C99. Secondary 00A99.

Definition 1. We say that the complex number $u = \alpha + i\beta$ is lexicographically less than the complex number $v = \gamma + i\delta$ if $\alpha < \gamma$ or $\delta = \gamma$ and $\beta < \delta$. We denote this by writing $u \prec v$. The notation $u \leq v$ means that $u \prec v$ or u = v.

With C_n we denote the set of n-tuples of complex numbers lexicographically ordered from less to greater. Thus $(x_1, x_2, \ldots, x_n) \in C_n$ iff $x_1 \leq x_2 \leq \ldots \leq x_n$. With $\vec{0}$ we denote the n-tuple $(0, 0, \ldots, 0)$.

On the set \mathcal{C}_n we define the metric

$$d(x,y) = \sqrt{\sum_{j=1}^{n} |x_j - y_j|^2}.$$

^{*} Supported by Proyecto Fondecyt 0028-92, Conicyt, Chile.

[†] Supported by Proyecto DIUV 09/93, Universidad de Valparaíso, Chile.

The pair (\mathcal{C}_n, d) is a complete metric space. In fact, \mathcal{C}_n is a closed subset of the normed complex euclidean space, *i.e.*, of $(\mathbb{C}^n, \|\cdot\|)$, where the norm of $\vec{a} \in \mathbb{C}^n$ is

$$\|\vec{a}\| = \sqrt{\sum_{j=1}^{n} |a_j|^2}.$$

Now let

$$P(z) = z^{n} - a_{1}z^{n-1} + \ldots + (-1)^{n}a_{n}$$

be a polynomial, and consider its coefficients as a vector in \mathbb{C}^n :

$$\vec{a} = (a_1, a_2, \dots, a_n).$$

From the fundamental theorem af algebra [1] we know that p(x) has n roots. We will denote these roots by λ_i , $i = 1, 2, \ldots, n$, and assume that $\lambda_i \leq \lambda_{i+1}$, so that the vector

$$\vec{\lambda} = (\lambda_1, \dots, \lambda_n)$$

is in C_n . From the well known formulae of VIÈTE we have the identities

$$a_1 = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

$$a_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \dots + \lambda_{n-1} \lambda_n$$

$$a_n = \lambda_1 \lambda_2 \dots \lambda_n,$$

by means of which we can define in an obvious manner a continuous map

$$\mathcal{T}: \mathcal{C}_n \to \mathbb{C}^n; \ \vec{\lambda} \mapsto \mathcal{T}(\vec{\lambda}) = \vec{a}$$

From the fundamental theorem of algebra this function is one to one and onto, *i.e.*, \mathcal{T} establishes a biyective correspondence between \mathcal{C}_n and \mathbb{C}^n .

Let S denote the inverse mapping of T:

$$\mathcal{S} := \mathcal{T}^{-1} : \mathbb{C}^n \to \mathcal{C}_n$$

Lemma 1.

$$d(\mathcal{S}(\vec{a}), \vec{0}) \le 2n \max\{1, ||\vec{a}||\}$$

Proof: Let $S(\vec{a}) = (\lambda_1, \ldots, \lambda_n)$. Then

$$|\lambda_1|^n \le \sum_{j=i}^n |a_j| (1+|\lambda_1|^{n-j}).$$
 (1)

Now, if $|\lambda_i| \leq 1$, then

$$|\lambda_i| \le 2\sqrt{n} \max\{1, \|\vec{a}\|\},\tag{2}$$

and if $|\lambda_i| \geq 1$, then, dividing (1) by $|\lambda_i|^{n-1}$, we obtain

$$|\lambda_{i}| \leq \sum_{j=1}^{n} |a_{j}| (1 + |\lambda_{i}|^{1-j})$$

$$\leq 2 \sum_{j=1}^{n} |a_{j}| \leq 2\sqrt{n} \|\vec{a}\|$$

$$\leq 2\sqrt{n} \max\{1, \|\vec{a}\|\}.$$
(3)

From (2) and (3) the proof follows. \square

Theorem 1. The function $S : \mathbb{C}^n \to \mathcal{C}_n$ is continuous.

Proof: Assume that S is not continuous at a point \vec{a} . Then there exist $\delta > 0$ and a sequence $(\vec{a}_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \vec{a}_n = \vec{a}$ and

$$d(\mathcal{S}(\vec{a}_n), \mathcal{S}(\vec{a})) \ge \delta. \tag{4}$$

Because of Lemma 1, the sequence $(S(\vec{a}_n))_{n=1}^{\infty}$ is bounded, and therefore (passing to a subsequence, if necessary) we can assume that this sequence has a limit:

$$\lim_{n\to\infty} \mathcal{S}(\vec{a}_n) = \vec{\xi}.$$

But from the continuity of \mathcal{T} we have

$$\mathcal{T}(\xi) = \lim_{n \to \infty} \mathcal{T}(\mathcal{S}(\vec{a}_n)) = \lim_{n \to \infty} \vec{a}_n = \vec{a},$$

and therefore $\vec{\xi} = \mathcal{S}(\vec{a})$. Hence, for n sufficiently large

$$d(\mathcal{S}(\vec{a}_n), \mathcal{S}(\vec{a})) < \delta,$$

which contradicts (4). \square

REFERENCES

1. S. Lang, Linear Algebra, Addison-Wesley, Reading, Mass., 1966.

(Recibido en enero de 1994)

Raúl Naulin Instituto de Matemáticas y Física (IMAFI) Universidad de Valparaiso Casilla 1470, Valparaiso, CHILE e-mail: rnaulin@udo.uunet.ve

CARLOS PABST
INSTITUTO DE MATEMÁTICAS Y FÍSICA (IMAFI)
UNIVERSIDAD DE VALPARAISO
CASILLA 1470, VALPARAISO, CHILE