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ABSTRACT. It is well known that Brown’s Representability Theorem has many ap-
plications. The proof of the existence of a universal bundle for a topological group
(see [4]) and the proof that any space can be approximated by CW-complexes (see
[8]) are among those applications. Here we prove the existence of classifying spaces
for branched coverings over CW-complexes using Brown’s Theorem as the main tool.
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1. INTRODUCTION

In 1920 ALEXANDER (see [1]) pointed out the connection between the study of
manifolds and of branched coverings over spheres. Actually, his results imply that
information about the homotopy groups of classifying spaces of branched coverings
translates into information about manifolds. Our principal goal in this paper is to
prove the existence of classifying spaces for k-fold branched coverings over CW-
complexes for which the branch set is a stratified set. To accomplish this purpose,
we will use Brown’s Representability Theorem as the key tool. Unfortunately, our
proof is not constructive. In [3] we give an explicit construction of classifying spaces
for branched coverings over manifolds.

First of all, we recall some basic definitions and notations. Let X and Y be
topological spaces, A C X and I the unit interval [0, 1]. We say that the pair (X, A)
has the homotopy extension property if any continuous map f: A x I — Y admits
a continuous extension F': X x I — Y. Now, let C be the category of topological
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spaces with base point which admit a CW-complex structure, and the morphisms
being the continuous maps preserving base points. A triple (X, X3, X2) will be
called a proper triad of C if X = X; U X3, X1, X9 and X; N X5 are all in C, all have
the same base point, and (X7, X1 N X32) and (X3, X1 N X2) both have the homotopy
extension property. If X and Y belong to C, [X,Y] denotes the set of homotopy
classes of maps of X into Y with respect to homotopies which leave the base point
of X fixed. [e,Y] will denote the functor from C to & (where S is the category
of sets with a distinguished element and maps preserving distinguished elements)
which assigns to each X in C the set [X, Y] with the class of the constant map as
distinguished element, and to each map f : X — X', themap F : [ X' Y] — [X, Y]
defined by F[g] = [g o f], where [g] denotes the homotopy class of g.

Now we state Brown’s Theorem (see [4] and [8]), which guarantees the existence
of classifying spaces for functors that verify some special conditions.

Brown’s Representability Theorem. If H : C — S is a contravariant functor,
and H satisfies the conditions A, B, C, D listed below, there is a space Y in C,
unique up to homotopy type, such that the functors [e,Y]| and H are naturally
equivalent.

A. If f,g: X =Y are homotopic, H(f) = H(g).

B. (1) If p is a point, H(p) contains only one element. (2) Suppose (X, X1, X2)
18 a proper triad , A = X1 N Xy, and j; : A — X; and k; : X; — X are
the inclusion maps, i = 1,2. If uy € H(X1) and uy € H(X2) are such that
H(j1)uy, = H(j2)uz, then there is a v in H(X) such that H(k1)v = uy and
H(ko)v = ug. Furthermore, if A is a point, v is unique.

C. Suppose ST} is a collection of disjoint n-spheres whose wedge product VS7 is
in C. Letig: Sy — VSy be the inclusion map. Then the map [] H (ia) :
H(vS?) — [[ H(ST) is bijective.

D. Suppose X1 C Xo C -+ C X, -+ is a collection of subcompleres of X =
U Xy, in C with respect to some CW-complex structure on X such that X =
X™ (where X™ is the n-skeleton of X ). Let i, : X,, = X be the inclusion
map. Let lim H(X,,) be the inverse limit of H(X,,) with respect to the maps
induced by the inclusions of X,, to X,,. Then the function

is an epimorphism.

Section 2 focuses on the basic notions about k-fold branched coverings over
manifolds. There we identify some contravariant functors from the category of
(pointed) smooth manifolds to the category of sets. In Section 3 we show that the
concepts and properties developed in Section 2 give a natural framework for the
definitions of k-fold branched coverings over simplicial complexes and over CW-
complexes. They also allow us to construct a functor from the category of CW-
complexes to the category of sets. Then, we prove that this functor verifies all
the conditions demanded by Brown’s Representability Theorem. In this way we
show the existence of a classifying space for k-fold branched coverings over CW-
complexes.
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2. BRANCHED COVERINGS OVER MANIFOLDS

In this section we study k-fold branched coverings over manifolds and some of their
properties. The definitions and propositions exposed in this section are essentially
the base for the rest of the paper.

Let N™ be a smooth manifold (the index n means that N has dimension n), and
let [ be a natural number. We say that K C N is a stratified set in N of type l
if there is a sequence @ = K;j11 C K C Kj_1 C K;_ 9 C --- C K3 C K93 = K of
closed sets in N such that (K; — K;41) is a smooth manifold without boundary
of codimension j and K; — K, = Kj for every j, j = 2,---,l. The manifolds
(K;j — Kj41) are called the strata of K.

Given M, N manifolds, K a stratified set in N of type [, and f : M — N a
smooth function, we say that f is transverse to K if f is transverse ([6], p. 28) to
the strata.

If M™, N™ are smooth manifolds and K C N is a stratified set in N of type [,
using induction over the number of strata it is possible to prove that if gg : M — N
is any smooth function, there exists g : M — N, homotopically equivalent to gg,
such that g is transverse to K ([9], p. 12). Consequently, g~ !(K) is a stratified set
in M of type [ ([9], p. 14).

Now, we define a branched covering over a manifold. Let N " N™ be smooth
manifolds, and k,[l be natural numbers, and let f : N — N be a smooth function.
We say that f is a k-fold branched covering of type l over N if f satisfies:

(i) The branch set K is stratified in N of type .
(#4) f is transverse to each stratum of K.

(ii7) The set f~1(K) is also a stratified set of type | whose strata are the sub-
ma,nif()].ds f_l(KJ — KJ+1)3 ] g 2’ “ e ’l-

(iv) flg—(v—K) is a k-fold covering.

() fle—1x)s flg—1(xi_i—K1)s - - flf-1(Ka—K,) are kg-coverings over their re-
spective components, where kg is less than k.

Let fy : ]Tl] — M and fs : ﬁz — M be k-fold branched coverings of type [
over a manifold M. We say that fi and f, are equivalent up to homeomorphism it
there is a homeomorphism A : My — M5 such that fo o h = f;. Now, we say that
f1 and fo are concordant (of type l) if there is a k-fold branched covering of type
I, F:Wrtl — M™ x I (I is the closed interval [0,1]), such that F|z—1(arx{o})
is equivalent up to homeomorphism to f; and F| F-1(Mx{1}) 18 equivalent up to
homeomorphism to fo. We will denote with By ;(M) the set of all concordance
classes of k-fold branched coverings over M of type [.

A triple (E, B,7y) is called a k-fold universal branched covering of type | if + :
E — B is a k-fold branched covering of type [ and for any k-fold branched covering
f N — N (of type l) there is a continuous function ¢ : N — B such that the
pullback of v under ¢, namely c*v, is a k-fold branched covering that is concordant
with f. Moreover, it is also required that if ¢; : N — B, c3 : N — B are maps such
that the pullbacks civ and ¢35y give concordant branched coverings, then the maps
c; and ¢y are homotopic. B is called a classifying space and c is called a classifying
function. It is not difficult to see that there is a bijection between the set By (V)
of concordance classes of k-fold branched coverings of type | over N and the set
[N, B] of homotopic classes of continuous functions from N to B.
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Now, we proceed to define a branched covering over a manifold with boundary.
Let N , N be smooth manifolds with boundary and f : N — N be a smooth
function. We say that f is a k-fold branched covering of type l over a manifold with
boundary if

() flw_om : (N —0N) — (N = ON) and f|y5 : ON — ON are k- fold
branched coverings of type [ over a manifold without boundary.

(ii) the following diagram is commutative

0]Vx[—i>]v

f|aﬁx"’dl lf (2.1)

ONxI —— N
J

where ¢ and j are the embeddings obtained by “collaring” ON and ON in
N and N, respectively (see [5]), and I is the closed interval [0,1] in R.

Remarks
(1) If no ambiguity arises, we will omit the words “with boundary” or “without
boundary”. N N
(2) ;f_lf](}és)a set in N, f~1(H) will be denoted by H: for example, K; =
j .

Roughly speaking, the next proposition says that the pullback of a k-fold branched
covering is also a k-fold branched covering.

Proposition 2.1. Let f : N — N be a k-fold branched covering of type | with
branched set K. Let M be a smooth manifold. If g : M — N 1is any smooth map
transverse to K, and M is the fiber product in the diagram

M —— N

Al |7 (2.2)

M —— N
g

then the pullback g*(f) = fi1 : M — M isa k-fold branched covering of type l.

Proof. In fact, since g is transverse to K, g~1(K) is a stratified set in M of type
l. Moreover, the restriction of f to the preimages of the strata of K are finite
coverings, and their pullbacks under g are also finite coverings.

We have to show that the branch set of f; is just g7 1(K). If x belongs to
M — g71(K), then z is not a branched point, because the restriction of f; to
N (M — g~Y(K)) is a k-covering. Let = € g~*(K). To show that z is a branched
point we need only to observe that the cardinality of the set f;'(z) is different
from the cardinality of the set f; '(x¢) when z is not a branched point. In fact,
if z is any element in M, the cardinality of f; '(z) is equal to the cardinality of
F~Y(g(2)), because of the definition of the fiber product. O

Recall that By, ;(IV) is the set of concordance classes of k-fold branched coverings
of type [ over the manifold N.
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Proposition 2.2. By (e) is a contravariant functor from the category of smooth
manifolds to the category of sets.

Proof. Let M, N, N be smooth manifolds (with or without boundary). Let g : M —
N be a smooth map and let f : N — N be a k-fold branched covering of type [.
Without loss of generality, we may asssume that g is transverse to K, where K
is the branch set of f. The pullback f; : M — M = g*(f) is a k-fold branched
covering of type [. Let us define By ;(f) as the concordance class of fi = ¢g*(f).
We need to show that By ; is well defined.

First of all, let us prove that if f’ : N’ — N is a branched covering of type !
concordant to f : N — N, then By ;(f) = Bg,(f’). Without loss of generality,
we may assume that ¢ is also transverse to K', the branch set of f’ (actually,
we can change g up to homotopy so that it is transverse to K'; see [9], p. 12).
Let F : W™+l — N x I be a branched covering (of type I) that makes f and
f' concordant. Consider the pullback of F under g x id. It is clear that this
pullback makes the pullback of f concordant with the pullback of f’ under g, i.e.,
Brea(f) = Bea(f')-

Let g1,92 : M — N be homotopic functions (both transverse to K) with pull-
backs f; and fs, respectively, under g. Let H : M x I — N be a homotopy from
g1 to g2. Without loss of generality, we may assume that H is transverse to K.
Taking W7 as the fiber product in the diagram

Wi, —— N

m | |7 (2.3)

MxI —— N
H

we get the branched covering Fy : W7 — M X I, which implies the concordance
between fi and fo. O

Now we define a pointed branched covering over a manifold and modify the
definitions of equivalence up to homeomorphism and concordance according to this
new definition. Let M, M be manifolds. A pointed branched covering is a k-fold
branched covering f : M — M together with a base point * in M — K (where K is
the branch set of f) and a one-to-one correspondence of {1,2,..., k} with the set
f7 (). This correspondence is denoted by c¢(f);, where 1 < ¢ < k. Two pointed
branched coverings f; and fo are equivalent up to homeomorphism if there is a
branched covering homeomorphism A which preserves the labeling, that is, such
that h(c(f1);) = c(f2);. Two pointed k-fold branched coverings are concordant
if there is a branched covering concordance F' : Wn+tl s M x I such that * x
I does not intersect the branch set of F, and c¢(f1); and c¢(f2); are in the same
components of F~'(x X I) when F|p-1(arx{oy) and F|p-1(arx{1}) are equivalent up
to homeomorphism to f; and fs, respectively.

Let us denote with By, ;(M, *) the set of all concordance classes of pointed k-fold
branched coverings over the manifold M. It is not difficult to see that By (e, )
is a contravariant functor from the category of pointed smooth manifolds to the
category of sets with a distinguished element.
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3. BRANCHED COVERINGS OVER SIMPLICIAL COMPLEXES

In this section we establish the existence of a functor that operates over the category
of CW-complexes and verifies all the hypotheses of Brown’s Theorem. Since every
CW-complex is homotopically equivalent to a simplicial complex, we first work on
simplicial complexes. Then, at the end of the section, we proceed to generalize the
results to CW-complexes.

Let A,, be an m-simplex. For every face A,,_1 of /A, there is a one-to-one
function sl : Ay,—1 X I — Ay, such that (A, — sl(Apm—1 %X [0,1)) is homeomorphic
to A\,,. We call this kind of function a “slice”.

Now, we extend the definition of branched coverings over manifolds to
branched coverings over simplicial complexes. Let A,, be an m-simplex. We say
that f : A,,, = A, (where A, is not necessarily an m-simplex) is a k-fold branched
covering of type | over the simplex /\,, if for every face A of A,, the function
flr=1Gnta,) + f7H(intA,) — intA, (where int means interior) is a k-fold branched
covering of type [ over the manifold intAg, and for each face A;_; of A, we have
the following commutative diagram

FH A1) x I —— f71(A)
= |7 (3.1)

Ng_1 xIT —  Ag

slice

where I is the closed interval [0,1] and f~'(As_1) x I — f~1(A,) is some embed-
ding.

Let X be a simplicial complex and let f : ¥ — ¥ be a continuous function (where
Y is not necessarily a simplicial complex). We say that f is a k-fold branched
covering of type | over X, if for every m-simplex A,, contained in any subdivision
of 3, the function f : Am — A, is a k-fold branched covering of type [ over A,,.

The next proposition is in the spirit of Proposition 2.1.

Proposition 3.1. Let Y1, Y, be simplicial complezes, f : ig — Y be a k-fold
branched covering of type | and g : 31 — Yo be a simplicial function. If Y1 is the
fiber product in the diagram

il _— ig

nl |7 (3.2)

Y1 —— Yo
9
then the pullback f, is a k-fold branched covering of type l over the simplicial com-
plex 1.

Proof. Let A\, be any n-simplex contained in Y. Since g : ¥; — X5 is a simplicial
function, g(A,,) is a simplex in Y5. Moreover, for every Ay C Ay, g(intA;) is equal
to the interior of the simplex g(As). The linearity of g in A now implies that g is
transverse to the branch set of

fle=1(nt g(ay)) : FH(int g(A,)) — int g(A),
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and by Proposition 2.1, the restriction fi|s—1gnta,) @ f7H(IntA;) — intA, is a
k—fold branched covering of type .

Now, consider the slice : Ag_1 x I C Ay, for every Az_1 C Agz. The linearity
of g in A, implies that g(As_1) x I is also a slice inside g(A\;), and for some
embedding f;'(As_1) x I — fi '(A,) the following diagram commutes:

fl_l(As—l) Xl —— fl_l(AS)
fllfl_l(Asfl)Xidl lfl (3.3)
Ng_1x1 — Ny
slice

Therefore, fi : Y1 — ¥4 is a k-fold branched covering of type ! over the simplex
N, O

Let us extend the definition of concordance for branched coverings over simplicial
complexes. We say that two k-fold branched coverings fi, fo over a simplicial
complex Y are concordant if there is a branched covering F' : W — ¥ X I over the
simplicial complex ¥ x I such that F'|p-1(xx¢;3) is equivalent up to homeomorphism
with fj 41, for j =0, 1.

The proofs of the following lemmas are not difficult ([9], p. 22, 23).

Lemma 3.2. Let 31,5 be simplicial complexes and let fy : ig — Y9 and f} :
¥y — X be two concordant branched coverings over Yo, and g : X1 — Yo a
simplicial function. Then the pullbacks g* fo and g* f} given in the diagrams below

are concordant: _ _
21 _— 22

g*f2l lh (3.4)

21—)22
g
S — %

a1 | |7 (3.5)

214)22
g

Lemma 3.3. Let Xq,Y9 be simplicial complexes and let g1 : Y1 — Yo and go :
Y1 — Yo be homotopic simplicial functions. Also let fo : X9 — X9 be a branched
covering over the simplicial compler ¥5. Then, the branched coverings g7 fo and
g5 fa are concordant.

Let 3 be a simplicial complex and denote with By (X) the set of all concordance
classes of k-fold branched coverings over X.

Proposition 3.4. Bg(e) is a contravariant functor from the category of simplicial
complezxes to the category of sets.

Proof. 1t comes straightfordwardly from Proposition 3.1 and Lemmas 3.2 and
3.3. O



8 DEBORA MARIA TEJADA

The notions of pointed branched coverings and of concordance for pointed branched
coverings over manifolds are easily extended to the case of simplicial complexes.
Similarly, By (X, *) denotes the set of all concordance classes of pointed k-fold
branched coverings over the simplicial complex . In this context, Proposition
3.1 and Lemmas 3.2 and 3.3 extend to pointed branched coverings over simplicial
complexes, and the following proposition is straightforward.

Proposition 3.5. Bi(e,x*) is a contravariant functor from the category of pointed
simplicial complexes to the category of sets with distinguished element the constant
function.

So far we have proved the existence of the functor By(e,*). Now we proceed
to verify Conditions A, B, C and D, of Brown’s Theorem for this functor. Actu-
ally, the extension of Lemma 3.3 to the case of pointed branched coverings proves
that the functor Bg/(e, ) verifies Condition A, and the first part of Condition B is
straightforward. The following propositon establishes the second part of Condition
B.

Proposition 3.6. Let (X, X1, Y2) be a proper triad in the category of pointed sim-
plicial complexes C. Let A =Y¥1NYs and j; : A — 3, k; : ¥; — X be the canonical
inclusions. If f1 € Bg(31,*) and fo € By(X2, %) are such that the pullbacks j; fi
and j3 fa are concordant, then there is f € By (X, *) such that kX f is concordant to
fi, 1 =1,2. Furthermore, if A is a point, then f is unique.

Proof.  First of all, let us take subdivisions in A, X1, Y9 such that every simplex
in A is a simplex in ¥; and in ¥s. Let F': W — A x I be such that F|p-1(ax{0}) is
equivalent up to homeomorphism to j7 f1|(j1* f1)-1(a) and F|p-1(4x{1}) is equivalent
up to homeomorphism to j; fg\(jg f2)-1(A)- Without loss of generality, we may as-
sume that F|p-1(4x{0}) and F|p-1(4x{1}) are exactly the functions j3 f1|¢;x £,)-1(a)
and j3 f2|(jz r,)-1(4), Tespectively. Consider the quotient space ((A x I) U X;) A
(where a ~ (a,0), for all @ in A). Call this space X;. Since (31, A) has the ho-
motopy extension property, there exists a homotopy H : ¥; x I — X; such that
H|x, = idx,, where idx, is the identity function of X}.

If id; : ¥; — X; is the identity function, then id}f; coincides with j*f; in
(3¥fi)~1(A), for i = 1,2. For i = 1,2, let us denote (j}f;)~'(A) and (id} f;)~ (%)
by A; and ENJi, respectively. Now, consider the function G,
G: (WUX,) — X defined by G(z) = F(z) if x € W and G(z) = (id} f1)(x) if
T € il; G is well defined, because F' coincides with ¢d] f1 in Zl.

Let H*G be the pullback in the diagram

(H*G) YTy xI) —— WU,

| le (3.8)
21 x I —_— Xl
H

Then, H*G|(H*G)—1(A><{O}) is equivalent up to homeomorphism to jif; and

H*G|(g+g)-1(ax{1}) is equivalent up to homeomorphism to j3 fa.
Construct the following space: X = ((H*G)~}(; x {1}) UX;) /A where we use
the homeomorphism that makes H*G|(g+q)-1(ax{1}) equivalent to j3 f> to identify
the elements in f; '(A) with those in (H*G)™ (A x {1}). Now let us define f :
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X = (21 x {1}) UXs) /A (where a ~ (a, 1) for every a € A) by f(z) = H*G(z) if

€ (H*G)™Y(Z1 x {1}) and f(z) = id3 fo(z) if z € £5. Clearly f is a well defined
branched covering over ((31 x {1}) UX3) 4.

Since ((X1 x {1}) U ¥g),A is isomorphic to ¥ = ¥; U Xg, we can say that
f € Bi(X, x). Moreover, the construction of f implies that k} f is concordant to f;,
(1 =1,2). Hence, f is the desired function.

It is also straightforward that if A reduces to a single point the construction of
f is unique up to concordance. [

The next proposition verifies Condition D for the functor By/(e, x).

Proposition 3.7. Suppose ¥1 C Y9 C--- C X, C -+ is a collection of simplicial
subcomplexes of ¥ = |J,, Xr, € C with respect to some simplicial-complex structure
on ¥ such that X7 = X" (where X" is the n-skeleton of X). Let i, : ¥, — ¥ be the
inclusion map and im By (3., *) be the inverse limit of By(¥n,*) with respect to
the maps induced by the inclusions vy, of ¥y, into Xy, Then lim(iy,) : B(X, %) —
lim B(X,, *) is an epimorphism.

Proof. First of all, we recall that the inverse limit of By (3, ) is
im B(Sn, ) = {(fa) € T1 B30 ) | fr = (650" o < n}

(see [7]). Let (fn) € lim Bg(¥y,*). We want to find f € Bg(%,*) such that
(i) () = (fa).

Notice that f; = (¥2)*f2; in other words, that f; and the restriction fs|x,
are concordant. Using this concordance we construct a function f§ € By (X, *)
such that f5|sy-1(s,) = fi. Inductively, we construct f; € Bg(%n,*) such that
faliey-1(, )= = f]_,. Hence, we have a collection of functions f1 = f1, f5, f4,- - -
such that f] is an extensmn of f] 4, for all n in N.

Let & = U, En, where ¥, = (f2)"1(Z,), and define f : £ — X by f(z) = f/(z)
if = € (f,)7'(X.). It is obvious that f is well defined. = Therefore,
f € Bg(%, ). Because of the construction of f/, we have that f, is concordant to
fn. Therefore, lim(i7)(f) = (fn), which implies that

Um(sy) : B(%,") — lim B(E

is an epimorphism. [

The following proposition proves condition C for the functor Bi(e,*). Here we
regard the boundary of an (n + 1)-simplex as an n-—sphere.

Proposition 3.8. Suppose {SI'} is a collection of disjoint n-spheres whose wedge
product \/ ST is in the category of simplicial complexes C. Let ig : Sg — \/ SZ be
the inclusion map. Then the function

Hz;; : By, (\/SZ,*) — HBk(S
15 bijective.
Proof. Let (fo) € [] Bx(SZ,%), where f, € B(SZ,*). Recall that % never is a

branched point of f, and that there is a one-to-one correspondence of {1,2,...,k}
with f7!(x). This correspondence is denoted by ¢(f,)q, for every a.
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Let X = (U, f31(S%)) /A, where x4 ~ 25 if fo(za) = fa(zs) = * and the cor-
responding ¢ € {1,2,...,k} under c¢(f); and c(fg); is the same for both elements.

If f:X — \/ ST is such that f(z) = fo(z) for z € f71(S7), f is a well defined
branched covering in By (\/ S, *). Moreover, [[i5(f) = (fa). Therefore ]} is
surjective.

Let us prove the injectivity. Let f,g € Bg(\/ SZ,*) and assume that sz (f)
= (fa) and []i3(9) = (9a). Here (fo) = (go) means that f, is concordant to
go for each a. So, there exists a branched covering F, : W, — S X I such
that F,| F(Smx{1}) is equivalent up to homeomorphism to f, and F| FI(Sn%{0})
is equivalent up to homeomorphism to g,. Recall that *x x I does not intersect
the branch set. Therefore F,1(x x I) contains exactly k copies of I, and ¢(fqa);
belongs to the same component of F;(x x I) that contains ¢(gq);. Let us denote
by F;!(x x I); the copy of I that contains c(fa);- Without loss of generality, we
may assume that if o # 8 then W, # Wps. Let X = Uy Wa),/~, where ~ is
defined in the following way: = ~ y if there are «, 5 and 7 (i = 1,..., k) such that
reF;(xx1I);,ye€ Fﬂ_l(* x I)i, and Fy(z) = Fg(y). Consider F : X — \/ Sq x I
defined by F(z) = Fo(x) if £ € W,. Clearly F is a well defined function such that
F|p-1(y snx{1}) is equivalent up to homeomorphism to f and F|p-1(y snx{o}) i8
equivalent up to homeomorphism to g. Hence, f is concordant to g, i.e., sz is
injective. [

Now recall that every CW-complex is homotopically equivalent to a simplicial
complex, i.e., that if X is a CW-complex there exist a simplicial complex ¥ and
maps h: X — X, b’ : ¥ — X such that ho A’ is homotopic to the identity of ¥ and
h' o h is homotopic to the identity of X. We will say that a function f : XX
is a k-fold branched covering of type | over the CW-complex X, if the function
(W)*f : X — X is a k-fold branched covering over the simplicial complex . In
a natural way we extend all definitions, Lemmas and propositions given for (resp.
pointed) branched coverings over simplicial complexes to (resp. pointed) branched
coverings over CW-complexes. Actually, we prove that if C is the category of CW-
complexes (not necessarily finite), the functor By(e, x) satisfies Conditions A, B,
C, D of Brown’s Representability Theorem. Hence, the following theorem holds.

Theorem 3.9. Let C be the category of spaces with base point x which has as objects
all topological spaces admitting a CW-complex structure. Let S be the category of
sets with a distinguished element. Let By(e,x) : C — S be the functor defined
earlier. Then, there is a space Y in C, unique up to homotopy type, such that the
functors [0, Y] and By/(e,*) are naturally equivalent.

In other words, we have obtained the existence of a classifying space Y for k-fold
branched coverings over CW-complexes.
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