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Convergence analysis of a one-step
intermediate Newton iterative scheme
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Abstract. We study a one-step intermediate method for the iterative compu-
tation of a zero of the sum of two nonlinear operators. The proposed method
contains Newton scheme and the Modified Newton scheme as special cases and
therefore provides a unified setting for the study of both methods.

Key words and phrases. Nonlinear equations, Newton’s method, intermediate
Newton method, majorant error bounds.

1991 Mathematics Subject Classification. Primary 65H10.

Let X and Y be Banach spaces, let u0 ∈ X and let f, g be continuous operators
mapping a closed ball B[u0, T ] into Y , assumed Fréchet differentiable on the
open ball B(u0, T ). We are interested in the equation

f(u) + g(u) = 0. (1)

The method of Newton, defined by the iterations

um+1 = um − [f ′(um) + g′(um)]−1[f(um) + g(um)], m = 0, 1, . . . (2)
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and the modified Newton scheme, defined by the iterations
um+1 = um − [f ′(u0) + g′(u0)]−1[f(um) + g(um)], m = 0, 1, . . . (3)

are the best known methods for the iterative solution of this equation.
It is well-known that, in general, Newton’s method converges faster than the

modified Newton method. However, the Newton’s method updates derivatives
at each iteration step, while the modified method performs only one derivative
evaluation. This led several authors to propose intermediate Newton methods
which converge faster than the modified method and are easier to implement
than the classical scheme. The best known scheme of this type is the standard
two-step intermediate scheme (cf. [1,2,5,6]) which when applied to problem (1)
leads to the iterations

vm = um − [f ′(um) + g′(um)]−1[f(um) + g(um)], (4a)

um+1 = vm − [f ′(um) + g′(um)]−1[f(vm) + g(vm)], m = 0, 1, . . .
(4b)

in which each derivative is updated after every two iterations.
In this paper, we study the simpler one-step intermediate Newton scheme

um+1 = um − [f ′(um) + g′(u0)]−1[f(um) + g(um)], m = 0, 1, . . . . (5)
When g = 0, this scheme becomes the classical Newton scheme for the equation
f(u) = 0, and when f = 0, it becomes the Modified Newton scheme for the
equation g(u) = 0. Therefore the intermediate scheme (5) provides a unified
setting for the study of both Newton’s method and the modified Newton’s
method.

Convergence results for Newton schemes (2)–(3) have been given by many
authors, especially Kantorovich and Akilov [6] (cf. also [4,5]), Zabrejko and
Nguen [6], and convergence results for the intermediate scheme (4) have been
given by Argyros [2] and Appel, de Pacale, Evkuta and Zabrejko [1]. In the
sequel we give convergence results for the intermediate Newton scheme (5)
under Zabrejko–Nguen conditions. In the following Proposition we define the
majorant sequence that we will use and give its main properties.

Proposition 1. Let a > 0, let α(t) and β(t) be non-negative non-decreasing
functions defined on an interval [0, T ] such that α(t)+β(t) > 0 for all t ∈ [0, T ].
Let

κ(t) =
∫ t

0

α(s) ds,

σ(t) = a +
∫ t

0

κ(s) ds− t,

π(t) =
∫ t

0

β(s) ds,

τ(t) =
∫ t

0

π(s) ds
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and suppose that the function µ(t) = σ(t) + τ(t) has a unique zero t∗ in [0, T ].
Let t0 = 0, and for m = 0, 1, . . . , let

tm+1 = tm − [σ(tm) + τ(tm)]/σ′(tm). (6)

Then the tm are well defined and, for m = 1, 2, . . . , we have

tm−1 < tm < t∗, (7)

lim
m→∞

tm = t∗. (8)

Proof. The hypotheses imply that σ(t) and τ(t) are convex and µ(t) = σ(t) +
τ(t) is strictly convex, and hence that, whenever 0 ≤ t < s ≤ T , we have

τ(t) + σ(t) < τ(s) + σ(s) + σ′(t)(t− s) + τ ′(t)(t− s),

= τ(s) + σ(s) + σ′(t)(t− s) + π(t)(t− s) (9)

≤ τ(s) + σ(s) + σ′(t)(t− s).

Also, since µ(0) = a > 0 and t∗ is the only zero of µ in [0, T ], we see that
µ(t) ≥ 0 for all t ∈ [0, t∗], with equality if and only if t = t∗. Furthermore, if
σ′(t̄) = 0 for some t̄ ∈ [0, t∗], then convexity implies that t̄ is a minimal point
of σ(t), and hence that 0 ≤ µ(t̄) = σ(t̄)+τ(t̄) ≤ σ(t∗)+τ(t∗) = 0 which implies
that t̄ = t∗. Since σ′(0) = −1 < 0, it follows that σ′(t) ≤ 0 for all t ∈ [0, t∗],
with equality if and only if t = t∗.

In (9), if we set t = 0 and s = t∗, we see that t0 = 0 < t1 = a = σ(0)+τ(0) <
σ(t∗) + τ(t∗) + t∗ = t∗ which shows that (7) holds when m = 1.

Suppose now, by induction, m ≥ 1 and that (7) holds. Then on using (9)
and the fact that µ(tm) > 0 and σ′(tm) < 0, we obtain the relations:

t∗ − tm+1 = t∗ − tm + [σ(tm) + τ(tm)]/σ′(tm)

= [σ′(tm)(t∗ − tm) + σ(tm) + τ(tm)]/σ′(tm)

> [σ(t∗) + τ(t∗)]/σ′(tm) = 0

tm+1 − tm = −µ(tm)/σ′(tm) > 0

which show that (7) holds when m is replaced with m + 1 and hence, by
induction, that it holds for all positive integral values of m.

It follows that tm is monotone increasing sequence that is bounded above
by t∗. Hence it converges, as m tends to infinity, to a real number t̄, with the
property that 0 ≤ t̄ ≤ t∗. If σ′(t̄) 6= 0, then on letting m tend to infinity in (6),
we see that µ(t) = 0, and hence that t̄ = t∗. If 0 = σ′(t̄) then it follows from
the comments in the first paragraph of the proof that t̄ = t∗. In either case, t̄
is a root of µ(t). ¤X

The following result will be used repeatedly in the sequel. The proof can be
found in [6, Proposition 1].
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Lemma 1. Let v be a function defined on the closed ball B[u0, T ] in the
Banach space X, with values in the Banach space Y . Suppose that there exists
a non-decreasing function θ(t) defined on the closed interval [0, T ] such that,
for all 0 ≤ t ≤ T , we have

‖v(x)− v(y)‖ ≤ θ(t)‖x− y‖ ∀x, y ∈ B(u0, t).

Then, whenever 0 ≤ t ≤ s ≤ T , x ∈ B[u0, t] and y ∈ B[x, s − t] we have
‖v(x)− v(y)‖ ≤ ∫ s

t
θ(s) ds.

We next prove the convergence of the generalized Newton-type scheme (5)
under Zabrejko-Nguen-type hypotheses of the kind used in [6].

Theorem 1. Let a ≥ 0, u0 ∈ X and let f and g be functions defined in
B[u0, T ], with values in Y , Fréchet differentiable on B(u0, T ). Suppose further
that J0 = f ′(u0)+ g′(u0) is invertible, that ‖J−1

0 [f(u0)+ g(u0)]‖ ≤ a, and that
whenever 0 ≤ t ≤ s ≤ T , x ∈ B(u0, t) and y ∈ B(x, s− t) we have

‖J−1
0 [f ′(x)− f ′(y)]‖ ≤ α(t)‖x− y‖, (10)

‖J−1
0 [g′(x)− g′(y)]‖ ≤ β(t)‖x− y‖ (11)

where α(t) and β(t) satisfy the hypotheses of Proposition 1. Then the inter-
mediate Newton iterates in (5) are all well defined and converge to a solution
u of equation (1) in B[u0, T ], with error estimates

‖um − um−1‖ ≤ tm − tm−1, (12)

‖um − u0‖ ≤ tm, (13)

‖u− um‖ ≤ t∗ − tm (14)

where the sequence tm is defined as in Proposition 1.

Proof. Let σ(t), τ(t) and µ(t) be defined as in Proposition 1.

If a = 0, then u = u0 solves equation (1) and, since um = u0 and tm = t0 for
all m, the estimates (12)–(14) hold trivially. In the rest of the proof we assume
a > 0.

Since ‖u1 − u0‖ = a ≤ t1 − t0, we see that (12)–(13) hold when m = 1.

Suppose now, by induction, that m ≥ 1 and that the um are well defined
and satisfy (12)–(13). Then, on letting Jm ≡ f ′(um) + g′(u0) = J0(I + A) or,
equivalently, A = J−1

0 [f ′(um) − f ′(u0)], and applying Lemma 1, we see that
‖A‖ ≤ κ(tm) < 1. Therefore (I + A)−1 exists, with

‖(I + A)−1‖ ≤ 1/[1− κ(tm)] = −1/σ′(tm),
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and it follows that Jm is invertible, and that J−1
m J0 = (I + A)−1. Hence

‖J−1
m J0‖ ≤ −1/σ′(tm), and it follows from Lemma 1 and the induction hy-

potheses that

‖um+1 − um‖ = ‖J−1
m [f(um) + g(um)]‖ ≤ ‖J−1

m J0‖‖J−1
0 [f(um) + g(um)]‖.

But

f(um) + g(um) = [f(um)− f(um−1)− f ′(um−1)(um − um−1)]

+ [g(um)− g(um−1)− g′(u0)(um − um−1)].

Hence

‖J−1
0 [f(um) + g(um)]‖ ≤ ‖J−1

0 [f(um)− f(um−1)− f ′(um−1)(um − um−1)]‖
+ ‖J−1

0 [g(um)− g(um−1)− g′(u0)(um − um−1)]‖

≤ ‖
∫ 1

0

J−1
0 [f ′(um + s(um − um−1))

− f ′(um−1)](um − um−1) ds‖

+ ‖
∫ 1

0

J−1
0 [g′(um + s(um − um−1))

− g′(u0)](um − um−1) ds‖

≤
∫ 1

0

[
∫ tm+s(tm−tm−1)

tm−1

α(w) dw](tm − tm−1) ds

+
∫ 1

0

[
∫ tm+s(tm−tm−1)

0

β(w) dw](tm − tm−1) ds

=
∫ 1

0

[κ(tm + s(tm − tm−1))− κ(tm−1)](tm − tm−1) ds

+
∫ 1

0

π(tm + s(tm − tm−1))(tm − tm−1) ds

=
∫ tm

tm−1

κ(s) ds− κ(tm−1)(tm − tm−1) +
∫ tm

tm−1

π(s) ds

= (tm − tm−1)(1− κ(tm−1)) + σ(tm)

− σ(tm−1) + τ(tm)− τ(tm−1)

= σ(tm) + τ(tm)− (tm − tm−1)σ′(tm−1)

− τ(tm−1)− σ(tm−1)

= σ(tm) + τ(tm),

‖um+1 − um‖ ≤ ‖J−1
m J0‖[σ(tm) + τ(tm)]

≤ −[σ(tm) + τ(tm)]/σ′(tm) = tm+1 − tm,

‖um+1 − u0‖ ≤ ‖um+1 − um‖+ ‖um − u0‖
≤ tm+1 − tm + tm = tm+1.
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It follows that (12) and (13) also hold when m is replaced with m + 1 and
hence, by induction, that they hold for all positive integral values of m.

This implies that

‖um+q − um‖ ≤
m+q∑

k=m+1

‖uk − uk−1‖ ≤
m+q∑

k=m+1

(tk − tk−1) = tm+q − tm.

Since tm is a Cauchy sequence, it follows that um is also a Cauchy sequence
converging to some u ∈ B[u0, T ]. On letting q tend to infinity we see that (14)
holds. It follows from (5) that [f ′(um)+g′(u0)](um+1−um)+f(um)+g(um) = 0
and on letting m tend to infinity we see that u solves equation (1). ¤X

Remark 1. The issue of uniqueness be settled from Theorem 4 of [6] which
implies that if the conditions of Theorem 1 hold and µ(T ) ≤ 0, then the
solution of equation (1) is unique in B(u0, T ).

Remark 2. The error estimate —analogous to (14)— satisfied by the Newton
scheme (2) under the hypotheses of Theorem 1 is

‖u− um‖ ≤ t∗ − sm, (15)

with s0 = 0 and sm+1 = sm − [σ(sm) + τ(sm)]/[σ′(sm) + τ ′(sm)]. The bound
for the modified Newton scheme (3) under the same conditions is

‖u− um‖ ≤ t∗ − km, (16)

with k0 = 0 and km+1 = km + σ(km) + τ(km). It is no difficult to see that for
m = 0, 1, . . . , we have

km ≤ tm ≤ sm. (17)

The inequality holds trivially when m = 0. Suppose, by induction that (17)
holds for a certain m. Then, on using (9) and the fact that t + σ(t) + τ(t) is a
increasing in [0, t∗) (since [t+σ(t)+ τ(t)]′ = 1+σ′(t)+ τ ′(t) = κ(t)+π(t) ≥ 0)
and σ′(tm) ≤ σ′(sm), we see that

km+1 = km + σ(km) + τ(km)

≤ tm + σ(tm) + τ(tm)

≤ tm + σ(tm) + τ(tm) + [1 + σ′(tm)](tm+1 − tm)

= σ(tm) + τ(tm) + σ′(tm)(tm+1 − tm) + tm+1 = tm+1

= tm − [σ(tm) + τ(tm)]/σ′(tm)

= sm − [σ(tm) + τ(tm) + σ′(tm)(sm − tm)]/σ′(tm)

≤ sm − [σ(sm) + τ(sm)]/σ′(tm)

≤ sm − [σ(sm) + τ(sm)]/σ′(sm)

≤ sm − [σ(sm) + τ(sm)]/[σ′(sm) + τ ′(sm)]
= sm+1.
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This shows, by induction, that (17) holds for all m.
The inequality (17) suggests that (5) is an intermediate scheme between the

Newton scheme (2) and the modified Newton scheme (3). However, under the
hypotheses of Theorem 1, J−1

0 [f ′(x)+g′(x)] will have a Lipschitz constant γ(t)
that is smaller than α(t)+β(t), which implies that the error estimates (15) and
(16) are too coarse. However, all numerical examples that one cares to do will
confirm that, under the hypotheses of Theorem 1, the intermediate scheme (5)
is indeed an intermediate scheme between the Newton scheme and the modified
Newton scheme.
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