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Abstract. A method of discretization for a non linear singularly perturbed
boundary value problem is considered. It involves a certain number of steps,
one of them including the application of Petrov-Galerkin finite element methods.
The resulting scheme is called adjoint method scheme and is in some way related
to Niijima’s scheme (cf. [11]). It is proved that this discretization provides
existence and uniqueness of solution for a problem defined by the Lagerström-
Cole model equation. Finally some numerical experiments compare the results
obtained when the adjoint method scheme is used, as well as when Niijima’s
scheme or a direct finite element discretization are applied.
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1. Introduction

In order to solve a boundary value problem defined by the Lagerström-Cole
model equation several authors have proposed different types of discretizations
based on both finite difference and finite element methods. Regarding the first
type, worth mentioning are the scheme proposed by Abrahamsson and Osher
in [1] and the one introduced by Niijima in [11]. The scheme we shall propose
below can be considered as a generalization of Niijima’s for a certain class
of problems, even if the process to obtain it makes use of the finite element
method after a previous manipulation of the original equation. This procedure

1



2 FERNANDO USÓN-FORNIÉS

was already used applied to a finite difference discretization by Lisbona in [8].
Let us consider a boundary value problem of the type

{
Lu = f on Ω ,

g(u) = g0 on Γ = ∂Ω,
(1.1)

where the operator L is not necessarily linear. Once two Sobolev spaces H1

and H2 have been chosen, we apply to the previous problem a variational
formulation, which yields the following variational problem:

u ∈ H1 such that a(u, v) = l(v) ∀v ∈ H2,0, (1.2)

where H2,0 = {v ∈ H2; v(0) = v(1) = 0}, l is a linear form such that l(v) =∫ 1

0
fvdx and a(·, ·) is an application defined from H1 × H2 on R and bilinear

whenever L is linear. Let us suppose as well that we have l + 1 different grids
in Ω denoted as Rd for every d ∈ {0, 1, . . . , l} and such that Rd ⊂ Rd+1, if
0 ≤ d ≤ l − 1. Each grid is associated to a pair of subspaces Hd and Kd, the
first one belonging to H1 and the second one to H2,0. It is widely known (see,
for instance [4] or [10]) that every pair of subspaces and every grid give rise to
a discretized problem whose formulation is

ud ∈ Hd such that a(ud, v) = l(v) ∀v ∈ Kd. (1.3)

This kind of problem can be expressed in terms of discrete operators as follows:

ud ∈ Hd such that Ldud = fd. (1.4)

From now on we shall limit ourselves to study problems of the type (1.1) defined
on the interval [0, 1] by the operator of the Lagerström-Cole model equation
LB , that is to say,

LB(u) = −ε
d2u

dx2
+ u

du

dx
+ u, (1.5)

and by the function f = 0, as well as by Dirichlet boundary conditions. We
shall apply two different discretizations to it: the first one, a finite element
discretization; the second one is the principal aim of this paper and shall be
deduced in the following section. For example, let us suppose that the bound-
ary conditions are u(0) = 0 and u(1) = 1. Then, the solution for this problem
presents a boundary layer close to 1. When applying to this problem a varia-
tional formulation, application a(·, ·) from (1.2) turns out to be

a(u, v) = ε

1∫

0

u′v′dx +

1∫

0

uu′vdx +

1∫

0

uvdx,

and, if we apply the finite element method and search for a solution ũ =
N+1∑
i=0

uiφi(x), where φi(x) are the classical Galerkin functions, we attain the
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following non-linear system of unknowns u1, . . . , uN :

ε

1∫

0

( N+1∑

i=0

uiφ
′
i(x)

)
ψ′j(x)dx +

1∫

0

( N+1∑

i=0

uiφi(x)
)( N+1∑

i=0

uiφ
′
i(x)

)
ψj(x)dx

+

1∫

0

( N+1∑

i=0

uiφi(x)
)
ψj(x)dx = 0.

(1.6)

The choice for the test functions ψj(x) depends not only on the operator LB but
also on the problem and the predicted solution. As for the problem considered
above, adequate functions seem to be

ψj(x) =





1− e−bj
0(x)

1− e−βj
0

, if x ∈ Ij−1 ,

e−bj
1(x) − e−βj

1

1− e−βj
1

, if x ∈ Ij ,

0, if x ∈ I − (Ij−1 ∪ Ij),

∀j ∈ {1, . . . , N} , (1.7)

where

βj
k = uj

hj+k−1

2ε
, bj

k(x) =
βj

k(x− xj+k−1)
hj+k−1

, ∀j ∈ {1, . . . , N}, ∀k ∈ {0, 1},
Ij = [xj , xj+1], hj = xj+1 − xj , ∀j ∈ {0, . . . , N} .

The choice for the parameters has been inspired following the recommendations
given by Hemker in [5] for equations of the type −εu′′ + (a(x)u)′ + b(x)u = 0,
for which a good value of β is pointed out to be

h(
a(x)

ε
− b(x)

a(x)
).

In our case b(x) = 1, while a(x) should be substituted by a(x, u) = u/2.
If we truncate the expression of β by eliminating the second term, we can
assure the continuity of β in the case when u vanishes. On the other hand,
we would also like to note that if uj cancels, then the corresponding function
ψj(x) is a classical Galerkin one, while, if uj is negative instead of positive, the
orientation of the functions changes. Nevertheless, the expression for functions
(1.7) can be simplified by replacing uj in βj

k just by 1 or −1, depending on
whether uj has positive or negative sign. In the next section we show how to
develop our method of discretization when a boundary value problem (1.1) with
operator LB is considered. To abbreviate we shall call the resulting scheme the
adjoint method scheme. In Section 3 sufficient conditions are given for the
existence and uniqueness of solution of the adjoint method scheme, while some
numerical experiments which illustrate the theoretical results as far obtained
are carried out in Section 5. As for Section 4, it is a preliminary to the last part
of this paper, where the adaption method for the grid used in the numerical
experiments is explained.
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2. The adjoint method discretization

As has been pointed out in the previous section, there exist various possibilities
of discretizing a problem of the type (1.1). Among them we outline Niijima’s
scheme, as introduced in [11]. This scheme is specially fitted to solve problems
given by equations of the kind −εu′′ + (g(u))′ + b(x, u) = 0, where both g and
b are taken to be continuous functions. If we consider a problem of the type
1.1 given by operator LB , we have that g(u) = u2/2 and b(x, u) = u. Then,
the expression for Niijima scheme given a uniform grid is:

−ε

h2
(
∫ uj+1

uj

ξ
(sh

2ε

)
ds−

∫ uj

uj−1

ξ
(sh

2ε

)
ds) +

1
4h

(u2
j+1 − u2

j−1) + uj = fj , (2.1)

where ξ(x) = xcothx and h is the distance between two consecutive grid points.
It was proved in [8] that the Niijima scheme 2.1 belongs to a more general kind
of schemes. These are deduced following a process of discretization which makes
use of finite differences. This process coincides with the one described below,
except for the novelty that Petrov-Galerkin finite element methods are used
instead of finite differences. The resulting process of discretization yields, as
we shall call it from now on, the adjoint method scheme and consists of five
steps. We illustrate the application of these steps by studying the particular
case of a problem defined by the operator LB from (1.5).

Step 1. Calculus of the Fréchet derivative for the original differential oper-
ator, DL(u). For LB it yields:

(DLBu)(v) = −εv′′ + uv′ + vu′ + v.

Step 2. Calculus of the adjoint operator to the previous one, that is to say,
(DLu)∗:

(DLBu)∗(w) = −εw′′ − uw′ + w.

Step 3. Discretization of the equation obtained in the immediately previous
step. We first apply the variational formulation and then make use of Petrov-
Galerkin methods. In the particular case of LB the variational formulation
yields:

w ∈ H1 such that ε

∫ 1

0

w′ψ′ −
∫ 1

0

uw′ψ +
∫ 1

0

wψ = 0, ∀ψ ∈ H2,0. (2.2)

Next, two finite-dimensional subspaces are chosen in H1 and H2,0, the trial and
the test space. The first one is generated by the classical linear Galerkin func-
tions, while the second one is generated by the following exponential functions:



DISCRETIZATION FOR THE LAGERSTRÖM-COLE MODEL EQUATION 5

ψj(x) =





e−bj
0(x) − e−βj

0

1− e−βj
0

, if x ∈ Ij−1,

1− e−bj
1(x)

1− e−βj
1

, if x ∈ Ij ,

0, if x ∈ I − (Ij−1 ∪ Ij)

, ∀j ∈ {1, . . . , N} , (2.3)

where, making use of the studies developed in [5], for every j ∈ {1, . . . , N}
and k ∈ {0, 1}, we select βj

k = uj
hj+k−1

ε
and bj

k(x) = βj
k(1 − x− xj+k−1

hj+k−1
).

We remark that the orientation of the functions ψj(x) given by (2.3) is the
opposite to that of the functions considered in (1.7). This is so because the
coefficient multiplying w′ in (DLBu)∗(w) presents the opposite sign to the one
which multiplies u′ in the expression for LB(u). Once the Petrov-Galerkin
discretization has been carried out, the unknown u is substituted by uj –that
means, its approximate value on the grid point xj– at each equation originated
by ψj . As a result, the following difference scheme is obtained:

[(ϕ1 + b1 − a1)(uj , hj)] wj−1+

[(a1 − ϕ1)(uj , hj) + (a2 − ϕ2)(uj , hj+1)] wj+

[(ϕ2 + b2 − a2)(uj , hj+1)] wj+1 = 0,

where, taking into account that β stands for sh/ε, functions ϕ1, ϕ2, a1, a2, b1

and b2 are defined by the following formulas –we also quote their limits when
s tends to 0–:

ϕ1(s, h) = − se−β

1− e−β
−→ − ε

h
,

ϕ2(s, h) = − s

1− e−β
−→ − ε

h
,

b1(s, h) = h(
1
β
− e−β

1− e−β
) −→ h

2
,

a1(s, h) = h(− 1
β2

− e−β

2(1− e−β)
+

1
β(1− e−β)

) −→ h

3
,

b2(s, h) = h− b1(s, h) −→ h

2
,

a2(s, h) =
h

2
− b1(s, h) + a1(s, h) −→ h

3
.

(2.4)

Step 4. Calculus of the scheme adjoint to the latter one. For the case of LB

this yields:

[(ϕ2 + b2 − a2)(uj−1, hj)] vj−1+

[(−ϕ1 + a1)(uj , hj) + (−ϕ2 + a2)(uj , hj+1)] vj+

[(ϕ1 + b1 − a1)(uj+1, hj+1)] vj+1 = 0.
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Step 5. Construction of a finite difference operator whose Fréchet derivative
is the scheme in Step 4 and such that it is consistent with the original problem
defined when using operator L. In particular, the scheme obtained when we
consider problem 1.1 with operator LB is:

uj+1∫

0

ϕ1(s, hj+1)ds−
uj∫

0

ϕ2(s, hj+1)ds−

(

uj∫

0

ϕ1(s, hj)ds−
uj−1∫

0

ϕ2(s, hj)ds)+

uj+1∫

0

(b1 − a1)(s, hj+1)ds +

uj∫

0

a2(s, hj+1)ds+

uj∫

0

a1(s, hj)ds +

uj−1∫

0

(b2 − a2)(s, hj)ds = hjfj , ∀j ∈ {1, . . . , N} ,

(2.5)

where fj = f(xj). We denote scheme (2.5) more briefly as

LBu = f. (2.6)

Both u and f denote no longer functions as in (1.1), but vectors belonging
to RN . In the particular case of uniform grids, scheme (2.5) abridges to the
following:

1
h

(
uj+1∫

uj

ϕ1(s, h)ds−
uj∫

uj−1

ϕ2(s, h)ds
)
+

1
h

(
uj+1∫

uj

(b1 − a1)(s, h)ds−
uj∫

uj−1

(b2 − a2)(s, h)ds
)

+ uj = fj .

Precisely, the first part of this scheme —that defined by functions ϕ1 and ϕ2—
coincides with Niijima’s discretization (2.1) for the terms −εu′′+uu′ in operator
LB , so that it can be assured that the adjoint method scheme preserves the
exponential character of the problem. As for term u, a more complex expression
has been obtained than that which appears in Niijima’s scheme, having been
added to the term uj the contributions by the functions a1, a2, b1 and b2.
Analogously, when we consider the same operator LB and we suppose that f
equals 0 and that the boundary conditions are such that the boundary layer
is located on the left of the interval, the functions ψj(x) in Step 3 are taken
an orientation opposite to that in (2.3). Also they have a similar expression to
the functions from (1.7), except for the value of βj

k, which now is replaced by
ujhj+k−1/ε. So, when applying the adjoint method, we obtain the same scheme
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than (2.5), except for functions ϕ1, ϕ2, a1, a2, b1 and b2, whose expressions are
now:

ϕ1(s, h) = − s

1− e−β
−→ − ε

h
,

ϕ2(s, h) = − se−β

1− e−β
−→ − ε

h
,

b1(s, h) = h(− 1
β

+
1

1− e−β
) −→ h

2
,

a1(s, h) = h(− 1
β2

+
1

2(1− e−β)
+

e−β

β(1− e−β)
) −→ h

3
,

b2(s, h) = h− b1(s, h),

a2(s, h) =
h

2
− b1(s, h) + a1(s, h).

(2.7)

These functions decentralize the scheme in the opposite sense than the functions
defined by (2.4). We also remark that for negative values of s the functions
(2.7) coincide with those from (2.4) for positive values of the same parameter.

3. Existence and uniqueness of solution for the adjoint
method scheme

A proof for the existence and uniqueness of solution for the original continu-
ous problem (1.1) associated to operator (1.5) can be found in [8], pp. 9-14.
We shall now concentrate on the obtention for sufficient conditions in order
to assure that a scheme of the type (2.5) has a unique solution. With this
purpose we rewrite system (2.5) –analogously, (2.6)–, whose unknowns are
(u1, . . . , uN ) ∈ RN , as

−ε

1∑

l=−1

αj,luj+l + G(uj−1, uj , uj+1, hj , hj+1)

+ B(uj−1, uj , uj+1, hj , hj+1) = fj ,∀j ∈ {1, . . . , N},
(3.1)

where the functions and coefficients here introduced are defined as follows:

αj,−1 =
1
hj

, αj,1 =
1

hj+1
, αj,0 = −αj,−1 − αj,1, ∀j ∈ {1, . . . , N} ,

G(y−1, y0, y1, h0, h1) =

y1∫

0

ϕ1(s, h1)ds−
y0∫

0

ϕ2(s, h1)ds−

( y0∫

0

ϕ1(s, h0)ds−
y−1∫

0

ϕ2(s, h0)ds
)
,
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B(y−1, y0, y1, h0, h1) = ε

1∑

l=−1

(αj,lyl) +

y1∫

0

(b1 − a1)(s, h1)ds +

y0∫

0

a2(s, h1)ds

+

y0∫

0

a1(s, h0)ds +

y−1∫

0

(b2 − a2)(s, h0)ds.

Taking into account this reformulation of scheme (2.6), we now set to study
some properties satisfied by it. To begin with, we enunciate the next result.

Lemma 3.1. For every vector u = (u1, . . . , uj , . . . , uN ) ∈ RN and for every
hj and hj+1 which satisfy relationships

h2
jhj+1 − 2ε(hj + hj+1) > 0, hjh

2
j+1 − 2ε(hj + hj+1) > 0, ∀j ∈ {1, . . . , N} ,

scheme (2.6) satisfies the following five properties:

(i) αj,l ≥ 0, for l = −1, 1,

(ii)
1∑

l=−1

αj,l = 0,

(iii)
∂G

∂yl
(uj−1, uj , uj+1, hj , hj+1) ≤ 0, for l = −1, 1,

(iv) G(y, y, y, h, h) = 0,

(v)
∂B

∂yl
(uj−1, uj , uj+1, hj , hj+1) ≥ µ > 0, for l = −1, 0, 1.

Proof. Properties (i), (ii) and (iv) are straightforward deduced. As for Prop-
erty (iii), it suffices to take into account that both ϕ1 and ϕ2 are negative
functions and that

∂G

∂y−1
(uj−1, uj , uj+1, hj , hj+1) = ϕ1(uj+1, hj+1),

∂G

∂y1
(uj−1, uj , uj+1, hj , hj+1) = ϕ2(uj−1, hj).

Finally we prove the slightly more complex Property (v). It can be checked
that

∂B

∂y−1
(uj−1, uj , uj+1, hj , hj+1) = (b2 − a2)(uj−1, hj) +

ε

hj
≥ ε

hj
> 0,

and also that
∂B

∂y1
(uj−1, uj , uj+1, hj , hj+1) = (b1 − a1)(uj+1, hj+1) +

ε

hj+1
>

ε

hj+1
> 0,

while the other partial derivative of B takes the value
∂B

∂y0
(uj−1, uj , uj+1, hj , hj+1) = a1(uj , hj) + a2(uj , hj+1)− ε

hj
− ε

hj+1
.
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It can be checked that sum a1 + a2 attains its minimal value either when uj

tends to +∞ (whose limit is then hj+1/2) or else when uj tends to −∞ (whose
limit is hj/2). As a result, if

min
{

hj+1

2
− ε

hj
− ε

hj+1
,
hj

2
− ε

hj
− ε

hj+1

}
> 0, (3.2)

then the partial derivative ∂B/∂y0 is also positive. As a matter of fact, con-
dition (3.2) is satisfied whenever the assumptions of Lemma 3.1 concerning hj

hold for every j. Furthermore, if we adjust a little these assumptions it can be
ensured that the number from (3.2) is lowerly bounded by a sufficiently small
positive number µ0. Then, it is enough to take

µ = min
{

ε

h1
, . . . ,

ε

hN+1
, µ0

}

for Property (v) to hold. ¤X

Result 3.2. When the same operator LB defined by (1.5) is discretized by a
direct finite element method by using the functions introduced in (1.7), it arises
a scheme of the type (1.6). Then, simultaneous verification of all the Properties
(i)-(v) stated in Lemma 3.1 turns out to be impossible.

Proof. If scheme (1.6) is rewritten in the form (3.1), the part of it derived from

the term −εu′′ presents the expected form −ε
1∑

l=−1

(αj,luj+l), where αj,−1 =

1/hj , αj,1 = 1/hj+1 and αj,0 = −αj,−1 − αj,1. However, taking into account
that the supports for both functions φj(x) and functions ψj(x) lay on the
intervals [xj−1, xj+1], as well as that for every point in the interval [0, 1] it is

verified that
N+1∑
k=0

φ′k(x) = 0, then, the only possible choices of G and B for

function G(uj−1, uj , uj+1, hj , hj+1) to verify Property (iv) are

G(uj−1, uj , uj+1, hj , hj+1) =
j+1∑

i=j−1

ui

1∫

0

φi(x)(
j+1∑

k=j−1

ukφ′k(x))ψj(x)dx,

B(uj−1, uj , uj+1, hj , hj+1) =
j+1∑

i=j−1

ui

1∫

0

φi(x)ψj(x)dx.

Property (iii) might not hold, when G is as previously stated. As a matter of
fact,

∂G

∂y−1
(uj−1, uj , uj+1, hj , hj+1) =

uj − 2uj−1

hj
(b1 − a1)(uj , hj)− uj

hj
a1(uj , hj),
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∂G

∂y1
(uj−1, uj , uj+1, hj , hj+1) =

2uj+1 − uj

hj+1
(b2 − a2)(uj , hj+1) +

uj

hj+1
a2(uj , hj+1),

where functions a1, a2, b1 and b2 are the same which were defined in (2.7) and
the parameter β takes the value sh/2ε. Then, if we suppose that uj cancels,
but that both uj−1 and uj+1 do not, and if we consider the limits for a1, a2,
b1 and b2 as stated in (2.7), we have that

∂G

∂y−1
(uj−1, uj , uj+1, hj , hj+1) =

−uj−1

3
,

∂G

∂y1
(uj−1, uj , uj+1, hj , hj+1) =

uj+1

3
.

Furthermore, if both uj−1 and uj+1 have the same sign, it is evident that
both expressions cannot be simultaneously negative and this renders impossible
the fact that scheme (1.6) verifies Property (iii). ¤X

In order to be able to assure the existence of solution we reproduce now the
next result, whose proof can be found in [9].

Propositión 3.3. Let T be an operator defined from RN onto RN such that it
verifies Properties (i) and (iii) from Lemma 3.1 and let us suppose that there
exist vectors u and u such that

T (u) ≤ f ≤ T (u) (3.3)

—where these vector inequalities are understood as N component-wise—. Then,
system Tu = f has a solution in RN .

Propositión 3.4. Under the assumptions of Lemma 3.1, scheme (2.6) presents
a solution for every f ∈ RN .

Proof. It suffices to apply Proposition 3.3 to the operator LB from (2.6). There-
fore, in order to find two vectors u and u which satisfy inequalities (3.3), we
define:

m =
1
3µ

max
1≤j≤N

|B(0, 0, 0, hj , hj+1)− fj | =
1
3µ

max
1≤j≤N

|fj |,

where µ is the constant from Property (v) in Lemma 3.1. We now take u to
be the vector (−m, . . . ,−m)T . Then, as Properties (ii) and (iv) of Lemma 3.1
hold, each component j of the vector LB(u) takes the value

B(−m,−m,−m,hj , hj+1).

If we apply Property (v) three times to the latter number, one for every
partial derivative of B, is to say, for l = −1, 0, 1, and we also take into account
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the definition of m, we then obtain the sequence of inequalities

B(−m,−m,−m,hj , hj+1) ≤
B(0, 0, 0, hj , hj+1)− 3µm ≤ fj , ∀j ∈ {1, . . . , N} ,

and, as a consequence, LB(u) ≤ f . Finally, if we choose u to be the vector
(m, . . . , m)T , using the same reasoning as before, we attain the conclusion that
f ≤ LB(u). ¤X

Once completed the proof for the existence of solution for (2.6) –which means
that operator LB is onto–, we shall now study its uniqueness.

Theorem 3.5. Under the assumptions of Proposition 3.4, system (2.6) presents
a unique solution for every f in RN .

Proof. It suffices to note that for every real uj and every hj and hj+1

|(a1 − ϕ1)(uj , hj+1) + (a2 − ϕ2)(uj , hj)|
− |(ϕ1 + b1 − a1)(uj , hj)| − |(ϕ2 + b2 − a2)(uj , hj+1)|

is bigger than 0, which is equivalent to
∣∣− εαj,0 +

∂G

∂y0
+

∂B

∂y0

∣∣ >
∑

l∈{−1,1}

∣∣− εαj,l +
∂G

∂yl
+

∂B

∂yl

∣∣.

The last inequality means that, for every hj and hj+1 and every vector u ∈ RN ,
the jacobian matrix of system (2.6) is strictly diagonally dominant. This implies
that this matrix is invertible (see, for example, [7], p. 70). Now, by making use
of the inverse function theorem we can assure the existence of neighborhoods of
u and f where the operator LB is homeomorphism, in particular, one-to-one.
As Proposition 3.4 assures the operator to be onto, the previous reasoning
can hold for every f ∈ RN , and then injectivity does not limit to a mere
neighborhood, but holds for all the domain RN . This enables us to assure the
existence and uniqueness of solution for whichsoever vector f ∈ RN . ¤X

4. Grid adaptation

A problem defined on the interval I = [A,B] and belonging to the type (1.1) is
to be solved by a multigrid method. This involves the choice of different grids,
the finest of which will be the set Rl =

{
A, xl

1, . . . , x
l
Nl, B

}
. The first possible

strategy is to take Rl a uniform grid and afterwards modify it, according to
an established adaption criterion which suits the considered problem. This
criterion must pay attention to the variation of the approximate function and
its derivatives, by relocating the grid points in the regions where the highest
variations take place. In fact, it is preferable to adapt the finest grid instead
of the coarsest one, since this choice allows to adjust better the width of each
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subinterval, as well as to locate the boundary layers much faster. Then, in
every multigrid step, once the finest grid Rl is fixed, we also fix Rd for every
l−1 ≥ d ≥ 0 as the grid whose points are

{
A, xd

1, . . . , x
d
Nd, B

}
, where for every

index i ∈ {1, . . . , Nd}, we have that xd
i = xd+1

2i . The first set of grids is chosen
as R0

0, . . . , R
0
l , for every i, x0,d

i = ihd and hd = (B − A)/(Nd + 1). Then we
apply a multigrid iteration and check whether an adaption process is to be
performed or not. The adaption criterion handled in this work has been one
used in [3]. It aims to distribute a certain positive weight function m(x) in a
uniform way among the different subintervals generated by Rl. The function
m(x) to be used has been selected from [2]. It considers both the tangent and
the curvature for the approximate solution obtained at each iteration and its
expression is

m(x) = max
{

1
I1

∣∣du

dx

∣∣, 1
I2

∣∣d2u

dx2

∣∣
}

,

where I1 =
∫ B

A

∣∣du

dx

∣∣dx and I2 =
∫ B

A

∣∣d2u

dx2

∣∣dx. For simplicity we shall denote the

finest grid Rj
l as Rj = {xj

0, x
j
1, . . . , x

j
N , xj

N+1}, where xj
0 = A and xj

N+1 = B,
so that we have hj

i = xj
i+1 − xj

i , for 0 ≤ i ≤ N . We also consider uj
i = u(xj

i ),
for every 0 ≤ i ≤ N + 1, or rather we take uj

i as the approximation given by
the last multigrid iteration. Then, the adaption method consists then of the
following steps:

Step 1. Approximate calculus of the integrals I1 and I2 as

IA1 =
N+1∑

i=1

∣∣hj
i−1

du

dx
(xj

i )
∣∣, IA2 =

N+1∑

i=1

∣∣hj
i−1

d2u

dx2
(xj

i )
∣∣,

where, in order to approximate the derivatives of u on the points xj
i , we use

the following difference formulae:

du

dx
(xj

i ) =
uj

i − uj
i−1

hj
i−1

, ∀i ∈ {1, . . . , N + 1} ,

d2u

dx2
(xj

i ) =
2[hj

i−1(u
j
i+1 − uj

i )− hj
i (u

j
i − uj

i−1)]

hj
i−1h

j
i (h

j
i−1 + hj

i )
, ∀i ∈ {1, . . . , N} ,

d2u

dx2
(xj

N+1) =
d2u

dx2
(xj

N ).

Step 2. Calculus of the integral of the function m(x) on the interval I. We
start with the value S0 = 0 and we construct the following sequence Si:

Si = Si−1 + hj
i−1 max

{
1

IA1

∣∣du

dx
(xj

i )
∣∣, 1

IA2

∣∣d2u

dx2
(xj

i )
∣∣
}

,

for all i ∈ {1, . . . , N + 1}.
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Step 3. Uniform distribution on each subinterval of the function m(x). Let
δ be the mean value of the integral of m(x), SN+1, calculated in the previous

step, that means, δ =
SN+1

N + 1
.

Step 3A. If it happens that max
1≤i≤N+1

|Si − Si−1

δ
−1| < τ for a given tolerance

τ , then we consider m(x) to be well distributed and no further refinement is
developed. If this is not the case, we proceed with a new grid adaption.

Step 3B. Considering that the first and last grid points A and B are fixed,
this is to say, xj+1

0 = xj
0 and xj+1

N+1 = xj
N+1, the following operations are to be

performed to generate a new grid:
Step 3B1. We initialize the values i = 1, k = 1 and D = δ.
Step 3B2. If D > Sk, then we reset k = k + 1 and compare the resulting Sk

with D.
Step 3B3. Otherwise, if D ≤ Sk, we construct the new grid point as

xj+1
i = xj

k−1 +
D − Sk−1

Sk − Sk−1
hj

k−1.

It must be noted that, if D = Sk, then xj+1
i = xj

k, this is to say, xj
k remains in

the new grid, although perhaps related to another index.
Finally, if i < N , we go back to Step 3B2 and replace i by i + 1 and reset

D = iδ. Otherwise, if i = N , it means that the construction process of a new
grid has come to an end. We apply a new multigrid iteration to obtain a new
approximate solution of u and then we return to Step 1 to check if, according
to the most recent approximate solution, the last grid obtained is optimal or
not. It must be noted that the values of function u must be renewed in Step
3B3 by interpolation of the previous points, except for the case when in Step
3B we have that iδ = Sk; then, we just take uj+1

i to be uj
k, for it happens that

xj+1
i = xj

k.

5. Numerical experiments

In this section we treat some problems related to the operator LB defined by
(1.5), for whose resolution we use and compare Niijima’s scheme, the adjoint
method scheme deduced in this paper and the direct Petrov-Galerkin discretiza-
tion 1.6. As all these schemes are not linear, a Newton-multigrid method may
be performed to solve them (cf. [4]). The Newton-multigrid method is the
iterative method: {

u0
l ,

Ln
B(un+1

l − un
l ) = −Ln

B(un
l ),

∀n ≥ 0, (5.1)

where Ln
B(un

l ) is the outcome of applying the operator LB to the n-th iteration
of the method, un

l , and where Ln
B is the jacobian matrix evaluated at this last
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iteration, is to say, LB(un
l ). Every n-th iteration is obtained by solving the

system (5.1) with a multigrid method. It all results in a process which consists
of two steps:

Step 1. Take an initial approximation u0
l .

Step 2. For every n ≥ 0, take vl as un+1
l − un

l . Then, solve system
Ln

l (vl) = −Ln
l (un

l ), using a multigrid method and taking the first estimate
for this process, v0

l = 0. As the solution vl is expected to be close to 0, the use
of a nested grid iteration (cf. [4]) does not seem to be required.

In our computations we considered three problems of the same type{
−εu′′ + uu′ + u = 0, ∀x ∈ [0, 1],
u(0) = u0; u(1) = uN+1,

but with different boundary conditions:

Problem 1. u0 = 0, uN+1 = 1;

Problem 2. u0 = 1/10, uN+1 = −2;

Problem 3. u0 = −1, uN+1 = 1/2.

In order to solve these problems we used Niijima’s scheme, the direct fi-
nite element method and the adjoint method. When performing the last two
methods, some multigrid iterations using the grid adaption method previously
described were first carried out in order to locate the boundary layer. Once an
suitable grid was reached, it was kept fixed and new multigrid iterations were
effected until max

1≤i≤0
|un+1

i − un
i | was smaller than a given tolerance τe. As for

Niijima’s scheme, no grid adaption is possible, so that a uniform grid was taken.
However, if there exists a boundary layer in the solution Niijima’s method turns
out inadequate, as a highest number of unknowns would be required, so that
the results could faithfully reflect the multiscale character of the solution.

EX=2 EX=3 EX=4 EX=5 EX EX=9
Niijima 6 7 ↗ ↗ ↗ ↗

Adjoint method 3+5 7+4 6+14 9+5 6+4 9+6
Newton (Quadratic) 3+4 7+4 4+5 8+4 7+4 8+5

Newton (Exponential) 3+4 6+4 4+4 7+4 8+4 11+3
Newton (Hughes-Brooks) 3+4 5+4 6+4 6+4 7+4 18+4

Newton (Galerkin) 4+3 7+3 6+4 9+3 ↑ ↑
Table 1

Problem 1 was proposed in [14], while the rest have been solved in [11], using
Niijima’s scheme. The solutions for the selected problems represent different
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EX=2 EX=3 EX=4 EX=5 EX EX=9
Niijima 7 8 12 12 12 12

Adjoint method 1+6 3+6 4+5 5+5 6+6 8+6
Newton (Quadratic) 5+3 6+3 7+4 8+3 8+4 11+4

Newton (Exponential) 5+3 8+3 9+3 7+3 6+4 8+4
Newton (Hughes-Brooks) 5+3 6+4 6+4 6+4 8+3 11+3

Newton (Galerkin) 7+3 9+14 ↑ ↑ ↑ ↑
Table 2

EX=2 EX=3 EX=4 EX=5 EX EX=9
Niijima 6 7 ↗ ↗ ↗ ↗

Adjoint method 2+6 3+8 4+8 4+25 5+18 7+22
Newton (Quadratic) 3+4 6+5 4+↗ 8+↗ 7+↗ 10+5

Newton (Exponential) 3+4 5+4 6+3 6+4 7+4 11+4
Newton (Hughes-Brooks) 3+5 4+13 5+12 6+9 8+8 12+8

Newton (Galerkin) 3+4 7+4 ↑ ↑ ↑ ↑
Table 3

models of boundary layers depending on the choice of u0 and uN+1. Thus,
Problem 1 presents a boundary layer close to 1, while Problem 2 gives rise to a
boundary layer on the left of the interval and Problem 3 presents two boundary
layers at both ends of the interval. In Figures 1, 2 and 3 the numerical solutions
corresponding to each problem are depicted in relationship to the parameter
EXP from ε = 10−EXP. To obtain them, the adjoint method discretization
with exponential functions was used. We present as well three different tables
related to each considered problem. We specify there the number of iterations
necessary to attain an error between two consecutive iterations smaller than
τe = 10−8 for the three different possibilities of discretization considered in this
paper. When applying them, we chose a Kaczmarz smoothing process. This
is an outstandingly working smoothing method for non-symmetric matrices,
which was studied in [4], among others. For the Petrov-Galerkin discretization
the test functions were chosen from a rank of quadratic, exponential and linear
ones, those latter functions continuous (the Galerkin case) or discontinuous
(the Hughes-Brooks case). We remind that the adjoint method, as indicated
in Section 2, was derived using exponential test functions. We also indicate
that for every discretization case 3 different grids were built, the coarsest one
owning 11 grid points and the finest one 47 grid points apart from the ends of
the interval.

The first digit of each entry in the tables indicates the number of grids which
must be constructed by the different methods in order to properly adjust the
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shape of the solution. For example, 7 means that 6 grid adaptations took place
and 1 that no grid adaption was issued and the original uniform grid remained
in the following multigrid iterations. The second digit stands for the number
of iterations executed once a fixed grid has been reached. So, if 7+4 is to be
read, that means that 7 iterations with changing grids were executed until a
definite grid was attained and afterwards other 4 iterations were carried out
until the error diminished below the before-mentioned tolerance. If there states
↑, it means that the corresponding method applied to the chosen problem for
the indicated value of ε diverged. On the other hand, if ↗ is to be found, it
means that the method yielded an oscillating solution, close to the real one but
incapable of reducing the error under the given tolerance 10−8. For Niijima’s
method only one digit stands in the table, as this method is only applicable
to uniform grids. Logically when the exponent is bigger than 2 no trace of
the boundary layer can be found at the 47 grid points of the finest grid (that
is, no fitted shape to the true solution can be expected), so that the method
cannot actually be compared to the others even in the case of Problem 2, when
it presents convergence. In general, we conclude that, even if both the adjoint
method scheme and the direct finite element discretization require a similar
number of iterations to reach convergence, the first one yields a definitive grid
much faster. This suggests that a combination of both methods, using first the
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adjoint scheme to obtain an optimal grid and, after that, a Petrov-Galerkin
discretization might be used in order to accelerate the convergence. This will
be the focus of a subsequent work.
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