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Abstract. Results on common fixed points for pairs of single and multivalued
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common fixed point theorem for a pair of generalized contraction self-maps and
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1. Introduction

There have been several extensions of known results on fixed points of single
valued mappings to fixed points of multivalued mappings, i.e., of mappings
which take points of a metric space (X, d) into closed and bounded subsets
of X. On the other hand, Khan [4] has established fixed point theorems for
self-maps of a complete metric space by altering the distance between points by
means of a continuous and strictly increasing function φ : [0, +∞) → [0,+∞)
such that

(H) : φ(t) = 0 iff t = 0.

Following this technique, for example, Rashwan and Sadeek [7] established the
following theorem.
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Theorem 1.1. Let T, S be self-maps of a complete metric space (X, d) and φ
be a continuous and strictly increasing function: [0, +∞) → [0, +∞) satisfying
(H). Furthermore, let a, b, and c be three decreasing functions of IR into [0, 1)
such that

a(t) + 2b(t) + c(t) < 1
for all t > 0. Suppose that T and S satisfy

φ(d(Tx, Sy)) ≤ a(d(x, y))φ(d(x, y)) + b(d(x, y))[φ(d(x, Tx)) + φ(d(y, Sy))]

+ c(d(x, y))min{φ(d(x, Sy)), φ(d(y, Tx))} (1.1)

for all x, y ∈ X, x 6= y. Then T and S have a unique common fixed point.

In this note we obtain a common fixed point result, by using the notion of
compatibility between a set-valued mapping and a single-valued mapping due
to Jungck [3], for a pair (I, J) of generalized contraction self-maps of a complete
metric space (X, d) and a pair (S, T ) of set-valued mappings on x satisfying
(see Section 2 for the meaning of the terms).

φ(d(Tx, Sy)) ≤ a(d(Ix, Jy))φ(d(Ix, Jy))

+ b(d(Ix, Jy))
[
φ(δ(Ix, Tx)) + φ(δ(Jy, Sy))

]

+ c(d(Ix, Jy))min
{
φ(D(Ix, Sy)), φ(D(Jy, Tx))

}
, (1.2)

where a, b, and c are continuous functions of [0, +∞) into [0, 1) such that

a(t) + 2b(t) + c(t) < 1, t > 0, (1.3)

and φ : [0,+∞) → [0, +∞) is a continuous and increasing function which
satisfies (H).

2. Definitions and Preliminaries

Let (X, d) be a metric space. Then, following Fhisher [1] and Nadler [6], we
define

B(X) = {A | A is a nonempty bounded subset of X}.
D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}. (2.1)

If A = {a},we write D({a}, B) = d(a,B) = d(B, a).

H(A,B) = max{sup{d(a,B) | a ∈ A}, sup{d(b, A) | b ∈ B}}.
δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}. (2.2)

It is known, for example (Kuratowski [5]), that CB(X), the set of closed sub-
sets of X in B(X), is a metric space with distance function H.

Definition 2.1. A sequence (An) of subset of X is said to be convergent to a
subset A of X if
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(i) For every a ∈ A, there is a sequence (an) in X, an ∈ An for n =
0, 1, 2, . . ., which converges to a.

(ii) Given ε > 0, there exists a positive integer N such that An ⊆ Aε

for every n ≥ N , where Aε =
⋃

x∈A B(x, ε) and B(x, ε) = {y ∈ X |
d(x, y) < ε}.

We shall make frequent use of the following lemmas:

Lemma 2.1. If (An) and (Bn) are sequences in B(X) converging to A and B
in B(X), respectively, then the sequence (δ(An, Bn)) converges to δ(A,B).

Lemma 2.2. Let (An) be a sequence in B(X) and y be a point of X such that
δ(An, y) → 0. Then, the sequence (An) converges to the set {y} in B(X).

Lemma 2.3. Let (An) be a sequence of nonempty subsets of X and let a ∈ X
be such that limn→+∞An = {a}. If the self-map I on X is continuous, then
{Ia} is the limit of the sequence (IAn).

For a proof of Lemma 2.3, see [2].

Definition 2.2. The mappings T : X → B(X) and I : X → X are said to be
weakly commuting on X if ITx ∈ B(X) and

δ(ITx, TIx) ≤ max
{
δ(Ix, Tx), δ(Tx, Tx)

}
, x ∈ X.

Two commuting mappings T and I (TIx = ITx, x ∈ X) are clearly weakly
commuting. The converse is not true in general.

Definition 2.3. The mappings T : X → B(X) and I : X → X are weakly
compatible if they commute at their coincidence points (a point a ∈ X is a
coincidence point of I and T if Ta = {Ia}).
Definition 2.4. The mappings T : X → B(X) and I : X → X are compatible
if the following holds: For any sequence (xn) in X such that ITxn ∈ B(X),
Txn → {t} and Ixn → t for some t in X, it follows that δ(TIxn, ITxn) → 0.

Remark 2.1. It is immediate that two compatible mappings T and I are
weakly compatible (if a is a coincidence point of T and I, it suffices to consider
the constant sequence xn = a, n ∈ IN).

Two weakly commuting mappings are compatible, but the converse is false,
as it is shown in the following example.

Example 2.1. Let X = [0, +∞) with the Euclidean distance, Ix = x2 + 2x,
and Tx = [0, x2] for all x ∈ X. Then I and T are compatible but not weakly
commuting. In fact, for x = 1 we have

δ(IT1, T I1) = 9 > 3 = max{δ(I1, T1), diam(IT1)},
and thus TI1 = [0, 9] 6= [0, 3] = IT1.
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3. Main Result

In the next theorem we prove the existence of a unique common fixed point for
a pair of multi-valued mappings (T, S) and a pair of self-maps (I, J).

Theorem 3.1. Let (X, d) be a complete metric space and I, J be functions
from X into itself. Let T, S : X → B(X) be set-valued mappings such that

Tx ⊆ JX and Sx ⊆ IX (3.1)

for all x ∈ X. Let φ be an increasing and continuous function of [0, +∞) into
[0,+∞) satisfying (H) and

φ(δ(Tx, Sy)) ≤ a(d(Ix, Jy))φ(d(Ix, Jy))

+ (d(Ix, Jy))
[
φ(δ(Ix, Tx)) + φ(δ(Jy, Sy))

]

+ c(d(Ix, Jy))min
{
φ(D(Ix, Sy)), φ(D(Jy, Tx))

}
(3.2)

for all x, y x 6= y, in X, where a, b, c : [0,+∞) into [0, 1) are continuous func-
tions satisfying (1.3). Suppose in addition that either

(I) T and I are compatible, I is continuous and S, J are weakly compatible,
or

(II) S and J are compatible, J is continuous and T, I are weakly compatible.
Then I, J, T and S have a unique common fixed point a: Ta = Sa = {Ia} =
{Ja} = {a}.
Proof. Let x0 ∈ X, be given. By (3.1) one can choose a point x1 in X such that
Jx1 ∈ Tx0 = Y1, and a point x2 in X such that Ix2 ∈ Sx1 = Y2. Continuing
this way, we define by induction a sequence (xn) in X such that

Jx2n+1 ∈ Tx2n = Y2n+1, Ix2n+2 ∈ Sx2n+1 = Y2n+2. (3.3)

For simplicity, we set

δn = δ(Yn, Yn+1), n = 0, 1, 2, . . . (3.4)

It follows from (3.2) that for n = 0, 1, 2, . . .

φ(δ2n+1) = φ(δ(Y2n+1, Y2n+2)) = φ(δ(Tx2n, Sx2n+1)) ≤ A1 + A2 + A3,

where

A1 = a(d(Ix2n, Jx2n+1))φ(d(Ix2n, Jx2n+1)) ≤ a(δ2n)φ(δ2n),

A2 = b(d(Ix2n, Jx2n+1))
[
φ(δ(Ix2n, Tx2n)) + φ(δ(Jx2n+1, Sx2n+1))

]

≤ b(δ2n)
[
φ(δ2n) + φ(δ2n+1)

]
,

A3 = c(d(Ix2n, Jx2n+1))min
{
φ(D(Ix2n, Sx2n+1)), φ(D(Jx2n+1, Tx2n))

}
.

Since Jx2n+1 ∈ Tx2n then A3 = 0, which implies that

φ(δ2n+1) ≤ a(δ2n)φ(δ2n) + b(δ2n)
[
φ(δ2n) + φ(δ2n+1)

]
, (3.5)
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so that, taking (1.3) into account,

φ(δ2n+1) ≤ a(δ2n) + b(δ2n)
1− b(δ2n)

φ(δ2n) < φ(δ2n). (3.6)

Similarly, we have

φ(δ2n+2) ≤ a(δ2n+1) + b(δ2n+1)
1− b(δ2n+1)

φ(δ2n+1) < φ(δ2n+1). (3.7)

Since φ is increasing, (δn) is a decreasing sequence. Put δ = limn→+∞ δn. Then
δ = 0. In fact, from (3.6) and (3.7),

φ(δ) ≤ φ(δn) ≤ a(δn) + b(δn)
1− b(δn)

φ(δn−1) (3.8)

for all n, and letting n → +∞ in (3.8) yields

φ(δ) ≤ a(δ) + b(δ)
1− b(δ)

φ(δ) (3.9)

which, in view of (1.3), gives φ(δ) = 0. Hence, δ = 0.

Let yn be an arbitrary point in Yn for n = 0, 1, 2, . . . We claim that (yn) is
a Cauchy sequence. Since

lim
n

d(yn, yn+1) ≤ lim
n

δ(Yn, Yn+1) = 0,

it is sufficient to show that (y2n) is a Cauchy sequence. We proceed by con-
tradiction. Thus, assume there exists ε > 0 such that for each even integer 2k,
k = 0, 1, 2, . . . , even integers 2m(k) and 2n(k) with 2k ≤ 2n(k) ≤ 2m(k) can
be found for which

d(Y2m(k), Y2n(k)) > ε. (3.10)
For each integer k, fix 2n(k) and let 2m(k) be the least even integer exceeding
2n(k) and satisfying (3.10). Then

δ(Y2m(k)−2, Y2n(k)) ≤ ε, δ(Y2m(k), Y2n(k)) > ε.

Hence, for each even integer 2k we have, by the triangle inequality,

ε < δ(Y2m(k), Y2n(k)) ≤ δ(Y2n(k), Y2m(k)−2) + δ2m(k)−2 + δ2m(k)−1.

Letting k → +∞, we obtain

lim
k→+∞

δ(Y2m(k), Y2n(k)) = ε. (3.11)

Moreover, by the triangle inequality we also have

−δ2m(k) − δ2n(k) + δ(Y2m(k), Y2n(k)) ≤ δ(Y2n(k)+1, Y2m(k)+1)

≤ δ2m(k) + δ2n(k) + δ(Y2m(k), Y2n(k)),

and therefore
δ(Y2m(k)+1, Y2n(k)+1) → ε (3.12)
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when k → +∞. The same argument shows that

δ(Y2m(k)+1, Y2n(k)+1)− δ2n(k) ≤ δ(Y2m(k)+1, Y2n(k))

≤ δ(Y2m(k), Y2n(k)) + δ2m(k)

≤ δ2m(k) + δ(Y2m(k), Y2n(k)),

so that also

δ(Y2m(k)+1, Y2n(k)) → ε. (3.13)

On the other hand, by assumption(3.2),

φ(δ(Y2m(k)+2, Y2n(k)+1) = φ(δ(Sx2m(k)+1, Tx2n(k)))
≤ B1 + B2 + B3

≤ C1 + C2 + C3,

(3.14)

where

B1 = a(d(Ix2n(k), Jx2m(k)+1))φ(d(Ix2n(k), Jx2m(k)+1)).

B2 = b(d(Ix2n(k), Jx2m(k)+1))
[
φ(δ(Ix2n(k), Tx2n(k)))

+ φ(δ(Jx2m(k)+1, Sx2m(k)+1))
]
.

B3 = c(d(Ix2n(k), Jx2m(k)+1)) min
{
φ(D(Ix2n(k), Sx2m(k)+1)),

φ(D(Jx2m(k)+1, Tx2n(k)))
}
.

C1 = a(δ(Y2m(k), Y2n(k))− δ2m(k))φ(δ(Y2m(k), Y2n(k)) + δ2m(k)).

C2 = b(δ(Y2m(k), Y2n(k))− δ2m(k))
[
φ(δ2n(k)) + φ(δ2m(k)+1)

]
.

C3 = c(δ(Y2m(k), Y2n(k) − δ2m(k)))min
{
φ(δ(Y2m(k), Y2n(k)) + δ2m(k)

+ δ2m(k)+1, φ(δ(Y2m(k)+1, Y2n(k)))
}
.

Thus, from (3.11), (3.12) and (3.13), and letting k → +∞ in (3.14), we obtain

φ(ε) ≤ a(ε)φ(ε) + c(ε)φ(ε) < φ(ε)

which is a contradiction. This proves our claim.

Since (X, d) is complete, the sequence (yn) converges in X. Hence, the
sequences (Ix2n), (Jx2n+1) constructed in (3.3) converge to one and the same
a∈ X. Furthermore, the sequences of sets (Tx2n) and (Sx2n+1) converge to
the singleton {a}.

Now suppose that (I) is satisfied. Then I2x2n → Ia and ITx2n → Ia, which,
since T and I are compatible, implies that TIx2n → Ia.

Now we wish to show that a is a common fixed point of I, J , T and S.
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(i) a is a fixed point of I. Indeed, we have

φ(δ(TIx2n, Sx2n+1)) ≤ a(d(I2x2n, Jx2n+1))φ(d(I2x2n, Jx2n+1))

+ b(d(I2x2n, Jx2n+1))
[
φ(δ(I2x2n, T Ix2n)) + φ(δ(Jx2n+1, Sx2n+1))

]

+ c(d(I2x2n, Jx2n+1))min
{
φ(D(I2x2n, Sx2n+1)), φ(D(Jx2n+1, T Ix2n))

}
.

(3.15)

Letting n→ +∞ yields

φ(d(Ia, a)) ≤ a(d(Ia, a))φ(d(Ia, a)) + b(d(Ia, a))
[
φ(d(Ia, Ia)) + φ(d(a, a))

]

+ c(d(Ia, a))min
{
φ(d(Ia, a)), φ(d(Ia, a))

}

=
[
a(d(Ia, a)) + c(d(Ia, a))

]
φ(d(Ia, a)).

Hence, Ia = a.

(ii) a is a fixed point of T . Indeed,

φ(δ(Ta, Sx2n+1)) ≤ a(d(Ia, Jx2n+1))φ(d(Ia, Jx2n+1))

+ b(d(Ia, Jx2n+1))
[
φ(δ(Ia, Ta)) + φ(δ(Jx2n+1, Sx2n+1))

]

+ c(d(Ia, Jx2n+1))min
{

φ(D(Ia, Sx2n+1)), φ(D(Jx2n+1, Ta))
}
,

and letting n → +∞, gives

φ(d(Ta, a)) ≤ [
a(d(a, a)) + b(d(a, a)) + c(d(a, a))

]
φ(d(Ia, a)) = 0.

Hence, Ta = {a}.
(iii) Since Tx ⊆ JX for all x ∈ X, there is a point b ∈ X such that

Ta = {a} = {Jb}. (3.16)

We show that b is a coincidence point for J and S. Indeed, by (3.2) we have

φ(δ(Ta, Sb)) ≤ a(d(a, Jb))φ(d(a, Jb)) + b(d(a, Jb))
[
φ(δ(a, Ta)) + φ(δ(Jb, Sb))

]

+ c(d(a, Jb))min
{
φ(D(a, Sb)), φ(D(Jb, Ta))

}

= b(0)φ(δ(Jb, Sb)), r

the last equality being a consequence of (3.16). Thus

Sb = {a} = Ta = {Jb}, (3.17)

and b is as claimed.
Since J and S are weakly compatible, we deduce that

JSb = SJb = Sa = {Ja}. (3.18)

Also, φ(d(a, Ja)) = φ(d(Ta, Sa)) and (3.2), together with Ia = a, Ta = {a},
(3.16) and (3.17), ensures that d(Ta, Sa) = 0. This implies that {a} = {Ja} =
Sa, and the proof of existence of a common fixed point is complete under
assumption (I). The proof under assumption (II) is entirely similar. Since
uniqueness follows at once from (3.2), the proof of the theorem is complete. ¤X



32 M. ELAMRANI & B. MEHDAOUI

Remark 3.1. It follows from Remark 2.1, that the result of the above theorem
holds if T and I (or J and S) are assumed to be weakly commuting.

Corollary 3.1. Let (X, d) be a complete metric space and let T, S : X → B(X)
be set-valued mappings such that

φ(δ(Tx, Sy)) ≤ a(d(x, y))φ(d(x, y)) + b(d(x, y))
[
φ(δ(x, Tx)) + φ(δ(y, Sy))

]

+ c(d(x, y)) min
{
φ(D(x, Sy)), φ(D(y, Tx))

}
(3.19)

for all x, y, x 6= y, in X, where φ : [0, +∞) → [0,+∞) is an increasing
and continuous function which satisfies (H), and a, b, c : [0,+∞) → [0, 1)
are as in Theorem 3.1. Then T and S have a unique common fixed point a:
Ta = Sa = {a}.
Proof. It suffices to consider I = J = idX , the identity map of X, and apply
Theorem 3.1. ¤X

Remark 3.2. If we suppose that I, J, T and S are as in Theorem 3.1, but with
the condition

φ(δ(Tx, Sy)) ≤
a(d(Ix, Jy))φ(d(Ix, Jy)) + b(d(Ix, Jy))

[
φ(δ(Ix, Tx)) + φ(δ(Jy, Sy))

]

+ c(d(Ix, Jy))
[
φ(D(Ix, Sy)) + φ(D(Jy, Tx))

2

]

replacing (3.2), and if φ satisfies, in addition to the hypothesis of Theorem 3.1,
the condition

φ(2t) ≤ 2φ(t), t ≥ 0,

then we can prove similarly that I, J, T and S have a unique common fixed
point a:

{Ia} = {Ja} = Ta = Sa = {a}.

Acknowledgments. The authors thank the referee for his careful reading of
the original manuscript, for his observations that lead to many improvements,
and for his help in the preparation of the final version.

References
[1] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostick, Math.

Kolloq. 18 (1981), 69–77.
[2] B. Fisher & S. Sessa, On common fixed points of weakly commuting mappings and

set-valued mappings, Internat J. Math. Soc. 92 (1986), 323–329.
[3] G. Jungck, Compatible mappings and common fixed points (II), Internat. J. Math. and

Math. Sci. 11 (1986), 285–293.
[4] M. S. Khan, Fixed point theorems by altering distance between the points, Bull. Austral.

Math. Soc. 30 (1984), 1–9.



COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS 33

[5] Kuratowski, Topology, Volume 1, Academic Press, New York, 1966.
[6] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
[7] R. A. Rashwan & A. M. Sadeek, A common fixed point theorem in complete metric

spaces, Southwest Journal of Pure and Applied Mathematics 2 (1996), 6–10.

(Recibido en marzo de 2000; revisado por los autores en mayo y julio de 2001)
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