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Volumen 57(2023) páginas 27-41

On a Family of Polyhedral Singular

Vertices
Sobre una Familia de Vértices Singulares Poliédricos
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Abstract. We provide a local description of the curves with minimal length
based at singularities in a family of polyhedral surfaces. These singularities
are accumulation points of vertices with conical angles equal to π and 4π (or
3π, in a variation). While a part of the minimizing curves behaves quite like
the ones reaching conical vertices, the singularities present features such as
being connected to points arbitrarily close to them by exactly two minimizing
curves. The spaces containing such singularities are constructed as metric
quotients of an euclidean half-disk by certain identification patterns along its
edge. These patterns are examples of what is known as paper-folding schemes,
and we provide the foundational aspects about them which are necessary for
our analysis. The arguments are based on elementary metric geometry and
calculus.

Key words and phrases. Polyhedral surfaces, Singularities, Metric quotients.

2010 Mathematics Subject Classification. 57M50, 51F99.

Resumen. Proporcionamos una descripción local de las curvas con una longitud
mı́nima basada en singularidades en una familia de superficies poliédricas. Es-
tas singularidades son puntos de acumulación de vértices con ángulos cónicos
iguales a π y 4π (o 3π, en una variación). Si bien una parte de las curvas mini-
mizadoras se comporta como las que alcanzan los vértices cónicos, las singu-
laridades tienen caracteŕısticas tales como la posibilidad de estar conectadas
a puntos arbitrariamente cercanos a ellas mediante exactamente dos curvas
minimizadoras. Los espacios que contienen tales singularidades se construyen
como cocientes métricos de un semidisco euclidiano por ciertos patrones de
identificación de su borde. Estos patrones son ejemplos de lo que se conoce
como esquemas de plegado de papel, y proporcionamos los aspectos funda-
mentales sobre ellos necesarios para nuestro análisis. Las técnicas se basan en
geometŕıa métrica elemental y cálculo.

Palabras y frases clave. Superficies poliédricas, Singularidades, Cocientes métricos.
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28 MARCEL VINHAS

1. Introduction

This paper studies the geometry of polyhedral surfaces with singularities in
terms of their length structures. In these spaces, most points have either flat
or conical neighborhoods. However, they share the ambient space with points
around which the metric is not so well understood, such as accumulation points
of conical points. One way of obtaining spaces with this kind of property is an
extension of the usual method of constructing surfaces as quotients of polygons
by pairing subsegments of its sides. Certain developments in dynamical systems
[4] required the pairing of an infinite number of subsegments, leading to the
concept of paper-folding schemes [5]. Quotients by these schemes may have
singularities as the aforementioned, and also a number of other interesting
properties (they may not even be surfaces in the strict sense). We concentrate
on the local picture around a kind of singularity produced by a family of paper-
folding schemes, providing a depiction of how geodesics reach this special point.
This family consists of variations of a pattern in [4], and will be described in
the sequence – the dotted lines at the left of Figure 1 indicate the pairings. The
technique applies to the original pattern as well, as will be emphasized at the
end of the paper.

Figure 1. Identification pattern (1), with dotted lines connecting paired points; and
its quotient, the dashed lines being the length-minimizing curves of The-
orem 1.1. The set V is mostly on the “back side” of the picture.

Let D be a closed half-disk with its euclidean metric and J be the edge of D.
Denote by |J | the length of J . Consider three sequences of positive real numbers
bk, k ≥ 0, and a0,k, a1,k, k ≥ 1, such that b0 +

∑
k≥1(a0,k + a1,k + bk) = |J |/2.

Take compact intervals with lengths given by these sequences: βk and β′k, with
|βk| = |β′k| = bk, k ≥ 0; and αj,k and α′j,k, with |αj,k| = |α′j,k| = aj,k, k ≥ 1,
j = 0, 1. Place these intervals side-by-side along J , with disjoint interiors, in
the following order:

β′0 α0,1 α
′
0,1 β

′
1 α0,2 α

′
0,2 β

′
2 · · · ∗ · · ·β2 α

′
1,2 α1,2 β1 α

′
1,1 α1,1 β0 . (1)

In this expression, the symbol ∗ represents precisely one point in J , due to the
condition over the sequences of lengths. Now, identify each of these subintervals
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POLYHEDRAL SINGULAR VERTICES 29

to its prime, isometrically and reversing orientation. The resulting identification
pattern is depicted on the left of Figure 1.

Let S be the metric quotient of D associated to this pairing pattern, and
let G be the projection in S of J . It looks somewhat like the “singular cone”
on the right of Figure 1. In S, the point corresponding to ∗, also denoted as ∗
in this Introduction, is the limit of three sequences of conical vertices, which
are the projections of the endpoints of the paired segments. The total angles
around them are equal to: π, for two sequences pj,k (• in the Figure); or 4π,
for a sequence qk (j = 0, 1, k ≥ 1) (the crossings between distinct •). Our
main result describes how each point in S reaches ∗ through length-minimizing
curves, assuming a condition over the sequences bk and aj,k.

Theorem 1.1. Suppose that, for k ≥ 1, bk/a0,k and bk/a1,k are constant.
Then, there exist a closed plane sector in D, based at ∗, with internal angle
smaller than π, whose projection V in S has the following properties:

i) If x ∈ V , there exist an unique curve with minimal length from x to ∗. It
is contained in V and meets G only at ∗.

ii) If x ∈ S \ V , every curve with minimal length from x to ∗ passes by some
qk and is contained in G from there on. There are precisely either one or
two such curves, and the latter happens for points arbitrarily close to ∗.

A more precise version of Theorem 1.1 is given in Theorem 3.3, while Theo-
rem 3.5 is an analogous statement about the original pattern found in [4]. Based
on the approach [5, 7] of this kind of quotient by means of metric geometry
[1, 3], elementary arguments are employed until the matter reduces to an opti-
mization problem of a real function. The author hopes that this methodology
leads to further results on the metrics around singularities similar to the ones
treated here. Detailed statements of foundational results about the subject are
presented (Theorems 2.7, 2.11 and 2.14), as well as complete proofs of two basic
tools for dealing with it (Lemmas 3.1 and 3.2).

In the terminology of [5], a point such as ∗ is a singular 1-vertex, and the
identification pattern (1) is a piece of an example of a paper-folding scheme.
Considering these schemes along the borders of polygons, the approach intro-
duced in [5] develops topological, metric and conformal theories in order to
obtain dynamical applications regarding sequences of quotients. An important
result provides sufficient conditions for the complex structure on the regular
part of the quotient to extend across a singularity. It is not known if this con-
dition is necessary, while the geometric structure is present in any case. For
other applications of polyhedral surfaces in dynamical systems, we refer to [8].

In a similar vein, polyhedral surfaces are central in approximation results on
surfaces of bounded curvature [1]. In this context, points as ∗ implies that the
space containing it is not of bounded curvature, as every small neighborhood
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30 MARCEL VINHAS

of ∗ contains both thin and fat triangles. An incipient theory showing how
to approximate, in the Gromov-Hausdorff sense, such spaces by sequences of
polyhedral surfaces whose curvatures explode can be found in [6].

The paper is organized as follows: Section 2 sets basic notations and provides
basic statements about the metric quotients of paper-folding schemes, while
Section 3 deals with the proof of Theorem 1.1 (re-stated more precisely as
Theorem 3.3). The author thanks the organizing comitee of the III Encuentro
Matemático del Caribe for the kind invitation to present a talk, and particularly
to Jeovanny de Jesus Muentes Acevedo and Raibel de Jesus Arias Cantillo.
He also aknowledges: André de Carvalho, for presenting him to paper-folding
schemes; Minoru Enrique Akiyama Figueroa, for dicussions on the subject;
Jorge Salazar Morales for being helpful during the conclusion of this paper; the
Instituto de Ciências Exatas e Naturais of Universidade Federal do Pará for the
support during its preparation; and the referees for the considerate comments.

2. Quotients of paper-folding schemes

Throughout the paper, D is a half-disk with its euclidean metric, and J is
the edge of D. Points in D will be denoted as z, w, etc., while distances will
be denoted by |z w|. For z 6= w, [z, w] is the line segment in D with these
endpoints, and (z, w) is [z, w] minus its endpoints. The notations [z, w) and
(z, w] will be used accordingly. For a curve γ in D, |γ| denotes its length.

In this section, P is a paper-folding scheme on D, S is the associated metric
quotient, and π : D → S is the projection map. These concepts will be defined
in the sequence, in accordance with [5] and [3]. The main difference with respect
to [5] is that, since we are concerned only with local questions, it is not necessary
to define paper-folding schemes along the border of a polygon, but only along
the edge of a half-disk. For the sake of brevity, the definitions and statements
regarding metric objects were particularized to quotients associated to paper-
folding schemes.

Remark 2.1. The assumption that the geometry of D is euclidean is irrelevant
for most of the paper. The statements and proofs of basic results are true also
for gluings of hyperbolic or, with minor adaptations, spherical pieces. More
precisely, the euclidean setting is decisive in a part of the proof of Theorem 3.3,
where it will be explicitly mentioned.

Definition 2.2 ([5]). For each isometric compact intervals [p, q], [q′, p′] ⊂ J
with disjoint interiors, the associated pairing 〈[p, q], [q′, p′]〉 is the family of
subsets of [p, q] ∪ [q′, p′] of the form {z, z′}, with z ∈ [p, q] and z′ ∈ [q′, p′] such
that z−p = p′− z. Each such z and z′ are said to be paired and, if they belong
to the (p, q) and (q′, p′), {z, z′} is called an interior pair. A folding is a pairing
whose segments have a common endpoint, this point being called a folding
point. The length of a pairing 〈α, α′〉 is defined by |〈α, α′〉| = |α| = |α′|. A
paper-folding scheme on D is a collection P = {〈αj , α′j〉}j of pairings such that
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POLYHEDRAL SINGULAR VERTICES 31

the interiors of all intervals αj and α′j are disjoint, and
∑
j |〈αj , α′j〉| = |J |/2.

The collection of subsets ofD whose elements are points paired by some element
of P will also be denoted by P.

Definition 2.3. For each z, w ∈ D, write z P w if, either z = w, or z and w are
paired by some element of P. The associated quotient semi-metric is defined
on D by:

|z w|P = inf

N∑
j=1

|zj wj | , (2)

where the infimum is taken over every {zj , wj}Nj=1 such that z1 = z, wN = w
and wj P zj+1 for every j = 1, . . . , N − 1. Define the equivalence relation ∼P
on D by z ∼P w if, and only if, |z w|P = 0. Denote the equivalence class of
each z ∈ D with respect to ∼P by z̄, and let S = D/∼P be the set of all
these equivalence classes. Then | |P induces a metric in S, called the quotient
metric associated to P. The associated projection map π : D → S is defined by
π(z) = z̄. The set G = π(J) is the scar of S.

Mostly, we are going to employ an abuse of notation, denoting the metrics
of distinct spaces as | | and letting the points indicate the space in which
distances are being taken. For instance, while |z w| denotes a distance in D,
|z̄ w̄| denotes the distance between the projections of these points in S.

Definition 2.4. The length of a curve γ : [0, 1] → S is defined by |γ| =

sup
∑N−1
i=0 |γ(ti) γ(ti+1)|, where the supremum is taken over every partition

0 = t0 < · · · < tN = 1.

We are going to call γ minimizing if |γ| ≤ |γ′| for every curve γ′ joining
γ(0) and γ(1).

We now list a number of basic results on the subjects.

Theorem 2.5 ([3]). The projection map π : D → S does not increase distances.
In particular, π is a continuous surjection, and S is compact. It follows that
the metric of S is strictly intrinsic, in the sense that, for every z̄, w̄ ∈ S,
|z̄ w̄| = inf |γ|, where the infimum is taken over every curve γ in S joining z̄
and w̄, and is attained by some curve of this form.

A simple property of minimizing curves in S that will be used repeatedly
is that any restriction of a minimizing curve is minimizing. The following ter-
minology on extensions is not standard, but is helpful in our context. The
meaning of expressions as “a geodesic can be further extended from a point
on” will hopefully be made clear by the context.

Definition 2.6. A curve γ : I → S, where I is any interval, is a geodesic of S
if every t0 ∈ I has a neighborhood I ′ in I such that the restriction of γ to I ′ is
minimizing. A geodesic can be extended if its image is properly contained in a
geodesic, and can be uniquely extended if this geodesic is unique.
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32 MARCEL VINHAS

In the following results, the map π is employed to show that the metric
of S is either flat or conical around most of its points. The conclusions of
Theorems 2.7, 2.11 and 2.14 were stated, without proof and in a simplified form,
as the “Metric Structure Theorem” in [5]. The proofs are straightforward, but
technical (and, to the the author’s knowledge, a bit long, at least when done
by elementary means). They can be found in its entirety in [7] and, in a similar
vein, in [2]. These statements could also be strengthened to guarantee convexity
of the regions in the quotients, but this will not be relevant in our results.

The interior and the boundary of D as subset of the euclidean plane are de-
noted by IntD and ∂D. For any interval I, Int I denotes I minus its endpoints.

Theorem 2.7 (Interior Points). For each z ∈ IntD, and z̄ = π(z), the radius
r = d(z, ∂D)/2 is such that:

i) π−1(B(z̄, r)) = B(z, r) and π(B(z, r)) = B(z̄, r).

ii) π : B(z, r)→ B(z̄, r) is an isometry between these subspaces of D and S.

iii) The restriction of π to IntD is a length-preserving homeomorphism onto
its image.

iv) Every non-constant geodesic contained in π(IntD) can be uniquely ex-
tended to a geodesic of the form π((p, q)), where p, q ∈ ∂D.

We give a precise meaning to the concept of “conical vertex” using metric
cones over circles.

Definition 2.8. For each η > 0, let Cη be the circle with length equal to η,
with its intrinsic metric. The set Bη is defined as the (set theoretic) quotient
[0,+∞)×Cη by the equivalence relation that identifies any two elements of the
form (0, θ), and identify any other point only to itself. Denote by [r, θ] ∈ Bη the
equivalence class of each (r, θ) ∈ [0,+∞) × Cη. The element O = [0, θ] ∈ Bη,
with arbitrary θ, is the vertex of Bη. The conical metric in Bη is defined by:

|[r, θ] [s, θ′]| =

{√
r2 + s2 − 2rs cos |θ θ′| |θ θ′| ≤ π

r + s |θ θ′| ≥ π.

With this metric, Bη is the metric cone over Cη. To each r > 0, the ball in
Bη with radius r centered at O, with its subspace metric, will be denoted by
Bη(r) and called a conical neighborhood. The number η is the conical angle of
the vertex, or the total angle around it.

Theorem 2.9 ([3]). For each θ ∈ Cη, consider the geodesic γ = {[r, θ] ∈
Bη | r ≥ 0}. Then γ can be extended if, and only if, η ≥ 2π; and can be uniquely
extended if, and only if, η = 2π.
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POLYHEDRAL SINGULAR VERTICES 33

Theorems 2.11 and 2.14 locally factors π as a composition of an isometry
and a “gluing map” to obtain flat and conical neighborhoods around images of
points interior to paired segments, and images of basepoints of cyclic chains of
pairings, respectively.

Definition 2.10. Let 〈α, α′〉 ∈ P, z ∈ Intα be paired to z′ ∈ Intα′, and
r > 0 be such that B(z, r)∩ α ⊂ Intα and B(z′, r)∩ α′ ⊂ Intα′. In particular,
B(z, r) ∩ B(z′, r) = ∅. Denote B(r) = B(z, r) ∪ B(z′, r). An associated gluing
map i : B(r)→ B2π(r) takes each of B(z, r) and B(z′, r) to a half-disk of B2π(r)
isometrically, preserving orientation, and with the property that i(z1) = i(z2)
if, and only if, z1 = z2 or z1 and z2 are paired by 〈α, α′〉.

Theorem 2.11 (Interior Pairs). Let 〈α, α′〉 ∈ P. For each z ∈ Intα paired to
z′ ∈ Intα′, there exist r > 0 such that, with the notations of Definition 2.10:

i) π−1(B(z̄, r)) = B(r) and π(B(r)) = B(z̄, r).

ii) The equation π = φ ◦ i, where i is a gluing map, defines an isometry
φ : B2π(r)→ B(z̄, r), the latter being considered with the subspace metric.

iii) The restrictions of π to Intα and Intα′ define length-preserving homeo-
morphisms onto its images.

iv) π(Intα) = π(Intα′) is the unique geodesic extension of any non-constant
geodesic contained in it.

Definition 2.12. Let {pj}mj=1 be a sequence of pairwise distinct points in J .
These points are basepoints of a cyclic chain of pairings of P if: either m = 1
and p1 is the common endpoint of two paired segments, a so called folding
point ; or m > 1, pj is paired to pj+1, for j = 1, . . . ,m− 1, and pm is paired to
p1. The pairings of the chain are the pairings whose set of endpoints contain
{pj}mj=1.

Definition 2.13. Let {pj}mj=1 ⊂ Int J be the basepoints of a cyclic chain of
pairings of P, and let r > 0 be such that, for each j = 1, . . . ,m, the only
point of B(pj , r) ∩ J that is not interior to some pairing of the chain is pj . In
particular, these balls are pairwise disjoint. Denote B(r) = ∪mj=1B(pj , r). An
associated gluing map i : B(r) → Bmπ(r) takes each B(pj , r) to a sector with
internal angle π of Bmπ(r) isometrically, preserving orientation, and with the
property that i(z1) = i(z2) if, and only if, z1 = z2 or z1 and z2 are paired by
some pairing of the chain.

Theorem 2.14 (Conical Vertices). Let {pi}mi=1 ⊂ Int J be the basepoints of
a cyclic chain of pairings of P. Then there exist r > 0 such that, with the
notations of Definition 2.13:

i) π−1(B(p̄, r)) = B(r) and π(B(r)) = B(p̄, r).
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34 MARCEL VINHAS

ii) The equation π = φ ◦ i, where i is a gluing map associated to B(r), defines
an isometry φ : Bmπ(r) → B(z̄, r), where the latter is considered with its
subspace metric.

iii) Every geodesic in S of the form π((z, p)) extends to π((z, p]). It can be fur-
ther extended if, and only if, m ≥ 2; and can be further extended uniquelly
if, and only if, m = 2.

Notice that the last item in Theorem 2.14 is just Theorem 2.9. As will be
made clear in the sequence, there may be geodesics of the form π((z, w)) in S
such that π((z, w]) is not a geodesic. This property may be called singular, as
it implies that w̄ doesn’t have flat or conical neighborhoods.

3. Proof of Theorem 1.1 and Variations

Keeping the notations of Section 2, we first prove a general Lemma on quotients
associated to paper-folding schemes on D. Let C be the closed half-circle in ∂D,
and IntC be C minus its endpoints.

Lemma 3.1. There are no extensions of geodesics in S through points in
π(IntC).

Proof. First we show that, in fact, the restriction of π to IntP ∪ IntC is
a length-preserving homeomorphism onto its image. This property holds on
IntP due to Theorem 2.7, so the first step is to prove that π is injective on
IntC. Let z ∈ IntC and w ∈ D, w 6= z. Consider {zj , wj}Nj=1 as in Definition

2.3, and call ` =
∑N
j=1 |zj wj | its length. If w1 = w, then ` = |z w| > 0.

Otherwise, suppose that w1 ∈ IntP . Then, z2 P w1 implies that z2 = w1, and
the triangle inequality gives |z1 w1|+|z2 w2| > |z1 w2|. Repeating this argument,
a new sequence {z′j , w′j}N

′

j=1 can be obtained from {zj , wj}Nj=1, satisfying the
conditions of Definition 2.3, with length `′ < `, and such that, either w′1 = w, or
there exist z2 6= w′1 such that z2 P w′1. This last property implies that w′1 ∈ J ,
so |z1 w1| ≥ d(z1, J) > 0. This shows that the length of any sequence as in
Definition 2.3 is bounded below by d(z, J) and, therefore, |z̄ w̄| > 0. Notice
that, in fact, this argument is also the first step in a proof of Theorem 2.7.

So, the restriction of π to IntD ∪ IntC is a continuous injective map onto
its image. We leave to the reader the verification that its inverse is continuous.
Let us see that this restriction preserves lengths. For a curve γ : [0, 1] → D,
if γ(0) ∈ IntC and γ(t) ∈ IntD for t > 0, the length of γ̄ = π ◦ γ can be
computed as follows:

|γ̄| = lim
s→0
|γ̄|[s,1]| = lim

s→0
|γ|[s,1]| = |γ| . (3)

For this, we used the continuity of length (see [3]) and Theorem 2.7. In partic-
ular, if p, q ∈ IntC, then |π([p, q])| = |[p, q]|. Now, if γ is contained in C and
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{tj}Nj=1 is a sufficiently fine partition of [0, 1],

N−1∑
j=1

|γ̄(ti) γ̄(ti+1)| =
N−1∑
j=1

|π([γ(ti) γ(ti+1)])| =
N−1∑
j=1

|γ(ti) γ(ti+1)|. (4)

This suffices to prove that |γ̄| = |γ|.
Finally, suppose that γ̄ : (−ε, 0] → S is a geodesic with γ(0) ∈ π(IntC),

where ε > 0. The homeomorphism obtained above defines a geodesic γ in D
with γ(0) ∈ IntC. As γ clearly cannot be extended through γ(0), the result
follows. �X

For each w ∈ J , denote by w⊥ the line segment of D that contains w and
is perpendicular to J .

Lemma 3.2. For every w ∈ J and z ∈ w⊥, π([z, w]) is the unique minimizing
curve in S from z̄ to w̄. It follows that |z̄ w̄| = |z w|.

Proof. Take z ∈ w⊥, z 6= w, and consider a minimizing curve γ̄ from z to w,
whose existence is guaranteed by Theorem 2.5. First assume that z ∈ IntD, so
z̄ ∈ π(IntD). Then, Theorem 2.7 says that an initial portion of γ̄ is contained
in π((p, q)) for some p, q ∈ ∂P . At least one among p and q does not lie in
C, otherwise γ̄ wouldn’t reach w̄, due to Lemma 3.1. Assume that q ∈ J and
suppose, for a contradiction, that q 6= w. So γ̄ ⊃ π([z, q]), and |z̄ w̄| = |γ̄| ≥
|π([z, q])|. Now, by continuity (see [3]), this length can be obtained as the limit
when q′ → q along [z, q]. Since q′ ∈ IntD, Theorem 2.7 applies. This, with the
continuity of distance, gives:

|π([z, q])| = lim
q′→q

|π([z, q′])| = lim
q′→q

|z q′| = |z q| . (5)

However, w is the closest point to z in J , and |z q| > |z w|. The conclusion
is that |z̄ w̄| > |z w|, contradicting Theorem 2.5. Therefore, q = w, and γ̄ =
π([z, w]). �X

We now restrict the discussion to the paper-folding scheme P on D defined
by (1) in the Introduction. Recall that it depends on sequences of positive real
numbers bk = |βk| = |β′k|, k ≥ 0, and aj,k = |αj,k| = |α′j,k|, j = 0, 1, k ≥ 1

satisfying b0+
∑
k≥1(a0,k+a1,k+bk) = |J |/2. Denoting β̄k = π(βk) = π(β′k) and

ᾱj,k = π(αj,k) = π(αj,k), Theorem 2.11 implies that |β̄k| = bk and |ᾱj,k| = aj,k.
Let’s fix notations for the endpoints of paired segments: β′k = [q−k,0, q

−
k+1,0],

α0,k = [q−k,0, p0,k], α′0,k = [p0,k, q
−
k,1], . . . , α′1,k = [q+

1,k, p1,k], α1,k = [p1,k, q
+
k,0],

βk = [q+
k+1,0, q

+
k,1], where k ≥ 0 when indexing the betas, and k ≥ 1 when

indexing the alphas. Notice that each pj,k, j = 0, 1 and k ≥ 1, is the folding
point of the fold 〈αj,k, α′j,k〉, while q+

k,0, q+
k,1, q−k,1 and q−k,0, for k ≥ 1 are the
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basepoints of a chain of pairings. Therefore, Theorem 2.14 guarantee that their
projections p̄j,k and q̄k indeed are conical vertices with total angles equal to π
and 4π around it.

We denote by z0 ∈ D the point ∗ of the Introduction. Parametrize the
points in D as z = z(r, θ), where r = |z z0| and, for z 6= z0, θ is the angle
formed at z0, in the clockwise direction, by z⊥0 and [z0, z] (see Figure 2). Thus,
θ ∈ [−π/2, π/2] and r is a non-negative number bounded above by a function of
θ. We now rephrase Theorem 1.1 in a form that is more precise and convenient
for its proof. The set V of the previous statement is equal to π({−θ0 ≤ θ ≤ θ1}).
If cj = bk/aj,k are the constants in Theorem 1.1, its relation to the sj of
Theorem 3.3 is given by sj = cj/(2 + cj).

Theorem 3.3. Suppose that there exists constants 0 < sj < 1, j = 0, 1, such
that, for every k ≥ 1:

bk = sj(2aj,k + bk) (6)

Let θj ∈ arcsin(sj) ∈ (0, π/2). For each z = z(r, θ) ∈ D the following holds:

i) If θ ∈ [−θ0, θ1], then π([z, z0]) is the unique minimizing curve of S from z̄
to z̄0.

ii) If θ ∈ [−π/2,−θ0)∪ (θ1, π/2], then every minimizing curve of S from z̄ to
z̄0 is the concatenation of a curve from z̄ to some q̄k and ∪j≥kβ̄j. There
are points z̄ of this form arbitrarily close to z̄0 that can be joined to z̄0 by
exactly two minimizing curves.

Proof. Let z = z(r, θ) ∈ D0, z 6= z0, and consider a minimizing curve γ̄ from
z̄ to z̄0. We are going to show that γ̄ has the stated form by eliminating every
other possibility. First, in case θ = 0, then z ∈ z⊥0 , and the uniqueness in
Lemma 3.2 guarantee that γ̄ = π([z, z0]). In this case, denote this curve by
[z̄, z̄0].

Consider the cases θ = ±π/2, so z̄ ∈ G = π(J). Suppose, by contradiction,
that γ̄ leaves G.

Then, due to Theorem 2.7, γ̄ can be uniquely prolonged until it reaches
π(IntC), and cannot be further prolonged by Lemma 3.1. Therefore, γ̄ does
not reach z̄0. We conclude that γ̄ does not leave G. By a similar reason, γ̄ does
not enter the the ᾱj,k, otherwise it ends at p̄j,k, by Theorems 2.11 and 2.14.
Finally, if γ̄ passes by some q̄k, then q̄j /∈ γ̄ for every 0 ≤ j < k, on the contrary
γ̄ ends at q̄0. The only remaining possibility is that γ̄ goes from z̄ to some q̄k,
and from there on it coincides with ∪j≥kβ̄j , as stated. In this case, we also
denote this curve by [z̄, z̄0]. As a consequence, |q̄k z̄0| = Bk for every k ≥ 0,
and |p̄k z̄0| = ak +Bk, where Bk is defined by:

Bk =
∑
i≥k

bi . (7)
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From here on we treat the remaining cases: −π/2 < θ < π/2, θ 6= 0. Notice that
γ̄ does not meet π(z⊥0 ) except at z̄0. Otherwise, from the meeting point w̄ on,
the first case in this proof says that γ̄ coincides with [w̄, z̄0]. Then, the triangle
inequality, applied to a flat neighborhood of w̄ (Theorem 2.7), implies that γ̄ is
not minimizing around w̄, contradicting the minimizing property of restrictions
of minimizing curves. By a reasoning similar to the one on the second case, γ̄
doesn’t meet the interior of any ᾱj,k. It is also clear that no p̄j,k belongs to γ̄,
as there are no extensions of geodesics through it. And, if γ̄ passes by some q̄k,
it coincides from there on with [q̄k, z̄0].

Assume that θ > 0, the case θ < 0 being analogous. The conclusion of the
discussion above is that either γ̄ = π([z, z0]); or, for some k ≥ 0 and n = 0, 1,
γ̄ = γ̄k,n, defined as the concatenation of π([z, q+

k,n]) with [q̄k, z̄0]. Moreover,
the possibility n = 1 is excluded, as it violates the triangle inequality in a
conical neighborhood of q̄k. Simplify the notation to q+

k,0 = qk, γ̄k,0 = γ̄k, and
s1 = s. The lengths of our possible γ̄, namely π([z, z0]) and γ̄k, are equal to r
and |z qk|+Bk, respectively. In order to compare these quantities, we solve an
elementary calculus optimization problem. Due to the hypothesis (6),

|z qk|+Bk = |z qk|+ s
∑
j≥k

(2aj + bj) = |z qk|+ s|qk z0| . (8)

The values assumed by right-hand side, as well as the value r = |z z0|, are
contained in the values assumed by |z w| + s|w z0| when w varies in J . For
our purposes, we found convenient to parametrize such w and to express (8)
as follows. Here, for the first time in this proof, we used the relation between
bk and ak. And now the assumption that the geometry of D is euclidean will
finally be employed (see the remark at the start of Section 2).

Figure 2. Notations in the proof of Theorem 3.3

For each ϕ ∈ (−π/2, π/2), consider the geodesic ray that leaves z forming
an angle equal to ϕ, in the clockwise direction, with the perpendicular to J
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through z (see Figure 2). This geodesic ray reaches either J , or a prolongation
of it, in a point w = w(ϕ) satisfying

|z w| = r cos θ secϕ . (9)

Let z′ ∈ J be the orthogonal projection of z. Then |w z0| = |z′ z0| ± |w z′|,
depending on whether ϕ < 0 or ϕ ≥ 0. In any case, summing (9) with s|w z0|,
and expressing in terms of ϕ gives:

|z w|+ s|w z0| = |z w|+ s(r sin θ − |z w| sinϕ)(10)

= r cos θ secϕ+ s(r sin θ − r cos θ tanϕ)(11)

= f(ϕ),(12)

where f : (−π/2, π/2)→ R is defined by:

f(ϕ) = r cos θ(secϕ− s tanϕ) + sr sin θ . (13)

Therefore, the lengths of the candidates to minimizing curves are given by
values of f : in fact, f(θ) = r; and if w(ϕ) = qk, then the left-hand side of (10)
coincides with (8).

Looking for critical points of f ,

f ′(ϕ) = r cos θ(tanϕ secϕ− s sec2 ϕ) = 0, (14)

we find out that ϕ∗ = arcsin(s) is the unique critical point. Since 0 < s < 1,
0 < ϕ∗ < π/2. It is a global minimum, as

f ′′(ϕ) = r cos θ secϕ(sec2 ϕ+ tan2 ϕ− 2s secϕ tanϕ) > 0 (15)

for every ϕ ∈ (−π/2, π/2). This is clear if tanϕ ≤ 0, and it follows from
0 < s < 1 if tanϕ > 0, as the last factor is greater than (secϕ− tanϕ)2 in this
case.

The location of ϕ∗ with respect to θ provides the two cases of the statement.
If θ ≤ ϕ∗, then π([z, z0]) is a minimizing curve from z̄ to z̄0. It is unique, as the
lengths of γ̄k are values of f for ϕ < θ. And, if θ > ϕ∗, then γ̄k is minimizing
for some k ≥ 0 such that qk is nearby w(ϕ∗). More precisely, the behaviour of f
implies that, if w(ϕ∗) ∈ [qk+1, qk], then γ̄k or γ̄k+1 is minimizing. It is possible
that both have this property, as will be shown in the sequence by a continuity
argument.

Since f attains each of its values at most two times, there are at most
two minimizing curves from z̄ to z̄0. One condition that ensures uniqueness
is w(ϕ∗) = qk. For a fixed θ0 > ϕ∗, there exist zk = z(rk, θ0) such that this
happens provided that k is big enough. More precisely, let k0 ≥ 0 be such that,
for every k ≥ k0, the geodesic ray leaving qk with angle equal to ϕ∗ formed
in the counter-clockwise direction with q⊥k , meets {θ = θ0} in the point zk.
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Of course, rk → 0 as k → +∞. For each k ≥ k0, let [z̄k, z̄0] be the unique
minimizing curve from z̄k to z̄0. Since the point w(ϕ∗) associated to each z ∈
[zk, zk+1] lies in [qk+1, qk], the possible minimizing curves from such z to z̄0

are the concatenations π([z, qk+1]) ∪ [q̄k+1, z̄0] and π([z, qk]) ∪ [q̄k, z̄0]. Let g :
[zk, zk+1]→ R be the function defined by the difference of the lengths of these
curves. It is continuous, and the signs of its values at zk and zk+1 are opposite,
due to the uniqueness of [z̄k, z̄0] and [z̄k+1, z̄0]. Therefore, the lengths are equal
for some z1 in the domain of g, and z̄1 can be joined to z̄0 by exactly two
minimizing curves. For a further refinement on the location of z1, one can
check that it lies between zk and the intersection of {θ = θ0} with p⊥0,k. This

concludes the proof of the theorem. �X

Remark 3.4. While V = π({−θ0 ≤ θ ≤ θ1}) is a plane sector in S when
considered with its intrinsic metric induced by the metric of S, this is not true
if the metric considered in V is the subspace one. For instance, by choosing
big s0, s1 ∈ (0, 1), it is easy to see that there are points among the projections
of the intersections of (q±j,k)⊥ with {θ = −θ0} and {θ = θ1} that go to each
other minimizing length passing by the qk. The question of determining |z̄ w̄|
for points w̄ 6= z̄0 will be left for future investigations.

To conclude the paper, we briefly describe an identification pattern in [4],
depicted in Figure 3 with its quotient. The pairings are:

β′0 β
′
1 β
′
2 · · · ∗ · · ·β2 α

′
2 α2 β1 α

′
1 α1 β1 β0 . (16)

It is similar to (1) and would coincide with it if a0,k = 0 for every k ≥ 1, corre-
sponding to s0 = 1 and θ0 = π/2. Following step-by-step the above argument,
one can prove:

*

*

Figure 3. Paper-folding scheme (16) and its quotient, depicted in a more loose way
when compared to Figure 1. The points • and ⊥ are conical vertices with
angles π and 3π, respectively. Dashed lines are the minimizing curves as
in Theorem 3.5.

Theorem 3.5. Let S be the quotient of D associated to a paper-folding scheme
of the form (16). Suppose that |βk|/|αk| is constant. Let z0 ∈ D correspond to
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∗, and employ the notations introduced before Theorem 3.3. Then, there exist
θ1 ∈ (0, π/2) such that, for each z = z(r, θ) ∈ D:

i) If θ ∈ [0, θ0], then π([z, z0]) is the unique minimizing curve from z̄ to z̄0.

ii) If θ ∈ (θ0, π/2], then every minimizing curve of S from z̄ to z̄0 is the
concatenation of a curve from z̄ to some q̄k and ∪j≥kβ̄j. There are points
z̄ of this form arbitrarily close to z̄0 that can be joined to z̄0 by exactly two
minimizing curves.

Finally, notice that, in case both sequences aj,k are equal to zero, then ∗ is
just a folding point. So, a fold can be seem as a degeneration of the families of
singularities considered in this paper.
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