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Abstract. In his celebrated article of 1956, John Milnor established the exis-
tence of smooth structures on the 7-dimensional sphere that differs from the
usual one. These so-called “exotic” structures have been of great interest ever
since. The purpose of this article is to give a clear exposition of the different
tools that Milnor used in order to provide an almost self-contained construc-
tion of exotic structures on the 7-dimensional sphere and then to show that
they are not diffeomorphic to the standard sphere.
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Resumen. En su célebre art́ıculo de 1956, John Milnor estableció la existencia
de estructuras suaves en la esfera de dimensión 7 que difieren de la estructura
usual. Éstas son llamadas estructuras “exóticas” las cuáles desde entonces
fueron de gran interés. El propósito del presente art́ıculo es dar una clara
exposición de las diferentes herramientas que Milnor usó para ofrecer una
construcción de las esferas exóticas en dimensión 7 y verificar que no son
difeomorfas a la esfera usual.

Palabras y frases clave. esfera, signatura, clases caracteŕısticas.
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1

I found I could actually prove that it was homeomorphic to the
standard 7−sphere, which made the situation seem even worse!
John Milnor
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1. Introduction

1.1. Spheres and their topological invariants

Among the most classic objects in mathematics are the spheres. As far back as
Ancient Greece, the unit circle can be described, although perhaps not in this
language, as the set of pairs of real numbers (x, y) that satisfy the equation

x2 + y2 = 1 .

As we increase the dimension, the sphere consists of all triples (x, y, z) ∈ R3

satisfying x2 +y2 +z2 = 1. Continuing with this process, we define the n-sphere
as the set of all (n+ 1)-tuples (x1, . . . , xn+1) ∈ Rn+1 that satisfy

n+1∑
i=1

x2
i = 1 .

After the development of concepts such as topology and differential topology,
it became clear that spheres had the structure of a topological manifold and,
even more, of a smooth manifold. In a certain way, this structure comes from
the ambient space.

At the turn of the nineteenth century, Henri Poincaré appeared as one of
the protagonists, or more precisely, as the founder of algebraic topology.
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40 JULIO SAMPIETRO & CARLOS SEGOVIA

Figure 1. Henri Poincaré.

He constructed two different invariants associated with manifolds. The first
is known as the fundamental group, which would later be generalized to the
so-called homotopy groups. These groups are based on the idea of measuring
holes through the obstruction of contracting spheres to a point. The second
is the homology groups first defined as formal sums of submanifolds up to
bounding a higher-dimensional manifold (nowadays, these groups are called
bordism groups). Nevertheless, an adequate description of homology groups is
in terms of triangulations of manifolds. These groups measure the obstruction
of a triangle to be the boundary of a higher-dimensional triangle.

Although both invariants look similar at first glance, they are different in
calculation complexity, among other properties. Poincaré formulated his first
conjecture: if a closed, connected manifold has the same homology groups as
the sphere, then it is, in fact, a topological sphere. He gave a counterexample
for this conjecture, which nowadays is known as “Poincaré’s sphere”. Then he
formulated a second version of this conjecture, which states that if a closed
connected manifold has the same homotopy groups as the sphere, it must be
a topological sphere. This was known as Poincaré’s conjecture until Perelmán
came up with the proof.

This question motivated an essential part of the development of mathemat-
ics during the twentieth century. At least three Fields medals were attributed
to the progress of the Poincaré conjecture (Smale, Freedman, and Perelman).
Within the most indirect consequences of this fructiferous program is the heart
of the present article, the exotic spheres.
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THE EXOTIC WORLD OF MILNOR’S SPHERES 41

The state of topology during the 1950’s

As we mentioned, during the development of point-set theory and differential
topology, it became apparent that spheres with their standard structure were
not only manifolds but also inherited a smooth structure from the ambient
space.

Figure 2. René Thom.

The 1950s were quickly marked by the influence of René Thom. His famous
isomorphism theorem allowed the coherent formulation and proof of various
important results and the construction of various new objects. Foremost among
them are the topological construction of Chern classes and a description of the
bordism ring. This gave mathematicians powerful tools, sometimes becoming
the missing piece in their projects.

This was the case of the German mathematician Friedrich Hirzebruch. The
story tells that when a new note of Thom came to the institute’s library where
Hirzebruch was working, it took him a few seconds to complete the proof of
the signature theorem. This theorem relates two invariants that seemed quite
different. On the one hand, the signature of a manifold, a topological index
linked to the cohomology of the underlying space, and on the other hand, the
Pontryagin classes, which capture the differentiable structure of the space. The
equation that would pass to history because of its relevance in Milnor’s work
takes the form

σ(M) =
1

45

(
7p2(M)− p2

1(M)
)
.

1.2. The road of John Milnor

During the year 1956, at an early age, John Milnor worked on studying the
topological invariants of some well-known manifolds. In his own words: “The
generalized Poincaré problem of understanding such manifolds seemed too dif-
ficult: I had no idea how to get started”. He restricted his attention to sim-
pler manifolds: closed 2n-dimensional manifolds which were (n− 1)-connected.
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42 JULIO SAMPIETRO & CARLOS SEGOVIA

Thanks to a paper by Smale and Wall, there was a relatively simple description
for n > 2.

Figure 3. John Milnor.

Indeed, since these spaces have a simple cohomological structure. Milnor fur-
ther reduced their description to some particular spaces constructed as sphere
bundles over the fourth-dimensional sphere. Thanks to Steenrod’s work, it is
possible to classify all such bundles, and in some cases using a Morse-theoretic
argument, namely Reeb’s theorem, it is possible to show that their total space
is homeomorphic to the 7-sphere. On the other hand, assuming they were dif-
feomorphic to the sphere, Milnor reached a contradiction with Hirzebruch’s
formula: he found rational values for an integer value! In conclusion: these
spaces were topologically spheres, but their smooth structure did not match
the standard one. This was unexpected since the belief was that spheres had a
single smooth structure, which was misleading.

Acknowledgements. The authors thank Peder Norrby for allowing us to use
his art to bring our work to life. The second author is supported by Investi-
gadores por México CONAHCYT.

2. Preliminaries

Throughout this paper, we assume that all manifolds are smooth, meaning that
the transition maps are C∞.

2.1. The signature of a manifold

In this section, we work with rational coefficients. Let M be a connected, ori-
ented, closed 2n-dimensional manifold. Choose the generator of H2n(M ;Q) as
the fundamental class of M , denoted by [M ]. The cup product in cohomology
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induces a bilinear map

ω : Hn(M ;Q)⊗Hn(M ;Q) −→ Q

defined by
ω : (α, β) 7→ 〈α ^ β, [M ]〉

where 〈 , 〉 denotes the pairing between homology and cohomology.

Remark 2.1. Recall that the cup product is graded-commutative, that is

α ^ β = (−1)pqβ ^ α

where α ∈ Hp(M ;Q) and β ∈ Hq(M ;Q). In particular, for n even ω is symme-
tric, and for n odd ω is anti-symmetric.

Since Hn(M ;Q) is finitely generated, we can represent ω by a square matrix
which will be symmetric or anti-symmetric depending on the parity of n.

If n is even, that is M is 4k-dimensional, then the spectral theorem gua-
rantees the existence of real eigenvalues. We define the signature of ω as

sign(ω) = #positive eigenvalues−#negative eigenvalues

Then we define the signature of a manifold M , denoted σ(M), as the signature
of the associated ω. Note that the signature is always, by definition, an integer.

2.2. Basic properties of the signature

Let us study the behavior of the signature under different operations on ma-
nifolds.

First, if we change the orientation ofM by [−M ] = −[M ], then the signature
of −M is given by the bilinear form

ω̃(α, β) = 〈α ^ β, [−M ]〉 = −〈α ^ β, [M ]〉 = −ω(α, β) .

Thus the eigenvalues of ω̃ are those of ω with opposite signs and it follows that
σ(−M) = −σ(M).

Now if we consider the disjoint union of two manifoldsMtN , the fundamen-
tal class corresponds to the sum of the fundamental classes [MtN ] = [M ]+[N ].
Then the bilinear form associated with the disjoint union is the direct sum of
the bilinear forms and σ(M tN) = σ(M) + σ(N).

Furthermore, we have the following result.

Proposition 2.2. The signature is a bordism invariant.

To prove this statement, we will need the next lemma.
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Lemma 2.3. If ω : V × V −→ Q is a non-degenerate symmetric bilinear form
with a subspace W of dimension 1

2 dimV such that the restriction of ω to W is
identically zero, then the signature of ω is zero. This subspace is called isotropic
or Lagrangian.

Proof. The idea is to find a basis of V to ‘cancel out’ the eigenvalues.

Let e1 ∈ W be a non-zero element. Since ω is non-degenerate, there exists
f1 ∈ V such that ω(e1, f1) = 1. If ω(f1, f1) 6= 0 we may replace f1 by f̃1 :=
f1 − 1

2ω(f1, f1)e1. Note that ω(e1, f̃1) = 1 and

ω(f̃1, f̃1) = ω(f1, f1)− ω(f1, f1)ω(e1, f1)

= ω(f1, f1)− ω(f1, f1)

= 0 .

Thus we assume without loss of generality that ω(f1, f1) = 0. Set S = Span(e1, f1).
Restricted to S, ω is represented by the matrix(

0 1

1 0

)
which has zero signature. Consider the subspace V1 = S⊥. Since ω is non-
degenerate, we have that V = S ⊕ V1. Defining W1 = W ∩ V1 we have that
W1 has dimension 1

2 dimV1 and the restriction of ω to W1 is identically zero.
By induction, we apply the hypothesis to V1, which has dimension dim(V )− 2;
hence the signature of ω is zero. �X

Now we show the bordism invariance of the signature.

Proof of proposition 2.2. Assume that the 4k-dimensional manifold M is the
boundary of a (4k+1)-dimensional manifold W . We denote by ι : M ↪→W the
inclusion. Using the long exact sequence of the pair and the Poincaré duality,
we have the following commutative diagram

H2k(W ;Q) H2k(M ;Q) H2k+1(W,M ;Q)

H2k+1(W,M ;Q) H2k(M ;Q) H2k(W ;Q)

ι∗

D D D

ι∗

(1)

where D is the Poincaré isomorphism. The image of ι∗ in H2k(M ;Q), is a
subspace and we claim it is isotropic.
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First, the restriction of ω to this subspace is zero,

ω(ι∗(α), ι∗(β)) = 〈ι∗(α) ^ ι∗(β), [M ]〉
= 〈ι∗(α ^ β), ∂[W ]〉
= 〈α ^ β, ι∗∂[W ]〉
= 0 .

Where we used that the composition ι∗∂ is zero in the long exact sequence of
a pair. This subspace has the half dimension of H2k(M ;Q) since

x ∈ (im ι∗)
⊥ ⇔ 〈x ^ ι∗(y), [M ]〉 = 0 ∀y ∈ H2k(W ;Q)

⇔ 〈ι∗(y), [M ] _ x〉 = 〈ι∗(y), D(x)〉 = 0 ∀y ∈ H2k(W ;Q)

⇔ 〈y, ι∗(D(x))〉 = 0 ∀y ∈ H2k(W ;Q)

⇔ ι∗D(x) = 0

⇔ D(x) ∈ ker ι∗ .

On the other hand, we know that

dim(im ι∗) + dim (im ι∗)
⊥

= dimH2k(M ;Q)

and because D maps (im ι∗)⊥ isomorphically onto ker ι∗ we can replace the
previous equation by

dim im ι∗ + dim ker ι∗ = dimH2k(M ;Q) .

However, the commutativity of the diagram (1) together with the exactness of
the rows imply that D maps im ι∗ isomorphically onto ker ι∗. We conclude that

dim im ι∗ + dim im ι∗ = dimH2k(M ;Q) .

Thus im ι∗ is an isotropic subspace of H2k(M ;Q) of half dimension and by
Lemma 2.3, we conclude that σ(M) = 0. �X

Remark 2.4. Consequently, if two manifolds M and N are equivalent in ori-
ented bordism, they have the same signature. More precisely, denote by W the
oriented bordism with ∂W = M t −N , by the previous statements we obtain

σ(∂W ) = σ(M t −N) = σ(M)− σ(N) = 0 .

For the product of two manifolds M × N , the signature σ(M × N) uses
Künneth’s formula

H∗(M ×N ;Q) ∼= H∗(M ;Q)⊗H∗(N ;Q) .

Revista Colombiana de Matemáticas
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If M is 4k-dimensional and N is 4l-dimensional, then ω is a bilinear form on
the space ⊕

i+j=2(k+l)

Hi(M ;Q)⊗Hj(N ;Q) ,

which decomposes as the direct sum(
H2k(M ;Q)⊗H2l(N ;Q)

)
⊕

⊕
i+j=2(k+l)

i 6=2k

Hi(M ;Q)⊗Hj(N ;Q) .

Notice that the cup product of an element in the first summand with an element
in the second summand is trivial 2. Thus the bilinear form ω is the direct sum
of its restriction to each summand. Furthermore, the second summand has an
isotropic subspace, and hence the only contribution to the signature is given
by the restriction of ω to H2k(M ;Q)⊗H2l(N ;Q). However, the bilinear form
restricted to this subspace is the tensor product of the bilinear forms of the
factors. Thus the eigenvalues of the original bilinear form correspond to the
product of the eigenvalues of the bilinear forms on each of the factors. Therefore,
the signature is multiplicative in the sense that σ(M ×N) = σ(M)σ(N).

We illustrate this fact with an example. For the sake of simplicity, in our
notation, we will omit the coefficients Q (only for this example).

Example 2.5. For M = N = CP4, we apply the Künneth formula, and we get

H∗(CP4 × CP4) = H∗(CP4)⊗H∗(CP4) .

Since we know H∗(CP4) = Q[x]/(x5), we have

H∗(CP4)⊗H∗(CP4) ∼= Q[x, y]/(x5, y5) .

In particular, H8(CP4 × CP4) is generated by x2y2, x3y, y3x, x4, y4. Moreover,
the subspace generated by x2y2 corresponds to H4(CP4)⊗H4(CP4). In other
words, we have a decomposition

H8(CP4 × CP4) =
(
H4(CP4)⊗H4(CP4)

)
⊕

 ⊕
i+j=8
i,j 6=4

Hi(CP4)⊗Hj(CP4)

 .

The second summand, say V , is equal to the subspace generated by x3y, y3x,
x4, y4. and consider W = Span(y3x, y4) inside this subspace. We observe that
dimW = 1

2 dimV and that the restriction of ω to this subset is zero. Indeed,
the product of any two generators in W has a power of y exceeding 5, thus

2This follows from a dimension argument where the product exceeds the manifold’s di-
mension.
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is trivial. Since W is an isotropic subspace of V of the half dimension, the
signature of ω restricted to V is zero. Hence the signature depends only on the
factor

ω′ :
(
H4(CP4)⊗H4(CP4)

)
⊗
(
H4(CP4)⊗H4(CP4)

)
−→ Q .

But the properties of the cup product imply that ω′ is given by

ω′(α⊗ β, α′ ⊗ β′) = 〈α ^ α′ ⊗ β ^ β′, [M ]⊗ [N ]〉
= (−1)4kl〈α ^ α′, [M ]〉〈β ^ β′, [N ]〉
= ω1(α, α′)ω2(β, β′) .

where ωi is the bilinear form on M and N respectively. Therefore, ω′ is the
tensor product or Kronecker product of the bilinear forms. The eigenvalues
correspond to the product of the eigenvalues of each factor, and the product of
the signatures gives the signature of ω′.

We summarize our discussion so far in the following theorem.

Theorem 2.6. he signature σ satisfies the following properties:

(1) σ(−M) = −σ(M),

(2) σ(M tN) = σ(M) + σ(N),

(3) If M and N are the same in bordism, then σ(M) = σ(N),

(4) σ(M ×N) = σ(M)σ(N).

We remind the reader that the signature is only defined for 4k-dimensional
manifolds.

We conclude this section with a couple of examples, the first of which is of
great importance in this work.

Example 2.7. The signature of CP2l.

The computation can be carried out algebraically. We remind the reader
that the cohomology ring of CP2l can be described by polynomials in one
variable of degree at most 2l, i.e., H∗(CP2l;Q) = Q[x]/(x2l+1), and under
this identification the cup product corresponds to polynomial multiplication.
Hence the bilinear form ω is given in terms of the generators by ω(xl, xl) =
〈x2l, [CP2l]〉 = 1.

We also give a geometric argument. We recall the cell structure of the
complex projective space, where the generator of H l(CP2l;Q) is dual to the
projective subspace CPl ⊂ CP2l. Because of the duality of the cup product and
the cap product, the signature is calculated by the self-intersection number of
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this cell (for more information on intersection theory, we refer the reader to
[1]). Consider the usual embedding of CPl in CP2l, given by

E = [z1 : z2 : · · · : zl : zl+1 : 0 : · · · : 0] .

We can deform this subspace into the following one, where we are going to
calculate the intersection,

L = {[z1 : · · · : z2l+1] | z2l+1 = z1 + · · ·+ zl − zl+1, z2l = z1 + · · ·+ zl−1 − zl
. . . , zl+2 = z1 − z2} .

Notice that L is the zero-set of a set of homogeneous polynomials, so L is well-
defined. Even more, L is the intersection of codimension-increasing planes, and
therefore, L is the set of lines through the (l + 1)-space, i.e. L ∼= CPl. The
intersection E∩L is described by elements of the form [z1 : · · · : zl+1 : 0 : · · · : 0]
subject to the conditions 

z1 = z2

z1 + z2 = z3

...

z1 + · · ·+ zl = zl+1

hence z1 = z2, z3 = 2z1, z4 = 6z1 and so on. This set consists of a single line;
in other words, E ∩ L consists of a single element. Moreover, L is homotopic
to E by multiplication of each defining polynomial of L by a parameter t. As
a consequence, we conclude that the self-intersection number of E is precisely
1, and it follows that σ(CP2l) = 1.

Example 2.8. The signature of S4: the group H2(S4;Q) is zero, hence the
bilinear form ω is null and σ(S4) = 0.

2.3. Characteristic classes

In this section, we review some basic properties of characteristic classes; for a
profound and complete exposition, the reader can consult the book of Milnor [9].

We start with a motivation: a vector bundle over a space X consists of a
topological space E and a continuous projection π : E −→ X such that each
fiber π−1(x), for each x ∈ X, has the structure of a vector space. Moreover,
they are locally trivial, meaning that for each x ∈ X, we can find an open
neighborhood where the restriction is a trivial bundle (a trivial bundle is one
of the form E = M × Rk and π = p1) and the change of coordinates are
linear isomorphisms. A vector bundle can be understood as a continuous way
of attaching to each point x an n-dimensional vector space. We are interested
in a way to classify all vector bundles, but to achieve this, we need to introduce
an essential space which we specify in the following paragraph.
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The space of n-dimensional planes in Rn+k, denoted by Gn(Rn+k), is known
as the Grassmannian. This space has a topological structure induced by the
Gaussian elimination on n×(n+k) matrices with rank n. Thus the dimension of
the Grassmannian Gn(Rn+k) is kn. Moreover, there is an n-dimensional vector
bundle γkn over Gn(Rn+k), with total space

E(γkn) := {(v, P ) | P ∈ Gn(Rn+k) and v ∈ P}.

This vector bundle is known as the canonical bundle. The Grassmannian is of
great importance since every smooth manifold X with an embedding into Rn+k

admits a Gauss map f : X → Gn(Rn+k) which maps each point to its tangent
space. This is as follows:

Figure 4. The map f associates to each point its corresponding tangent space. In
this picture, X is a surface in R3 and the tangent bundle is of dimension
2.

Notice that the map f is smooth. However, the definition of the Gauss map for
an arbitrary vector bundle needs further work using the local trivializations;
such construction is explained in full detail in [9]. Now, we can increase k in
Gn(Rn+k) and take the limit to infinity, and we obtain the infinite Grassman-
nian

Gn := lim
k→∞

Gn(Rn+k) ,

where Gn has the topology induced by the direct limit of the finite-dimensional
Grassmannians. The infinite Grassmannian also inherits a canonical bundle
built in a similar way as in the finite-dimensional case.

A remarkable result states that for any n-dimensional vector bundle π :
E −→ X, any two maps of bundles with domain E and codomain the total
space of the canonical bundle are always homotopic through maps of bundles,
see [9]. As a consequence, their projections onto the base space are homotopic.
More precisely, this is the following theorem.
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Theorem 2.9. Every real vector bundle of dimension n over X determines a
smooth classifying map f : X −→ Gn. Even more, the vector bundle is uniquely
determined by the homotopy type of f up to isomorphism.

In other words, there is a bijection

{
Isomorphism classes of n-dimensional

vector bundles over X

}
←→

{
Homotopy classes

f : X −→ Gn

}
.

Therefore, the problem of understanding vector bundles over X is equivalent
to studying homotopy invariants between X and Gn.

Cohomology is contravariant because the induced map of a continuous map
goes in the opposite direction. For this reason, cohomology classes in the Grass-
mannian produce invariants on the cohomology of the base space. More pre-
cisely, given a vector bundle π : E −→ X with classifying map f : X −→ Gn we
have an induced map in cohomology f∗ : H∗(Gn) −→ H∗(X). For c an element
of H∗(Gn), we get the invariant f∗(c) ∈ H∗(X) which we call characteristic
class. The first step is to take Z2 coefficients and we obtain the Stiefel-Whitney
classes.

If we consider complex vector bundles instead of working with real vector
bundles, then we get the complex Grassmanian. The associated characteristic
classes are the Chern classes. If we consider real vector bundles but those that
are oriented, we get the oriented Grassmannian, and the characteristic classes
are the Pontryagin classes.

These three types of characteristic classes are related via the following con-
structions: start with an n-dimensional vector bundle ξ, and then we get a
complex vector bundle via the complexification ξ⊗C. Then we forget the com-
plex structure and get a real 2n-dimensional vector bundle with a canonical
orientation. Finally, we forget the orientation and obtain a 2n-dimensional real
vector bundle isomorphic to ξ ⊕ ξ.

The following diagram schematically represents this situation:
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Real bundle 

Complex bundle Oriented real bundle 

Forgetting 
the orientation

Complexi�cation

Forgetting 
the complex structure

2.3.1. The Thom isomorphism and the Euler class

A fundamental construction in algebraic topology is the Pontryagin-Thom con-
struction, which associates with an n-dimensional bundle, the space in which
we collapse the complement of the disc bundle to a single point. Despite the
simple definition, the implications are remarkable. In a certain sense, this con-
struction has the behavior of an n-suspension of the base space. More precisely,
this is the famous theorem of Thom:

Theorem 2.10 (Thom isomorphism theorem). For an orientable vector bun-
dle, there exists a unique cohomology class u ∈ Hn(E,E0;Z) whose restriction
to (F, F0) coincides with u|F for any fiber F and F0 its nonzero elements.
Furthermore, the map

^ u : Hi(E;Z) −→ Hi+n(E,E0;Z)

is an isomorphism.

For a complete proof of this theorem, the reader can see [9]. For p : E −→ B,
the projection of an n-dimensional vector bundle, we have an isomorphism
defined by the composition:

φ : Hk(B;Z) Hk(E;Z) Hk+n(E,E0;Z) .
p∗ ^u

Definition 2.11 (Euler class). For ξ an oriented n-dimensional real vector
bundle and j : (E,∅) ↪→ (E,E0) the inclusion, we define the Euler class of ξ,
denoted by e(ξ) ∈ Hn(B;Z), as the only cohomology class that satisfies the
following equation

p∗(e(ξ)) = j∗(u) .
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52 JULIO SAMPIETRO & CARLOS SEGOVIA

Proposition 2.12. In case we reverse the orientation of the bundle ξ, the
Euler class changes sign.

For Z2-coefficients, the Euler class coincides with the top Stiefel-Whitney
class ωn(ξ).

2.3.2. Stiefel-Whitney classes

The following properties completely determine the Stiefel-Whitney classes:

Theorem 2.13 (Stiefel-Whitney classes). There exists one and only one se-
quence of characteristic classes ω0, ω1, . . . which assigns to each real n-dimen-
sional vector bundle ξ of the form E −→ B, the class wi(ξ) ∈ Hi(B;Z2), such
that:

(1) ω0(ξ) = 1 and wi(ξ) = 0 for i > n,

(2) ωi(ξ) = f∗(ωi(η)), for all bundle map f : ξ → η ,

(3) ωk(ξ ⊕ η) =
∑k
i=0 ωi(ξ) ^ ωk−i(η),

(4) for the canonical bundle γ1
1 over S1, we have ω1(γ1

1) 6= 0.

An intelligent way to show the existence and uniqueness of the Stiefel-
Whitney classes and gain an understanding is by means of the Steenrod squares
and Thom’s isomorphism. In what follows, we present a rough idea of these
themes.

Category theory arises to create a common language for the mathematical
community. The reader can consult the Founder’s book [5] for a historical and
mathematical overview. For a modern approach, we refer the reader to [10].

Algebraic topology works with invariants which are functors from the cate-
gory of topological spaces to some algebraic category: for example, the category
of groups for the homotopy groups and the category of rings for cohomology.
We wonder what are the natural transformations in cohomology. These are
given by linear maps θ : Hn( ;H) −→ Hm( ;G) which satisfy certain commu-
tative diagrams. Such maps are known as cohomological operations. In case we
are working with CW-complexes, the functor of cohomology is a representable
functor in the sense that it is equivalent to having the homotopy classes of
maps from the space in question to the so-called Eilenberg-MacLane spaces,
i.e., Hn(X;H) ∼= [X,K(H,n)].

For representable functors, a significant result is the Yoneda lemma, which
states that the natural transformations from a representable functor to any
other functor (forgetting the structure) are in correspondence with the image
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of the second functor applied to the element which represents the first functor.
In symbols

Nat(Hom(−, X), F ) ∼= F (X) .

In our case, we conclude the following bijection:

Nat([−,K(H,n)], [−,K(G,m)]) ∼= Hm(K(H,n);G) .

Consequently, to understand cohomological operations, it is enough to under-
stand the cohomology of the Eilenberg-MacLane spaces.

A basis for the cohomological operations are the Steenrod squares Sqj :
Hi(B;Z2) −→ Hi+j(B;Z2).

For a real n-dimensional vector bundle ξ, of the form p : E → B, we have the
Thom isomorphism φ : Hk(B) −→ Hk+n(E,E0). The Stiefel-Whitney classes
are defined as ωi(ξ) = φ−1Sqiφ(1). In other words,

Hn(E,E0)
Sqi // Hn+i(E,E0)

φ−1

��
H0(B;Z2)

φ

OO

// Hi(B;Z2)

1 � // ωi(ξ)

As a consequence, we have shown the existence of the Stiefel-Whitney classes.
It is relatively easy to show their uniqueness [9].

We finish the section with some bordism invariants known as the Stiefel-
Whitney numbers. Take an n-dimensional closed smooth manifold (possibly
disconnected). Using Z2-coefficients there is only one fundamental class in ho-
mology [B] ∈ Hn(B;Z2). Consider non-negative integers r1, · · · , rn such that
r1 + 2r2 + · · · + nrn = n. For ξ a real vector bundle over B, we can associate
the monomial ω1(ξ)r1 · · ·ωn(ξ)rn in Hn(B;Z2). The Stiefel-Whitney number is
defined as the evaluation of this monomial in the fundamental class, i.e.,

ω1(ξ)r1 · · ·ωn(ξ)rn [B] := 〈ω1(ξ)r1 · · ·ωn(ξ)rn , [B]〉,

which is an element in Z2. Now, we use the formula ω(RPn) = (1 + a)n+1

with a the generator of the cohomology of RPn, hence we have for n even that
ωn(RPn) = (n + 1)an and ω1(RPn) = (n + 1)a both different form zero. As a
consequence, the Stiefel-Whitney numbers ωn[RPn] and ωn1 [RPn] are different
from zero. In the case n = 2k, these are the only non-trivial Stiefel-Whitney
since ω(RPn) = 1 + a+ an. For n odd, it is relatively easy to show that all the
Stiefel-Whitney numbers are zero. In bordism theory (non-necessarily oriented),
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we have that a manifold M of dimension n is the boundary of a manifold of
dimension n + 1, if and only if all the Stiefel-Whitney numbers are zero. The
necessity of this fact is straightforward, where we use the duality between the
connections maps of the long exact sequence (cohomology/homology) of the
pair given by the bordism and M , see Milnor [9]. However, the sufficiency uses
the Pontryagin-Thom construction. Let ξ be an n-dimensional vector bundle;
the Thom space is defined as the quotient of the total space by the vectors with
a norm bigger or equal to 1. In the case we have the canonical bundle γk, this
space is denoted by MO(k) and an outstanding result of Thom [14] says that
the bordism group Ωn is isomorphic to the following homotopy group,

Ωn ∼= πn+k(MO(k)) ,

for k > n + 1. This isomorphism is determined by the Whitney embedding
theorem, which embeds any manifold M inside a Rn+k for k > n+1. Therefore,
the normal bundle of such embedding induces a Thom space with a map to
MO(k), using the one-point compactification of Rn+k we obtain a map from
the sphere Sn+k to MO(k). If M represents a non-trivial element in Ωn, we
have that the associated map Sn+k → MO(k) is not trivial in the homotopy
group. Because Hn+k(MO(k);Z2) is generated by some polynomial, which sent
in Hn+k(Sn+k;Z2) = Z2 at least a non-trivial Stiefel-Whitney number.

2.3.3. Chern and Pontryagin classes

Chern classes are associated with complex vector bundles, which are completely
determined by the following properties:

Theorem 2.14 (Chern classes). There exists one and only one sequence of
characteristic classes c1, c2, . . . which assigns to each complex n-dimensional
vector bundle ξ of the form E −→ B, the class ci(E) ∈ H2i(B;Z), such that:

(1) c0(ξ) = 1 and ci(ξ) = 0 for i > n,

(2) ci(ξ) = f∗(ci(η)), for all bundle maps f : ξ → η,

(3) ck(ξ ⊕ η) =
∑k
i=0 ci(ξ) ^ ck−i(η),

(4) for the canonical bundle γ1
1 over S2, we have c1(γ1

1) which is the generator
of H2(CP1,Z).

In this case, the existence of the characteristic classes is explained relatively
easily as follows: given a complex n-dimensional vector bundle ξ of the form
E −→ B equipped with a Hermitian metric, we form a new bundle ξ0 over E0

whose fiber over each point is the orthogonal complement of the given vector.
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As a consequence, ξ0 is an (n−1)-dimensional complex vector bundle. We then
use the Gysin sequence with integer coefficients,

· · · −→ Hi−2n(B)
∪e−→ Hi(B)

π∗0−→ Hi(E0)→ Hi−2n+1(B)→ · · ·

for i < 2n− 1 the groups Hi−2n(B) and Hi−2n+1(B) are zero, hence we have
the isomorphism π∗0 : Hi(B) → Hi(E0). Take cn(ξ) as the Euler class of the
induced 2n-dimensional real vector bundle e(ξR). We define for i < n the Chern
class ci as

ci(ξ) = π∗0
−1ci(ξ0) ,

and for i > n the class ci(ξ) is defined to be zero.

These classes satisfy the axioms of Theorem 2.14.

An important property of Chern classes is their behavior under the con-
jugation x + iy 7−→ x − iy of a complex vector bundle ξ, where we have the
following identity

ck(ξ) = (−1)kck(ξ) ,

hence the total class of the conjugated bundle ξ is given as

c(ξ) = 1− c1(ξ) + c2(ξ)−+ · · · ± cn(ξ) .

The Pontryagin classes are defined using the Chern classes for an n-dimensional
real vector bundle. More precisely, we consider the complexification ξ⊗C given
by the tensor product over the reals of each fiber with the complex numbers.
The bundle ξ ⊗ C has an induced structure of real vector bundle given by the
Whitney sum ξ ⊕ ξ with complex structure J(x, y) = (−y, x).

Now, we consider the conjugate ξ ⊗ C which is isomorphic to the complex-
ification ξ ⊗C, hence the odd Chern classes c1(ξ ⊗C), c3(ξ ⊗C), · · · are zero.
We define the i-th Pontryagin class for an n-dimensional real vector bundle as

pi(ξ) = (−1)ic2i(ξ ⊗ C),

which is an element in H4i(B;Z).

There are similar properties as in the case of Stiefel-Whitney classes and
Chern classes. We have p0(ξ) = 1 and pi(ξ) = 0 for i > n/2. For a trivial bundle
εk, we obtain p(ξ ⊕ εk) = p(ξ). In this case, the total class is defined as

p(ξ) = 1 + p1(ξ) + · · ·+ pdn/2e(ξ) ,

where dn/2e denotes the smallest integer that is not smaller than n/2. In this
case, we have the Whitney sum satisfies the formula

p(ξ ⊕ η) = p(ξ)p(η) mod 2 .

We end with two properties that determine the Pontryagin classes:
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56 JULIO SAMPIETRO & CARLOS SEGOVIA

i) For ξ an n-dimensional complex vector bundle, we have the underlying
2n-dimensional real vector bundle satisfies the following identity

1−p1+p2−+ · · ·±pn = (1−c1+c2−+ · · ·±cn)(1+c1+c2+· · ·+cn) (2)

where ci = ci(ξ) and pk = pk(ξR). As a consequence, the class pk(ξR) is
equal to

ck(ξ)2 − 2ck−1(ξ)ck+1(ξ) +− · · · ± 2c1(ξ)c2k−1(ξ)∓ 2c2k(ξ) .

ii) For ξ a 2n-dimensional oriented real vector bundle, we have the Pontrya-
gin class pn(ξ) is equal to the square of the Euler class e(ξ).

Finally, we define the Pontryagin numbers associated with a smooth, com-
pact, oriented manifold of dimension 4n, which we denote by M . To this end,
recall that a partition of a positive integer n is an ordered collection of positive
numbers I = {i1, . . . , ir} with a sum equal to n (notice that in this collection
some numbers can be repeated). For a partition I of n, the I-th Pontryagin
number is defined as the evaluation of the polynomial pi1(τM ) . . . pir (τM ) in
the fundamental class, i.e.,

pi1 · · · pir [M ] = 〈pi1(τM ) . . . pir (τM ), [M ]〉 ,

where τM represents the tangent bundle and [M ] ∈ H4n(M ;Z) is the funda-
mental class. For the complex projective spaces CP2n such numbers have the
value

pi1 · · · pir [CP2n] =

(
2n+ 1

i1

)
· · ·
(

2n+ 1

ir

)
.

Just as for the Stiefel-Whitney numbers, if an oriented smooth manifold of
dimension n is the boundary of an oriented smooth manifold of dimension
n + 1, all the Pontryagin numbers are zero. The converse is satisfied when we
tensor with the rational numbers.

3. The Hirzebruch signature theorem

A central element in the proof of the exotic spheres is the famous Hirzebruch
signature theorem. This theorem determines the signature of a manifold in
terms of a polynomial in the Pontryagin classes with rational coefficients. In
this section, we give the proof of this theorem after introducing some algebraic
background.

3.1. Multiplicative sequences

We start with a commutative graded algebra over a commutative and unitary
ring Λ:

A =

∞⊕
i=0

Ai.
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By AΠ we understand the ring of formal series a0 + a1 + a2 + . . . with ai ∈ Ai.
Of particular interest is the subset (AΠ)× consisting of formal series of the form
1 + a1 + a2 + . . . .

Remark 3.1. It is a classical exercise to show that (AΠ)× is a group. Set
a = 1+a1 +a2 + . . . . To construct the inverse, we proceed inductively: consider
b = 1 + b1 + b2 + · · · such that ab = 1 and expand the product

ab = (1 + a1 + a2 + a3 + . . . )(1 + b1 + b2 + b3 + . . . )

= 1 + (a1 + b1) + (a2 + a1b1 + b2) + (b3 + b2a1 + a2b1 + a3) + . . .

= 1 + 0 + 0 + . . . .

Therefore, we define b1 = −a1 for the first coefficient. Then we have a2 +a1b1 +
b2 = 0 and hence b2 = −a2 − a1b1 = −a2 + a2

1, and so on.

We consider a sequence of polynomials K1(x1), K2(x1, x2), . . . subject to
the following two properties:

• the polynomial Ki has degree i;

• the polynomial Ki is homogeneous where xj has weight j.

For example, these properties are satisfied for the sequence of polynomials:
K1(x1) = x1

K2(x1, x2) = x2
1 + x2

K3(x1, x2, x3) = x3
1 + x1x2 + x3

...

For an element a = 1 + a1 + a2 + · · · ∈ (AΠ)×, we can evaluate the sequence of
polynomials in a as follows

K(a) := 1 +K1(a1) +K2(a1, a2) +K3(a1, a2, a3) + . . . .

A sequence of polynomials Ki subject to the two aforementioned properties, is
called multiplicative if for any a, b ∈ (AΠ)× we have the equation

K(ab) = K(a)K(b) .

We give below some examples.

Example 3.2.

(1) Take λ ∈ Λ and define

Ki(x1, . . . , xi) = λixi .
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For a, b ∈
(
AΠ
)×

, we compute

K(ab) = K(1 + (a1 + b1) + (a2 + a1b1 + b2) + . . . )

= 1 + λ(a1 + b1) + λ2(a2 + a1b1 + b2) + . . .

and

K(a)K(b) = (1 + λa1 + λ2a2 + . . . )(1 + λb1 + λ2b2 + . . . )

= 1 + (λa1 + λb1) + (λ2a2 + λ2a1b1 + λ2b2) + . . .

= 1 + λ(a1 + b1) + λ2(a2 + a1b1 + b2) + . . .

= K(ab) .

This shows that the sequence is multiplicative.

(2) Define Ki(x1, . . . , xi) to be the i-th coefficient of (1 +x1 +x2 + . . . )−1. It
is easy to see that this sequence is homogeneous of degree i, and more-
over, this sequence is multiplicative because, by definition, K(a) = a−1.
Therefore,

K(ab) = (ab)−1 = b−1a−1 = a−1b−1 = K(a)K(b) .

Now, we see that multiplicative sequences are closely related to power series.
Given a multiplicative sequence {Kn}n∈N, we can associate a power series by
setting

f(t) = K(1 + t) = 1 +K1(t) +K2(t, 0) +K3(t, 0, 0) + . . . .

The important point here is the reverse process; that is, given a power series f
we can associate a multiplicative sequence such that f(t) = K(1 + t). This is
the purpose of the next section.

3.2. Digression: symmetric polynomials and the Hirzebruch’s lemma

Among all polynomials, some are distinguished for being invariant under the
action of the symmetric group, i.e., under permutations of their variables.

Example 3.3.

• The polynomial p(x, y, z) = x+ y+ z is invariant under the action of the
symmetric group. Indeed, any permutation, for instance τ : x −→ y −→ z
gives

p(τ(x), τ(y), τ(z)) = p(y, z, x) = y + z + x = p(x, y, z) .

• The polynomial q(x, y) = x2 + xy + y2 is also invariant.
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Such polynomials are called symmetric polynomials.

Lemma 3.4. Consider the polynomials σ1, . . . , σn where σi is the component
of degree i of the product (1 + t1) · (1 + t2) · · · · · (1 + tn). Then each σi is a
symmetric polynomial in n variables.

Proof. This follows from the equation

1 + σ1 + σ2 + · · ·+ σn =

n∏
i=1

(1 + ti)

the right-hand side is invariant under permutations, so the i-th degree compo-
nent is also invariant. �X

The polynomials σi in the previous lemma are called elementary symmetric
polynomials.

Example 3.5. In two variables, there are two elementary symmetric polyno-
mials. Indeed, they are the components of the product

(1 + x)(1 + y) = 1 + (x+ y) + xy .

Therefore, σ1(x, y) = x+ y and σ2(x, y) = xy.

In three variables, there are three elementary symmetric polynomials. Namely,
the components of the product

(1 + x)(1 + y)(1 + z) = 1 + (x+ y + z) + (xy + yz + xz) + (xyz) .

Elementary symmetric polynomials are fundamental in mathematics due to
the following theorem; we refer the reader to [4] for proof.

Theorem 3.6 (Fundamental theorem of elementary symmetric polynomials).
Elementary symmetric polynomials form a basis for the set of symmetric poly-
nomials, in the sense that each symmetric polynomial of degree n can be uniquely
written as a polynomial in the variables σ1, . . . , σn.

For example, the symmetric polynomial

q(x, y) = x2 + xy + y2

can be written as

q(x, y) = (x+ y)2 − xy = σ2
1 − σ2 .
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Remark 3.7. Any monomial yields a symmetric polynomial by summing over
all equivalent monomials 3 For example, the monomial m(x, y, z) = x2yz is not
symmetric, however, the mentioned sum is the symmetric polynomial

x2yz + y2xz + z2xy .

It is easy to see that this polynomial is, in fact, symmetric. In general, we
will denote the polynomial obtained by this process by Σm called the “sym-
metrization” of m. With this notation, the elementary symmetric polynomials
in n variables are elegantly given by

σi = Σt1 · · · ti .

We return to the power series. Start with

f(t) = 1 + λ1t+ λ2t
2 + . . .

and consider the partition I = {i1, . . . , ir} of n (that is, they are all positive
integers with i1 + · · ·+ ir = n). We define λI as the product λi1 · · · · · λir and
sI as the unique polynomial such that

sI(σ1, . . . , σn) = Σti11 · · · · · tirr .

The existence of sI is a direct consequence of the fundamental theorem of
elementary symmetric polynomials. Thus we define

Kn(x1, . . . , xn) :=
∑

I partition of n

λIsI(x1, . . . , xn) .

Example 3.8. Suppose we have a power series

f(t) = 1 +
t

3
− t2

45
+ . . .

and then we calculate the first two terms of the sequence above. For the first
term, there is only one partition of the number 1, namely the number 1, which
we call I (this may seem unnecessary, but it is meant to show the general
procedure). To calculate sI we observe that Σt1 = t, in particular sI(σ1) = σ1

and since λI is just the first coefficient λ1, so

K1(x) =
1

3
x .

For the second term, we have two partitions of the number 2, given by 1 + 1
and 2 + 0, denoted by J and H. Finding sJ amounts to finding a polynomial

3Two monomials are equivalent if a permutation relates them.
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such that sJ(σ1, σ2) = Σt11t
1
2 = t1t2, i.e., sJ(σ1, σ2) = σ2 (recall that σ1 = x+y

and σ2 = xy). The coefficient λJ is given by λ1 · λ1, so the first summand is

λJsJ(x, y) =
1

9
y .

For the partition H, we see the polynomial sH satisfies sH(σ1, σ2) = Σt21 =
t21 + t22 and hence sH(σ1, σ2) = σ2

1 − 2σ2 and we conclude

sH(x, y) = (x+ y)2 − 2xy = x2 + y2 .

The coefficient is just λH = λ2, hence the second summand is

λHsH(x, y) = − 1

45
(x2 − 2y) .

Combining our computations yields

K2(x, y) =
1

9
y − 1

45
(x2 − 2y) =

1

45
(7y − x2) . (3)

We return with the multiplicative property of the sequence Kn(x1, · · · , xn)
associated with the power series. Denote by σi the i-th elementary symmetric
polynomial in the variables x1, . . . , xn and by σ′j the j-th elementary symmetric
polynomial in the variables y1, . . . , yn. Then

σ′′k =

k∑
i=0

σiσ
′
k−i

is the k-th elementary symmetric polynomial in the variables x1, . . . , xn and
y1, . . . , yn. This is because we can compare the product

∏n
i=1(1 +xi)

∏n
j=1(1 +

yj) with the definition of the k-th elementary symmetric polynomial.

Given two disjoint partitions, say J and K, their juxtaposition is also a par-
tition. More precisely, if J = {j1, . . . , jr} is a partition of l and K = {k1, . . . , kp}
is a partition of m, then

JK = {j1, . . . , jr, k1, . . . , kp}

is a partition of l +m.

Going back to our polynomial sequence, we claim that

sI(σ
′′
1 , . . . , σ

′′
k ) =

∑
JK=I

sJ(σ1, σ2, . . . ) · sK(σ′1, σ
′
2, . . . ) ,

where the sum is taken over all partitions J,K such that their juxtaposition is
I. For this purpose, we use that

sI(σ
′′
1 , . . . , σ

′′
k ) = Σti11 · · · tirr ,
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where in the right hand side appear all possible monomials ti1α1
· · · tirαr

with
0 ≤ αi ≤ 2n. For each monomial, let J be the partition formed by all ex-
ponents iq such that 1 ≤ αq ≤ n and let K be the partition formed by
all exponents iq such that n + 1 ≤ αq ≤ 2n. By construction, the product
sJ(σ1, σ2, . . . )sK(σ′1, σ

′
2, . . . ) has all the possible combinations of this distribu-

tion of exponents in both variables. The sum of all such decompositions implies
the claim.

From the previous discussion, we can conclude the multiplicativity of the

sequence Kn(x1, . . . , xn). Indeed, for a, b ∈
(
AΠ
)×

, we obtain

K(ab) =
∑
I

λIsI(ab)

=
∑
I

λI
∑
HJ=I

sH(a)sJ(b)

=
∑
HJ=I

λHsH(a)λJsJ(b)

= K(a)K(b) .

Furthermore, Kn(t, 0, . . . , 0) = λnt
n since the only partition involving this term

is the trivial one (see example 3.8). Consequently, K(1 + t) = f(t) which is the
half of the following lemma:

Lemma 3.9 (Hirzebruch). Let

f(t) = 1 + λ1t+ λ2t
2 + · · · ∈ Λ[[t]]

be a formal power series. Then there exists a unique multiplicative sequence
{Kn}n∈N satisfying K(1 + t) = f(t).

To show uniqueness, if

σ = (1 + t1) · · · (1 + tn) ∈
(
AΠ
)×
,

then

K(σ) = K((1 + t1) · · · (1 + tn)) = K(1 + t1) · · ·K(1 + tn) = f(t1) · · · f(tn).

We compare the homogeneous component of each side, and we observe that
Kn(σ1, . . . , σn) is determined only by the values of f . We use the fundamental
theorem of elementary symmetric polynomials to conclude that the variables
σ1, . . . , σn completely determine the polynomial; hence the Kn must be unique.

3.3. K-genus and the Hirzebruch theorem

For a multiplicative sequence Kn, we define the K-genus of a smooth, closed,
oriented manifold M , denoted by K[M ] ∈ Q, as follows

Kn[M ] =

{
0 4 6 |dimM

〈Kn(p1, . . . , pn), [M ]〉 dimM = 4n,
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where pi denotes the i-th Pontryagin class of M . Notice that the K-genus is a
rational combination of the Pontryagin numbers of M . In particular, if M is
the boundary of a compact, oriented manifold, then the Pontryagin numbers
are zero, and K[M ] = 0.

The K-genus satisfies the following essential properties: for M,N two man-
ifolds, we have K[M tN ] = K[M ] +K[N ] which, combined with the previous
observation implies that the K-genus is a bordism invariant. Furthermore, we
have the multiplicative property K[M × N ] = K[M ]K[N ]. This property is
deduced as follows: for p, p′ the total Pontryagin classes of M and N respec-
tively, the total class of M × N is congruent to p × p′ modulo torsion, and
in addition, the codomain of the K-genus is the field of rational numbers, so
the torsion elements automatically vanish. More precisely, we have shown the
following lemma.

Lemma 3.10. The K-genus gives rise to a ring homomorphism

K : ΩSO∗ ⊗Q −→ Q.

Now we are ready to state the main theorem of this section.

Theorem 3.11 (Hirzebruch signature theorem). Let Ln be the multiplicative
sequence associated with the power series

√
x

tanh
√
x

= 1 +
x

3
− x2

45
+ · · ·+ (−1)k−122kBkx

k

(2k)!
+ . . . ,

where Bk is the k-th Bernoulli number. Then for any compact, oriented smooth
manifold M , σ(M) = L[M ].

The proof of this theorem depends on the following fact. Since both L and
σ define ring homomorphisms ΩSO∗ ⊗Q −→ Q (where here we implicitly extend
the signature by 0 on dimensions not divisible by 4), it is enough to verify that
they agree on the generators, which we know thanks to the following result of
Thom [14]:

Theorem 3.12 (Thom). The oriented cobordism ring ΩSO∗ is finitely generated
in dimensions divisible by 4 and finite otherwise. In particular

ΩSO∗ ⊗Q =

∞⊕
k=1

ΩSO4k ⊗Q .

Furthermore, the generators are given by combinations of the form

CP2i1 × CP2i2 × · · · × CP2ir .
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We have already computed the signature of these complex projective spaces,
which was precisely 1; see Example 2.7. Therefore, it is enough to show the
identity L(CP2l) = 1, which is as follows: First, recall that the total Pontryagin

class of CP2l is given by p(CP2l) = (1 + a2)2l+1. Since L(1 + t) =
√
t

tanh
√
t
, it

follows that

L(1 + a2 + 0 + 0 + . . . ) =

√
a2

tanh
√
a

2 =
a

tanh a
.

Now, we use the multiplicative property of L and we see that

L((1 + a2)2l+1) =
( a

tanh a

)2l+1

.

Thus the L-genus will be determined by the coefficient of a2l in the power series
of (a/ tanh a)2l+1. For this, we recall that in complex analysis, we can recover
a coefficient of a power series

f(z) = c0 + c1z + c2z
2 + · · ·+ cmz

m + . . . ,

say cm, by first dividing by zm+1

f(z)

zm+1
=

c0
zm+1

+ · · ·+ cm
z

+ cm+1 + . . .

and then integrating around the origin∮
f(z)

zm+1
dz =

∮
cm
z
dz = 2πicm .

As a consequence, replacing a by z in the power series of (a/ tanh a)2l+1, we
obtain

L[CP 2l] =
1

2πi

∫
dz

z2l+1

( z

tanh z

)2l+1

=
1

2πi

∮
dz

tanh z2l+1
.

The change of coordinates u = tanh z implies that dz = du
1−u2 = (1 + u2 + u4 +

. . . )du and we get the result

L[CP2l] =
1

2πi

∮
1 + u2 + u4 + · · ·+

u2l+1
du =

1

2πi

∮
u2k

u2k+1
du = 1 .

This proves the Hirzebruch signature theorem.

We use the formula (3) in Example 3.8 and deduce the following.

Corollary 3.13. If M is an 8-dimensional compact oriented manifold then

σ(M) =
1

45

(
7p2(M)− p2

1(M)
)
.
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4. Milnor’s explicit construction

4.1. Construction in terms of the canonical fibration

This section aims to construct a family of manifolds, some of which are exotic
spheres. They are the total space of fiber bundles over S4 with fiber S3 and
structural group SO(4) (the transition maps are given by matrices in the group
SO(4)). We have to classify all such fiber bundles to identify which are exotic
spheres. This section follows some parts of [6], [15].

These fiber bundles have fibers identified with the ring of quaternions. The
quaternions H are the set of numbers of the form a+ bi+ cj + dk where a, b, c
and d are real numbers and the symbols i, j, k are subject to the following rules:

i2 = j2 = k2 = −1 ,

ij = −ji = k ,

jk = −kj = i ,

ki = −ik = j .

Observe that quaternion multiplication is not commutative. The ring of quater-
nions H is a 4-dimensional real vector space with the component-wise sum
and scalar real multiplication. Similarly, there is a conjugacy operator, as
with the complex numbers, also a norm and an inverse for a quaternion h =
a+ bi+ cj + dk:

h = a− bi− cj − dk , ‖h‖ =
√
hh =

√
a2 + b2 + c2 + d2 and h−1 =

h

‖h‖2
.

We can define the quaternionic projective line HP1, which consists of all quater-
nionic lines in H2. The elements are denoted by classes [h1 : h2] ∈ HP1, where
[h1 : h2] = [λh1 : λh2] for each λ ∈ H non-zero. The canonical bundle over
HP1, denoted by γ1, has total space

E(γ1) = {((x, y), [z : w]) ∈ H2 ×HP1 | (x, y) ∈ [z : w]} .

The projection map π : E(γ1) −→ HP1 is given by the projection onto the
second coordinate. Notice that the canonical bundle is a 4-dimensional real
vector bundle. To construct the exotic spheres, we first consider a family of fiber
bundles constructed from the canonical bundle. These bundles only depend
on the usual construction of HP1 by two charts, and we calculate the local
trivializations. We consider the open sets U1 = {[z : w] ∈ HP1 | w 6= 0} and
U2 = {[z : w] ∈ HP1 | z 6= 0} where the first chart is

φ1 : U1 −→ H ∼= R4

[z : w] 7−→ w−1z
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and the second chart is given by

φ2 : U2 −→ H ∼= R4

[z : w] 7−→ z−1w .

Thus for the projection map π : E(γ1) −→ HP1, we obtain

π−1(U1) = {((x, y), [z : 1]) | yz = x} and π−1(U2) = {((x, y), [1 : w]) | xw = y} .

Therefore, the local trivializations are

ρ1 : π−1(U1) −→ φ1(U1)×H
((x, y), [z : 1]) 7−→ (z, y)

and

ρ2 : π−1(U2) −→ φ2(U2)×H
((x, y), [1 : w]) 7−→ (w, x).

Finally, the transition map ρ2 ◦ ρ−1
1 : φ1(U1 ∩ U2)×H −→ φ1(U1 ∩ U2)×H is

given by

ρ2 ◦ ρ−1
1 ((z, y)) = ρ2

(
(yz, y),

[
1

z
: 1

])
=

(
1

z
, yz

)
.

Consequently, excluding the poles, we are gluing at the point y ∈ π−1([z : 1])
with the point yz ∈ π−1([1/z : 1]) two fibers which can be identified with H.
Since multiplication in H is not commutative, we can have a different bundle if
we glued y with zy. These provide a family of gluing maps fh,l : φ1(U1 ∩U2)×
H −→ φ1(U1 ∩ U2)×H defined as follows:

fh,l((z, y)) =

(
1

z
, zhyzl

)
.

Thus, each gluing map has associated a vector bundle, denoted by ξh,l. For
example, the bundle ξ0,1 is precisely the canonical bundle γ1.

However, our initial purpose was to build bundles over S4 with fiber S3.
Thus in the previous vector bundles, we identify HP1 with S4 by means of the
diffeomorphism HP1 −→ S4 ⊂ R5, which is given by

[z : w] 7→
(

2wz

‖z‖2 + ‖w‖2
,
‖z‖2 − ‖w‖2

‖z‖2 + ‖w‖2

)
,
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and we restrict the fibers to S3 since S3 = {h ∈ H | ‖h‖ = 1)}. Therefore, the
gluing maps are now of the form fh,l : φ1(U1 ∩U2)× S3 −→ φ1(U1 ∩U2)× S3.
These maps have to be normalized in the second coordinate in order to be
coherent with the restriction, so we set

fh,l((z, y)) =

(
1

z
,
zhyzl

‖z‖h+l

)
.

Thus we have constructed for each vector bundle ξh,l, via the restriction, an
induced sphere bundle. We denote these sphere bundles by σh,l and their total
space by Mh,l. These spaces are manifolds of dimension seven, which can be
exotic spheres. In what follows, we show that for some particular h and l,
the space Mh,l is homeomorphic to the sphere S7 (see section 4.2) but not
diffeomorphic to it (see section 4.3). For this purpose, we show that these
sphere bundles σh,l are, in essence, all possible bundles with the property that
the transition map is orientation-preserving. This is stated in the following
theorem:

Theorem 4.1. There is a bijection between the isomorphism classes of fiber
bundles over S4 with fiber S3 and structural group SO(4) and the homotopy
classes of maps from S3 to SO(4).

As a consequence, each sphere bundles σh,l is classified up to isomorphism
by an element in π3(SO(4)). This group is relatively easy to understand since
π3(SO(4)) ∼= Z ⊕ Z (see section 4.1.1) and thus the sphere bundles σh,l and
consequently the manifolds Mh,l are completely determined by a pair of integers
which are precisely (h, l).

4.1.1. Calculating π3(SO(4))

The orthogonal group O(n) consists of all matrices n × n, representing all
the distance-preserving transformations of the Euclidean space Rn. They are
given by matrices A ∈ Gl(n,R) such that AtrA = AAtr = I. If we consider
orientation-preserving transformations, we obtain matrices in O(n), with a de-
terminant equal to 1. This subgroup is denoted by SO(n) and is called the
special orthogonal group of dimension n.

Consider S3 as the unit quaternions. There is a well-defined homomorphism

P : S3 × S3 −→ SO(4) ,

which for each pair (u, v) ∈ S3 × S3, assigns the linear transformation f(u,v) :
R4 −→ R4 defined for x ∈ R4, be the product uxv−1. The homomorphism P
is a continuous map with the following properties:
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68 JULIO SAMPIETRO & CARLOS SEGOVIA

• The image of P is contained in SO(4) as a connected subset of O(4), since
S3×S3 is connected. Moreover, the image of P is in the same connected
component of the identity because P (1, 1) = Id.

• P is a group homomorphism (as claimed). Indeed we have the equality

P (uu′, vv′) = P (u, v) ◦ P (u′, v′) ,

since both sides are equal to the map x 7→ uu′xv′−1v−1.

• We have the identity P (u, v) = P (−u,−v).

• Assume P (u, v) = Id and hence P (u, v)(1) = 1. Thus u1v−1 = 1 and
therefore uv−1 = 1, which is equivalent to u = v. In addition, we have
the equations

P (u, u)(i) = uiu−1 = i, P (u, u)(j) = uju−1 = j

P (u, u)(k) = uku−1 = k.

For the first equation, set u = a+ bi+ cj + dk, and we get

uiu−1 = (a+ bi+ cj + dk)i(a− bi− cj − dk)

= (a+ bi+ cj + dk)(ai+ b− ck + dj)

= a2i+ ab− ack + adj

− ab+ b2i+ bcj + bdk

+ ack + bcj − c2i− cd
− adj + bdk + cd− d2i

= (a2 + b2 − c2 − d2)i+ 2bcj + 2bdk = i ,

from which we deduce the equations a2 +b2−c2−d2 = 1 and bc = bd = 0.
Recalling that a2 + b2 + c2 + d2 = 1 we get that c = d = 0. Proceeding
similarly with the other equations, we conclude that b = c = d = 0.
Consequently, we obtain u = ±1 and the kernel of P is the group with
only two elements Z2

∼= {(1, 1), (−1,−1)}.
• The kernel of P acts properly and discontinuously on S3×S3 from which

it follows that the image of P is a 6-dimensional open submanifold of
SO(4) (since dimS3 × S3 = 6). Because P is continuous and S3 × S3

is compact, we have that P (S3 × S3) is compact, and since SO(4) is
Hausdorff, the image of P is also closed. Thus since SO(4) is connected,
we have that P is surjective.

In conclusion, since the kernel of P is discrete and the homomorphism P :
S3 × S3 −→ SO(4) is a 2-fold covering, see [11]. In other words, every point
in SO(4) has a neighborhood covered by two copies of itself, as shown in the
picture
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Figure 5. The homomorphism P is a 2-fold covering.

As a consequence of the homotopy lifting property for covering spaces, see [1],
we have the following theorem.

Theorem 4.2. If P : Y −→ X is a covering map between connected spaces,
then P induces an isomorphism between the higher homotopy groups P∗ :
πn(Y ) −→ πn(X) (i.e. with n > 1).

Finally, we obtain the following result.

Corollary 4.3.

π3(SO(4)) ∼= π3(S3 × S3) ∼= Z⊕ Z .

4.2. They are homeomorphic to the sphere S7

This section aims to show that if h+ l = ±1, then Mh,l is homeomorphic to the
standard sphere. We need the concept of Morse function, a smooth function
f : M → R such that all critical points are non-degenerate (the Hessian matrix
is non-degenerate). A significant result in Morse theory is the following, see [8].

Theorem 4.4 (Reeb). If M is a compact manifold with a Morse function F
such that F has exactly two critical points, then M is homeomorphic to the
sphere in the corresponding dimension.

We apply this result to our manifolds Mh,l. As we have seen previously,
Mh,l has a cover by two charts, π−1(U1) and π−1(U2). We start with the first
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chart ρ1 : π−1(U1) −→ φ1(U1) × S3 defined by ρ1([x, y], [z, 1]) = (z, y). Take
the smooth function F1 : π−1(U1) −→ R by the composition

F1 ◦ ρ−1
1 : φ1(U1)× S3 −→ R

which has the form

F1 ◦ ρ−1
1 : (z, v) 7−→ Re(v)√

1 + ‖z‖2
.

What are the critical points of F1 ◦ ρ−1
1 ? Since the domain of F1 ◦ ρ−1

1 is a
product, the derivative must vanish in each component. So we ask ourselves:
fixing z, what are the critical points of F1 ◦ ρ−1

1 ?

Observe that, restricted to the second component, the map is just given by
v 7−→ Re(v) with a re-scaling. However, this map is just a + ib + cj + dk 7→ a
(the projection onto the first coordinate). The critical points of this map in the
sphere are just the poles ±1. Thus we have established that v = ±1, we have
to find the critical points for the restriction of F1 ◦ ρ−1

1 to φ1(U1), which has
the form

(z,±1) 7−→ ±1√
1 + ‖z‖2

.

Since φ1(U1) is isomorphic to R4, hence we have a problem in multivariable
calculus for x := (x1, x2, x3, x4):

∇F1 ◦ ρ−1
1 |(z,±1)(x) =

(
∂F1 ◦ ρ−1

1

∂x1
,
∂F1 ◦ ρ−1

1

∂x2
,
∂F1 ◦ ρ−1

1

∂x3
,
∂F1 ◦ ρ−1

1

∂x4

)
=

±1

(1 + ‖z‖2)
3
2

(x1, x2, x3, x4)

=
±z

(1 + ‖z‖2)
3
2

.

This gradient is null only if z = 0. Therefore, we show that in π−1(U1) there are
only two critical points given by (0,±1). It is a straightforward computation
to see that the Hessian is ∓ Id. Thus the critical points we have found so far
are non-degenerate.

Now, we consider the second chart ρ2 : π−1(U2) −→ φ2(U2) × S3 defined
by ρ2 : ((x, y), [1 : w]) = (w, x). Take the smooth function F2 : π−1(U2) −→ R
by the composition

F2 ◦ ρ−1
2 : φ2(U2)× S3 −→ R

which has the form

F2 ◦ ρ−1
2 : (w, u) 7→ Re(wu−1)√

1 + ‖wu−1‖2
=

Re(wu−1)√
1 + ‖w‖2

.
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Here we used the multiplicativity of the norm and the fact that ‖u‖ = 1, since
u ∈ S3.

Now, if u−1 = a + ib + jc + kd and w = x1 + ix2 + jx3 + kx4, then we
differentiate with respect to the first variable and we obtain

∇Re(wu−1)|w = ∇(ax1 − bx2 − cx3 − dx4)|w=(x1,x2,x3,x4)

= (a,−b,−c,−d)

= u .

Since the conjugate of u−1 is its own inverse for the unit quaternions, we get

∇F2 ◦ ρ−1
2 |w =

∇Re(wu−1)|w ·
√

1 + ‖w‖2 − 1

2
√

1+‖w‖2
2wRe(wu−1)

(1 + ‖w‖2)

=
u(1 + ‖w‖2)− wRe(wu−1)

(1 + ‖w‖2)
3
2

.

Notice the numerator is never zero; if not, we have u(1 + ‖w‖2) = wRe(wu−1)
and considering the norm on both sides, we have the inequality

1 + ‖w‖2 = ‖w‖ |Re(wu−1)| ≤ ‖w‖
∥∥wu−1

∥∥ = ‖w‖2 ,

which is impossible. As a consequence, there are no critical points in the second
chart.

It remains to show the compatibility in π−1(U1)∩π−1(U2) whenever h+ l =
−1. It is enough to show the following commutative diagram

(z, v) Re(v)√
1+‖z‖2

( 1
z ,

zhvzl

‖z‖h+l ) Re(wu−1)√
1+‖wu−1‖2 .

F1◦ρ−1
1

ρ2◦ρ−1
1 =

F2◦ρ−1
2

For this purpose, we express wu−1 in terms of z and v. Recall that u−1 = u
‖u‖2

and we know u = zhvzl

‖z‖h+l . Thus we use the properties of the norm and conjugate

in order to obtain the following

u−1 =
zhvzl

‖z‖h+l

1

‖v‖2

=
zlvzh

‖z‖h+l
,
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and we multiply by w = 1
z :

wu−1 =
1

z

zlvzh

‖z‖h+l

=
zl+1vzh

‖z‖h+l+2

For the numerator, we recall that the real part of a quaternion is unchanged
by conjugation with an element x, i.e., Re(xyx−1) = Re(y). For h+ l = −1, we
have h = −1− l and h+ l + 2 = 1. Consequently, we get

Re

(
zl+1vzh

‖z‖h+l+2

)
=

Re
(
zl+1vz−1−l)
‖z‖

=
Re(v)

‖z‖

=
Re(v)

‖z‖ .

For the denominator, we first calculate
∥∥wu−1

∥∥2
:

∥∥wu−1
∥∥2

=

∥∥∥∥∥ zl+1vzh

‖z‖h+l+2

∥∥∥∥∥
2

=
‖v‖2

‖z‖2

=
1

‖z‖2
.

Hence, we substitute into the denominator:

Re(wu−1)√
1 + ‖wu−1‖2

=
Re(v)

‖z‖
1√

1 + 1
‖z‖2

=
Re(v)√
1 + ‖z‖2

Therefore, we have constructed maps that agree on the overlap, and they are
glued together to form a smooth map F defined on Mh,l.

Lastly, we have shown that if h + l = −1, then Mh,l is homeomorphic to
S7 using Reeb’s Theorem 4.4. We will see in Section 4.3.2 that there exists an
orientation-reversing isomorphism between ξh,l and ξ−l,−h. We conclude that
if h+ l = ±1, then Mh,l is homeomorphic to S7.
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4.3. They are non-diffeomorphic to the sphere S7

Let us stand back for a moment and consider the different spaces involved. From
Section 4.1, we have a family of vector bundles ξh,l, and take the associated
fibration given by all vectors of norm less or equal to 1. Denote by Nh,l the
total space of the fibration associated to ξh,l. Moreover, the boundary of Nh,l
consists of all vectors of norm equal to 1. Notice this space is precisely the
manifold Mh,l.

Now we show that Mh,l is not always diffeomorphic to S7 through a contra-
diction. Assume that Mh,l is diffeomorphic to S7, then we can attach an 8-disc
smoothly along the boundary using a collar to get a closed manifold Kh,l, as
shown in the following picture:

Nh,l

D8

∂Nh,l = Mh,l

Figure 6. The manifold Kh,l obtained by gluing an 8-disc along Mh,l.

In Section 4.3.3, we find the first Pontryagin class of Kh,l using the first Pon-
tryagin class of the total space ξh,l.

4.3.1. The characteristic classes of ξh,l

We recall two theorems from [13]:

Theorem 4.5. For any topological group, there exists a group isomorphism

πn(BG) ∼= πn−1(G) .

Theorem 4.6 (Steenrod). A bijection exists between isomorphism classes of
orientable n-dimensional vector bundles and homotopy classes of maps from
the base space to BSO(n).

Thus π4(BSO(4)) ∼= π3(SO(4)) which is Z⊕ Z by Section 4.1.1. By Steen-
rod’s Theorem 4.6, every 4-dimensional oriented vector bundle over S4, is de-
fined by a continuous map f : S4 −→ BSO(4). Then f as an element of
π4(BSO(4)), coincides with an element in π3(SO(4)). This is precisely the pair
of integers (h, l) defining the vector bundle ξh,l.
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In addition, there is a group homomorphism for every α ∈ H4(BSO(4))

Ψ : π4(BSO(4)) −→ H4(S4)

[f ] 7−→ f∗(α)

where [f ] denotes the homotopy class of f . We show that Ψ is a group ho-
momorphism: recall the group structure of π4(BSO(4)) where for two maps
f, g : S4 −→ BSO(4) we have a composition with the “pinching” map along
the equator µ : S4 −→ S4 ∨ S4 as in the picture

−→
−→

−→

µ
f ∨ g

S4 S4 ∨ S4

BSO(4)

Figure 7. The group structure in π4(BSO(4)) is given by this composition.

Thus
f + g := (f ∨ g) ◦ µ : S4 −→ S4 ∨ S4 −→ BSO(4).

Besides that we have two maps ci : S4 ∨ S4 −→ S4 where ci collapses the i-th
sphere, for i = 1, 2. Considering the cell structure of S4 with 4-dimensional
cells, one for each hemisphere, it is not hard to verify that

µ∗ : H4(S4 ∨ S4) −→ H4(S4)

maps the sum of both 4-dimensional cells to a generator (the sum of both
hemispheres). As a consequence, the composition

H4(S4)×H4(S4) −→ H4(S4 ∨ S4) −→ H4(S4)

is given by
(α, β) 7→ c∗1(α) + c∗2(β) 7→ α+ β

where η : H4(S4) × H4(S4) −→ H4(S4 ∨ S4) is an isomorphism obtained by
the Mayer-Vietoris sequence.

Therefore, for two maps f, g : S4 −→ BSO(4) we obtain

(f + g)∗(α) = µ∗(f ∨ g)∗(α)

= (µ∗ ◦ η∗) ◦ ((η−1)∗ ◦ (f ∨ g)∗)(α)

= (µ∗ ◦ η∗)(f∗(α), g∗(α))

= f∗(α) + g∗(α) ,
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which shows that Ψ is a group homomorphism.

Denote by ϕ the isomorphism between π3(SO(4)) and π4(BSO(4)). We
have the following commutative triangle

π3(SO(4)) ∼= Z⊕ Z

π4(BSO(4)) H4(S4) ∼= Z .

ϕ

Ψ

Now we know ξh,l is represented by the element (h, l) ∈ Z ⊕ Z ∼= π3(SO(4)).
In particular, if g = ϕ(h, l) ∈ π4(BSO(4)) is represented by a classifying map
with the same name g : S4 −→ BSO(4)), then we use the naturality of the
Pontryagin classes to deduce that

g∗(p1) = p1(ξh,l) .

In other words, if we choose p1 ∈ H4(BSO(4)), the canonical Pontryagin class
over BSO(4) as our cohomology class, it follows that

p1(ξh,l) = Ψ(g) = Ψ(ϕ(h, l)) .

Since Ψ ◦ ϕ : Z⊕ Z −→ Z is a group homomorphism, there exist integers m, k
such that

Ψ ◦ ϕ(h, l) = m · h+ k · l .
In the next section, we calculate the coefficients m and k.

4.3.2. Determining the coefficients

Recall that if x = a + bi + cj + dk is a quaternion, its conjugate is given by
x = a− bi− cj − dk. Furthermore, the transformation

T : H −→ H
x 7−→ x

is R-linear and reverses the orientation of H since its determinant is −1 (where
we identify H with R4). For a 4-dimensional oriented vector bundle with quater-
nion fiber, say ξ, we can consider its conjugate ξ. This consists of taking the
same underlying 4-dimensional real bundle but changing the multiplication
structure to conjugate multiplication in H. In other words, the identity trans-
formation (in a set-theoretic sense) between the total spaces

id : E(ξ) −→ E(ξ)

is turned into a conjugate-linear transformation in such a way that id(λv) = λv.
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Thus if a transition map is given by f : Ui ∩ Uj −→ SO(k), then our new
transition map is subject to the condition

f(x)(v) = f(x)(v) .

Consequently, by construction, there exists a bundle isomorphism between ξ
and ξ that reverses the orientation (conjugating each fiber).

Going back to our particular case, if we conjugate ξh,l where the transition
map is given by fh,l(u)(v) = uhvul, then the transition map of ξ(h,l) is given
by

f̃(u)(v) = fh,l(u)(v) = uhvul = u−lvu−h.

Here we used that u is an element of S3, and so its conjugate coincides with
its inverse. From this it follows (switching v by v) that the transition map is

f̃(u)(v) = u−lvu−h = f−l,−h(u)(v) .

This proves the following lemma:

Lemma 4.7. There exists an orientation-reversing isomorphism which is given
by the conjugate transformation

ξh,l ∼= ξh,l ∼= ξ−l,−h .

For 4-dimensional bundles, the top Pontryagin class (in this case p1) is
independent of the orientation. Thus the first class of ξh,l and of ξ−l,−h coincide
and we obtain

m · h+ k · l = m · (−l) + k · (−h) .

In particular, setting (h, l) = (1, 0) we have that

m = −k ,

and so

p1(ξh,l) = m(h− l) .
To determine the constant m, it would suffice to evaluate in (1, 0) or (0, 1)
and calculate the Pontryagin class of the resulting space. Luckily, ξ0,1 is the
canonical bundle over HP1, and the characteristic classes are already calculated.
For this purpose, we need the following lemma.

Lemma 4.8. The cohomology ring of HPn is described as

H∗(HPn) ∼= Z[e]/(en+1)

where e is the Euler class of the canonical bundle.
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Proof. Since HPn has a cell structure that involves only 4-dimensional cells
(the reader may compare this to the construction of CPn, which has only cells
of even dimension) the only non-zero cohomology groups are those whose di-
mension is divisible by 4.

Let E be the total space of the canonical bundle γn. Denote by Σ the zero
section and take

E \ Σ = {([x], v) | v ∈ [x], v 6= 0} .
However, this space is homotopy equivalent (as a bundle) to a sphere bundle
with total space S4n+3 via the maps ([x], v) 7−→ v

‖v‖ and v 7−→ ([v], v).

Using the Gysin sequence:

Hi(HPn) Hi+4(HPn) Hi+4(S4n+3) Hi+1(HPn)^e π∗0

since most Hi(S4n+3) are zero, we have that multiplication by e gives an iso-
morphism that jumps 4 dimensions each time. Starting with H0(HP) ∼= Z
(since HP is connected), it follows that H4(HPn) = eZ and so on, while the
other groups are zero. This proves the lemma. �X

Observe that the cohomological description given above has an interest-
ing consequence: the first Chern class of the canonical bundle is zero because
c1(γn) ∈ H2(HPn) = 0. Also, the second Chern class agrees with the Euler
class c2(γn) = e. Thus

c(γn) = 1 + c1(γn) + c2(γn) = 1 + e.

On the other hand, by equation (2), we obtain

1− p1 + p2 − · · · = (1− c1 + c2 − . . . )(1 + c1 + c2 + . . . )

and so

1− p1(γn) + p2(γn) = (1 + c2(γn))(1 + c2(γn)) = (1 + e)2.

We conclude
p(γn) = 1− 2e+ e2.

Now we are ready to determine the coefficients of the first Pontryagin class.
Recall

p1(ξh,l) = m(h− l)η
where η is a generator in cohomology. But then

p1(ξ0,1) = m(0− 1)η = −2e .

Thus, depending on our choice of the generator, we have that m = ±2, and we
have shown the following.

Proposition 4.9.
p1(ξh,l) = ±2(h− l)η .
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4.3.3. Calculating p1(Kh,l)

Now we use the characteristic classes of the bundles ξh,l in order to calculate
the characteristic classes of Kh,l from Section 4.3.

To a vector bundle π : E −→M we can associate the commutative diagram

π∗TM TM

E M

π′

π

where π′ : TM −→ M is the standard projection for the tangent bundle. In
particular, we have an exact sequence

0 π∗E TE π∗TM 0 .

In this sequence, we write π∗E as the set of pairs that commute with both
projections, that is

π∗E = {(x, f) ∈ E × E | π(x) = π(f)}

and
π∗TM = {(x, v) ∈ E × TM | π(x) = π′(v)} .

The first map in the sequence can be defined by identifying f ∈ E as an
element of TxE (since the fiber over x is just a copy of Euclidean space, take
f − x). The second map simply projects (tangentially) the second coordinate,
(x, v) 7→ (x, π∗(v)). It is clear that the image of the first map is contained in
the kernel of the second map. By a dimension argument, this sequence is exact.
Moreover, choosing a Riemannian metric on E, this sequence splits, i.e.,

TE ∼= π∗E ⊕ π∗TM .

Now we restrict both tangent bundles and the projections to vectors of norm
less or equal to 1. We obtain a similar splitting and for the space Nh,l we get

TNh,l ∼= π∗ξh,l ⊕ π∗TS4 .

It is known that by adding a trivial one-dimensional bundle to the tangent
bundle of the sphere, one gets a trivial bundle, i.e.,

TS4 ⊕ ε1 ∼= ε5 .

As a consequence,

TNh,l ⊕ ε1 ∼= π∗ξh,l ⊕ π∗TS4 ⊕ ε1

∼= π∗ξh,l ⊕ π∗
(
TS4 ⊕ ε1

)
∼= π∗ξh,l ⊕ ε5 ,
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hence

p1(Nh,l) = p1(π∗ξh,l ⊕ ε5)

= p1(π∗ξh,l)

= π∗p1(ξh,l).

Since π : Nh,l −→ S4 is a homotopy equivalence, hence the map π∗ : H4(S4) −→
H4(Nh,l) is an isomorphism. Then

π∗(p1(ξh,l)) = π∗(2(h− l)η) = 2(h− l)π∗(η)

where π∗(η) is a generator.

Now the inclusion
ι : Nh,l ↪→ Kh,l

induces an isomorphism ι∗ in degree four cohomology because Kh,l differs from
Nh,l by the addition of an 8-cell (this does not affect the lower-degree coho-
mology). Therefore, we have a natural identification

p1(Kh,l) = 2(h− l)β

where β is a generator in degree four cohomology.

Finally, by Hirzebruch’s signature theorem and corollary 3.13, we have the
equation

σ(Kh,l) =
1

45

(
7p2(Kh,l)− (±2(h− l))2

)
.

On the left-hand side, sinceH4(Kh,l) is of dimension one, we have that σ(Kh,l) =
±1. We choose the fundamental class in such a way that σ(Kh,l) = 1, i.e., such
that 〈β2, [Kh,l]〉 = 1 (we can always do this by reversing the orientation). Thus
we get an equation of the form

45 = 7p2(Kh,l)− 〈(±2(h− l)β)2, [Kh,l]〉
= 7p2(Kh,l)− 4(h− l)2〈β2, [Kh,l]〉
= 7p2(Kh,l)− 4(h− l)2 .

Reducing modulo 7 we have

3 = −4(h− l)2 mod 7

= 3(h− l)2 mod 7 ,

which simplifies to
(h− l)2 = 1 mod 7 .

This does not always hold! Just take h, l such that (h − l)2 6= 1 mod 7. By
way of contradiction, we have shown that the differentiable structure cannot
coincide with the standard one.
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5. A comparison with Milnor’s original work

In his famous paper of 1956, see [7], Milnor defines an invariant associated with
7-manifolds.

We begin with a 7-dimensional, compact, oriented manifold M subject to
the following condition

H3(M) = 0 = H4(M).

An important result is the following:

Lemma 5.1 (Thom). The oriented bordism group in degree 7 is trivial.

As a consequence, M is the boundary of an 8-dimensional manifold, which
we denoted by B. The Poincaré duality relates the long exact sequence of the
pair (B,M) in cohomology and homology. This is the following commutative
diagram

H3(M) H4(B,M) H4(B) H4(M)

H3(M) H4(M) H4(B,M) H3(M) .

D

j

D D D

j

Since H3(M) = H3(M) = H4(M) = H4(M) = 0 we get that the morphisms
j’s are isomorphisms. For the fundamental classes [B] ∈ H8(B,M) and [M ] ∈
H7(M), we set V = H4(B,M)/Torsion and we get a quadratic form Q : V ×
V −→ Z given by

Q(α) = 〈α ^ α, [B]〉.

The Poincaré duality implies that Q is non-degenerate.

Denote by τ(B) the index of Q and since j is an isomorphism we define

q(B) := 〈
(
j−1p1

)2
, [B]〉.

The invariant λ(M) is the residue modulo 7 of 2q(B) − τ(B). Now we show
that λ(M) is well-defined (it is independent of B and only depends on M).

Take two disjoint manifolds B1,B2 such that ∂B1 = ∂B2 = M . We construct
a new manifold C obtained by smoothly gluing B1 and B2 along M , where
we keep the original orientation of B1 and reverse the orientation of B2. We
illustrate C in the following picture:
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M

B1

B2

Figure 8. The manifold C := B1 ∪ −M2.

By our choice of orientation, the fundamental class [C] restricts to [B1] and
−[B2].

Lemma 5.2. The following equalities hold:

σ(C) = τ(B1)− τ(B2)

〈p2
1(C), [C]〉 = q(B1)− q(B2).

Proof. Using the Mayer-Vietories exact sequence, we have a commutative
square

Hn(B1,M)⊕Hn(B2,M) Hn(C,M)

Hn(B1)⊕Hn(B2) Hn(C) .

j1⊕j2

h

j′

k

(4)

Since H3(M) = H4(M) = 0, for n = 4, the square consists of isomorphisms. In
particular, if α ∈ H4(C) is any cohomology class, then there exist α1, α2 such
that α = j′h−1(α1 ⊕ α2). Thus

〈α2, [C]〉 = 〈(j′h−1(α1 ⊕ α2))2, [C]〉
= 〈α2

1 ⊕ α2
2, [B1]⊕ (−[B2])〉

= 〈α2
1, [B1]〉 − 〈α2

2, [B2]〉 .

The index of the left-hand side is simply the signature of C (compare with
section 2.1). This implies that σ(C) = τ(B1)− τ(B2).

Moreover, let α1, α2 be defined by α1 = j−1
1 p1(B1) and α2 = j−1

2 p1(B2).
If ιi : Bi ↪→ M denote the inclusions, then we have ι∗i p1(C) = p1(Bi) by
naturality of characteristic classes. As a consequence,

k(p1(C)) = p1(B1)⊕ p1(B2)
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where k is the isomorphism in (4). This implies

j′h−1(α1 ⊕ α2) = p1(C) .

Similarly, as in the computation for the signature, we get

〈p2
1(C), [C]〉 = 〈α2

1, [B1]〉 − 〈α2
2, [B2]〉 = q(B1)− q(B2) .

�X

Recall Hirzebruch’s signature theorem (Corollary 3.13):

σ(C) = 〈 1

45

(
7p2(C)− p2

1(C)
)
, [C]〉 .

After some manipulation we obtain

〈p2
1(C), [C]〉+ 45σ(C) = 7〈p2, [C]〉 .

Reducing modulo 7 it follows that

〈p2
1(C), [C]〉+ 3σ(C) = 0 mod 7

and multiplying by 2 and reducing the coefficients gives

2〈p2
1(C), [C]〉 − σ(C) = 0 mod 7 .

Lemma 5.2 implies the following

2q(B1)− τ(B1) = 2q(B2)− τ(B2) mod 7 .

This implies that λ(M) is well-defined.

In particular, if h + l = −1 we know that Mh,l is homeomorphic to S7,
which obviously satisfies the condition H4(S7) = H3(S7) = 0. Furthermore,
we can explicitly calculate λ(Mh,l) using that ∂Nh,l = Mh,l. In Section 4.3.3
we have computed

p1(Nh,l) = ±2(h− l)ζ
with ζ = π∗(η). We chose an orientation of Nh,l such that we have the identity
〈(j−1ζ)2, [Nh,l]〉 = 1 (we can always do this, up to reversing the orientation)
and from this we see

q(Nh,l) = 〈(j−1(±2(h− l)ζ))2, [Nh,l]〉 = 4(h− l)2 .

Besides that the index τ is given by 〈(j−1ζ)2, [Nh,l]〉 which is exactly 1 due to
our choice of orientation. Therefore,

λ(Mh,l) = 2q − τ = 8(h− l)2 − 1 ≡ (h− l)2 − 1 mod 7 .

If Mh,l is diffeomorphic to the standard sphere, we take the standard 8-ball
as a bounding manifold. For this case, both q and τ are zero since the fourth
cohomology group is trivial. Thus λ(Mh,l) = 0 which means that for all values
of h, l with h+ l = −1, we must have (h− l)2 − 1 6= 0 mod 7. This is false.
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6. Closing remarks

6.1. In summary

The proof of the existence of exotic spheres resides in a plethora of topological
results that were freshly developed in the fifties.

On one hand, the simple classification of oriented vector bundles over the
sphere due to Steenrod’s theorem and the relatively easy computation of the
group π3(SO(4)) allow us to understand all sphere bundles with structure group
SO(4) over the 4-sphere. Then we use Reeb’s theorem to conclude that among
all those bundles, some are homeomorphic to the sphere.

The work of Thom and Hirzebruch provides powerful invariants associated
with manifolds.

The cohomological description of these spaces implies prescribed values for
the signature and the first Pontryagin class. If they were diffeomorphic to the
standard sphere, it would be possible to construct new spaces that also admit
a simple but rigid description of these invariants. Eliminating the second Pon-
tryagin class by working modulo 7 we get a contradiction by a specific choice of
indices. From this, we conclude that said manifolds are homeomorphic to the
7-sphere but not diffeomorphic.

6.2. A glimpse ahead

Figure 9. Michel Kervaire.

This was only the beginning of discovering the so-called ’Exotic structures’.
The most immediate progress came from Milnor and Kervaire [3], who enu-
merated all exotic spheres in 1963, summing up to 28 different exotic spheres
in dimension 7. The monoid of exotic structures in dimensions different from
four has been extensively studied and turns out to be a group.

Revista Colombiana de Matemáticas
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It is worth mentioning that even if many important results have been ob-
tained in this direction, we still need to understand more about exotic struc-
tures. A combination of the work by Moise and Stallings [12] shows that Rn
has no exotic structure for n different from 4, while Freedman was the first to
exhibit the existence of an “exotic R4” [2]. A continuum of exotic structures has
been found for R4. Finally, the question about exotic structures in the 4-sphere
remains open.
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