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Abstract. In this work, we prove that a seasonal-dependent SIRS model with
general incidence and treatment rates has periodic solutions. This generalized
model is analyzed using Leray-Schauder degree theory to prove the existence
of a periodic solution. Finally, numerical simulations are shown to illustrate
the theoretical results.
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Resumen. En este trabajo, nosotros probamos que un modelo SIRS estacional
denso-dependiente con tasas generalizadas de incidencia y tratamiento tiene
soluciones periódicas. Este modelo generalizado es analizado usando teoŕıa
de grado de Leray-Schauder para probar la existencia de órbitas periódicas.
Finalmente, se muestran simulaciones numéricas para ilustrar los resultados
teóricos.
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1. Introduction

Forecasting the evolution of an infectious disease has been a very important
goal in mathematical epidemiology. The construction of epidemiological models
helps not only to understand the way that a disease spreads in a population
but also to design public health strategies, which are intended either to control
or to eradicate an epidemic outbreak. In mathematical epidemiology, there are
the so called compartmental epidemic models. In these models, population is
divided into classes. Each class represents a group of individuals that have some
demographical or epidemiological characteristic. In some cases, population is
divided into age groups. In other situations, population can be divided into
epidemiological categories. For example, when a SIR model is constructed,
population is divided into susceptible, infectious, and recovered individuals,
which are denoted by S(t), I(t) and R(t) respectively. The SIQR and SITR
models are obtained from a SIR model by adding isolated individuals (denoted
Q(t)) and treated individuals (denoted T (t)), respectively.

Some autonomous compartmental epidemic models may show periodic so-
lutions when some conditions over the parameters are satisfied (as in [2, 9,
11, 14, 15, 17, 19, 28]). In these cases, existence of periodic solutions in these
compartmental epidemic models is related to changes in the disease prevalence
because of variations in the number of contacts between susceptible and infec-
tious individuals. However, even though seasonality is so ubiquitous in nature,
mechanisms producing seasonal diseases are little known . This ubiquity is the
main reason why identifying the principal seasonality environmental drivers
becomes extremely difficult.

There is a wide variety of seasonal infections in human population: measles
and chickenpox, influenza and respiratory infections or malaria and dengue.
For these infectious diseases, there are different seasonal drivers and these can
be either environmental or social drivers.

Several compartmental epidemic models have been used to describe the dy-
namics of infectious diseases using different incidence functions. For example;
Van den Driessche and Watmough [24] studied the effect over a population due
to an incidence rate of the form βI(1+αIn)S, and Capasso and Serio [4] intro-
duced a saturated incidence function βSI

(1+αI) in an epidemic model to study the

cholera epidemic in 1973. Also, Xiao and Ruan [29] proposed a non-monotonic
incidence function βSI

(1+αI2) in an SIRS epidemic model. Particularly, this in-

cidence function decreases due to the psychological effect that is induced by
the presence of infectious individuals in the population. The examples shown
above are generalizations of either the mass-action law or the standard inci-

dence. Other general saturation incidence functions are βIkS
(1+αIn) , βIS

(1+α1I+α2I2)

and βe−mIIS, which were studied in [6, 16, 20, 21]. The incidence functions
shown above may describe certain epidemiological mechanism such as crowding
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effects, media impact, an increased likelihood of infection from multiple expo-
sures, or behavioral changes in the susceptible population as a function of the
fraction of infective individuals.

In all the examples shown above, the infection rate β is assumed constant.
However, the use of a periodic function β(t) may help to understand the rea-
sons behind sustained oscillations. For example, Dushoff et al. [9] showed that
oscillations could be sustained by the resonance of the natural periodicity in
the influenza infection rate and the endogenous damped oscillations of com-
partmental models. Jódar and coauthors [15] studied the existence of periodic
solutions in the dynamics of respiratory syncytial virus in a seasonal epidemic
SIRS model. Both papers used an incidence function given by β(t)SI. In [2]

and [19], a seasonal epidemic model using β(t)SI
1+kI as the incidence function was

studied.

Also, in mathematical epidemiology, different kinds of functions to describe
a per-capita treatment rate are used. These treatment rates is a way to explore
the impact of medical treatments to control the number of infectious individ-
uals. Examples of per-capita treatment functions, which appear in the mathe-
matical epidemiological literature, are rI, (r1+r2I)I, (r2e

−r3I)I, (r1+r2e
−r3I)I,

r1I
1+kIn or piecewise linear functions; see [7, 10, 11, 23, 26, 27, 30, 31]. Notice
that, the recovery rates showed before could describe several health system
characteristics and hospitalization conditions. For example: the carrying ca-
pacity of hospitals, number of hospitals, doctors and nurses and even the cost
of public health policies and treatments effectiveness.

Knowing the evolution of an infectious disease can be possible when some
epidemiological quantities are calculated. The most famous epidemiological pa-
rameter is the so called basic reproduction number, which is denoted by R0.
The basic reproduction number is defined as the number of secondary infec-
tions that result from the introduction of a single infectious individual into an
entirely susceptible population during his infectious period [1]. Then, if R0 is
less than 1, the infectious population approaches the disease-free state, and if
R0 is greater than 1, there is an epidemic outbreak. This definition of R0 is
appropriate for a nonseasonal infection for which the infectious rate is assumed
to be constant. However, when modeling seasonal diseases, this definition has
serious limitations because the number of secondary infections is not constant
in the time.

For epidemiological models with a seasonal infectious rate, the basic repro-
duction number is defined by

R̄0 = D

1∫
0

β(t)dt. (1)

In expression (1), D denotes the infectious average time, and β(t) denotes the
seasonal infectious rate at time t. Thus, R̄0 is defined as the average number
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of secondary infections that results from the random introduction at the time
of a single infectious individual into a completely susceptible population [12,
22]. In this case, the condition R̄0 < 1 is not enough to stop an epidemic
outbreak. However, it is sufficient and necessary for the infectious population
to approach the disease-free state in the long term. Notice that, the control
policy of bringing R̄0 below 1 fails to prevent the epidemic outbreak because
transmission sequences can appear if Dβ(t) > 1. This scenario can occur in the
high incidence season.

In epidemiological mathematical literature, there are models that present
periodic solutions when the infection force is modeled by general non-linear
functions with a seasonal infection rate [13]. In that scenario, most of the
seasonal models with non linear infection force assume that the number of
recovered individuals is proportional to the number of infectious individuals. In
some cases, the term that describes the number of recovered individuals shows
a saturation phenomenon [11]. However, it is of paramount importance to know
if periodic solutions can be avoided when, in the modeling process, a general
recovery function is used to describe changes in a recovered population due to
different phenomenological mechanisms. In this work, we show that a periodic
orbit can exist in a SIRS epidemic model for a wide variety of incidence and
treatment functions.

To do this, we propose a general per-capita treatment function that is given
by

T (I) :=
(r1 + r2e

−r3I)I

1 + kIn
. (2)

The parameters r1, r2, r3 and k are non-negative constants and n ≥ 1. Notice
that T (I) generalizes some treatment functions mentioned paragraphs above.

Also, we assume that the general incidence function β(t)Sf(I) satisfies:

i) f(I) = If1(I) with f1 : R+ → R+ a C1-function,

ii) f(0) = 0 and f(I) > 0 for all I > 0,

iii) f ′1(I) ≤ 0 for all I ≥ 0.

Remark 1.1. similar conditions on f for autonomous systems were considered
in [5, 18].

In Section 2, we propose a seasonal SIRS model with both incidence and
treatment generalized rates. In Section 3, we prove the existence of a periodic
orbit using Leray-Schauder degree theory (see [3, 17]). Also, proper adjustments
for the general incidence function are developed using a Hurwitz condition
to control the roots of the characteristic polynomial associated to the model.
We propose a second homotopy to deal with the general treatment function.
In Section 4, we present numerical simulations of the solutions of the model
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to illustrate the theoretical results. Finally, in Section 5, we provide a few
concluding remarks.

2. The model

The SIRS model with the incidence and treatment rate mentioned above is
given by .

S′ = µ(N − S)− β(t)Sf(I) + ηR,

I ′ = β(t)Sf(I)− (γ + µ)I − T (I),

R′ = γI − (µ+ η)R+ T (I),

(3)

where N := S + I + R denotes the total population. In the proposed model,
there are an inflow of newborns in the susceptible class at rate µN and deaths
in each class at rates µS, µI and µR. Observe that the births balance the
deaths. Then, the population size N is constant.

Usually, the seasonal infection rate is described with a sinusoidal function
as follows

β(t) = β(1 + σ cos(2πt)). (4)

In (4), σ is related to the strength of seasonal forcing. That is, σ is the amplitude
of the seasonal variation in the transmission of the disease. β(t) describes the
oscillations around a baseline rate β. The other model parameters are consid-
ered positive constants, with the following interpretation: µ is the birth-death
rate, γ is the natural disease recovery rate, η is the rate of waning of immunity,
that is, η is the rate at which the treatment wears off.

3. Analysis of the model

For model (3), N ′(t) = µN − µN = 0. Then, N(t), the population size, is
constant, and for simplicity, we assume that N = 1. Then, the set

Ω := {(S, I;R) : S ≥ 0, I ≥ 0, R ≥ 0, S + I +R ≤ 1} (5)

is positively invariant for (3). Using the fact that R = 1− S − I, model (3) is
reduced to

S′ = η(1− S − I) + µ(1− S)− β(t)Sf(I),

I ′ = β(t)Sf(I)− (γ + µ)I − (r1+r2e
−r3I)I

1+kIn .
(6)

Therefore, we will analyze the dynamics of system (6) in

Γ := {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ 1}. (7)

To do this, we restrict our attention to such a region of feasibility Γ.

The disease-free equilibrium for model (6) is (S0, I0) = (1, 0). Observe that,
the trivial equilibrium exists for all values of the parameters of the model. Using
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the next generation matrix proposed in [25], we calculate the basic reproduction
number for the seasonal epidemic model given in (6), which is given by

R0 :=
βf ′(0)

γ + µ+ r1 + r2
,

with β := 1
T

∫ T
0
β(t)dt. Notice that R0 is not affected by the parameters r3, k,

α and η.

We express the periodic function β(t) as

β(t) = β + β0(t), where

∫ T

0

β0(t)dt = 0.

We construct two homotopies to prove that model (6) shows at least a periodic
solution. For this, we analyze a particular case of model (6) for which we con-
struct a first homotopy. After that, we analyze the general case using a second
homotopy and the result will be proved.

For the particular case, let k = r3 = 0. Then, we propose the homotopy

S′ = −ηI + (µ+ η)(1− S)− βλSf(I),

I ′ = βλSf(I)− (γ + µ+ r1 + r2)I.
(8)

for λ ∈ [0, 1] and βλ := β + λβ0(t).

Then, the following result will be proved.

Theorem 3.1. Let k = r3 = 0. If R0 > f1(0)
f1(1) , then there is at least one

T -periodic orbit of model (8) whose components are positive.

Theorem 3.1 will be proved using Leray-Schauder degree theory; see [17].
For this, the proof of Theorem 3.1 will start by introducing the following Banach
spaces. Let

ClT := {(S, I) : S, I ∈ Cl(R,R), S(t+T ) = S(t), I(t+T ) = I(t)}; where l = 0, 1.

Now, the homotopy (8) will be reformulated as a functional problem defined
on the Banach spaces where periodic solutions correspond to the zeros of con-
venient operators.

Motivated by (8), the operators L : C1
T → C0

T and Nλ : C0
T → C0

T are defined
by

L(S, I) := (S′ + (µ+ η)S, I ′ + (γ + µ+ r1 + r2)I),

and

Nλ(S, I) := (−ηI + (µ+ η)− βλSf(I), βλSf(I)).

Volumen 57, Número 1, Año 2023



PERIODIC SOLUTIONS IN A SIRS MODEL 25

Then, system (8) can be written as L(S, I) = Nλ(S, I). Also, because L is
invertible, the above equation can be rewritten as

Fλ(S, I) := (S, I)− L−1 ◦Nλ(S, I) = 0. (9)

As C1
T is compactly embedded in C0

T , the operator L−1 from C0
T to C0

T exists;
therefore, L−1 ◦ Nλ : C0

T → C0
T is a compact operator. In a similar way, Fλ :

C0
T → C0

T is considered. Thus, equation (9) is a functional reformulation of
system (8).

In the following, an open bounded subset on the Banach space must be
constructed such that the family of operators does not support zeros over the
boundary of such open set.

Consider the open sets

D := {(S, I) ∈ C0
T : S > 0, I > 0, S + I < 1}

and

U := {(S, I) ∈ D : min
[0,T ]

S(t) < δ},

with 0 < δ < 1 to be fixed.

Next, we prove the following lemma:

Lemma 3.2. If R0 >
f1(0)
f1(1) , then for any λ ∈ [0, 1] there are no solutions (S, I)

of (8) entirely contained in ∂U .

Proof. First, choose δ such that 1
R0

< δ f1(1)
f1(0) . Notice that (S0, I0) = (1, 0) is

the unique solution of (8) entirely contained in ∂D for any λ ∈ [0, 1], i.e., there
are no solutions different from (S0, I0) = (1, 0) that remain on the boundary of
D for all time t.

Assume that (S, I) ∈ ∂U , then (S, I) /∈ ∂D so

(S, I) ∈ D and S(t) ≥ δ, ∀t. (10)

By integrating the second equation in system (8) as
∫ T

0
I′

I dt = 0 (we assume
that I is T -periodic), it follows that

γ + µ+ r1 + r2 =
1

T

∫ T

0

βλ(t)f1(I)S(t)dt. (11)

By hypothesis iii) on f , f1(1) ≤ f1(I) ≤ f1(0), and using (10) one gets

γ + µ+ r1 + r2 =
1

T

∫ T

0

βλ(t)f1(1)S(t)dt ≥ δβf1(1). (12)
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Now, from the hypothesis of the lemma 3.2, it follows that

1

T

∫ T

0

βλ(t)Sf1(1)dt ≥ δ f1(1)

f1(0)
f1(0)β >

f1(0)

R0
β = γ + µ+ r1 + r2 (13)

that is a contradiction.

Therefore, lemma 3.2 is proved. �X

We now determine the Leray-Schauder degree, deg(F0, U) and prove the
existence of periodic orbit.

Using analogous arguments to [8], the existence of a unique endemic equi-
librium (S1, I1) in D can be proved. For λ = 0, system (8) has exactly two
periodic orbits, namely, the following equilibrium points: (1, 0) and (S1, I1).
Where S1 satisfies the following expression

S1 =
(γ + µ+ r1 + r2)I1

β̄f(I1)
. (14)

Next, we will prove the following lemma.

Lemma 3.3. Let U be an open set as the one defined above. Then
deg(F0, U) 6= 0.

Proof. Since (S1, I1) is the unique solution of F0(S, I) = 0 in U , then it suffices
to prove that DF0(S1, I1) is invertible. Because F0 is a compact perturbation
of the identity, by the Fredholm alternative, it suffices to prove that

Ker(DF0(S1, I1)) = {0}. (15)

Consider (V,W ) ∈ C0
T such that (V,W ) ∈ Ker(DF0(S1, I1)). By the definition

of F0, L(V,W ) = DN0(S1, I1)(V,W ), where N0(S1, I1) = (−ηI1 + (µ + η) −
β̄S1f(I1), β̄S1f(I1)). Then

DN0(S1, I1)(V,W ) = (−ηV −β̄(V f(I1)+S1f
′(I1)W ), β̄(V f(I1)+S1f

′(I1)W )).

By rewriting in matrix form the above equation, we obtain the following system.(
V ′

W ′

)
=

(
−(µ+ η + β̄f(I1)) −η − β̄S1f

′(I1)

β̄f(I1) β̄S1f
′(I1)− (γ + µ+ r1 + r2)

)(
V

W

)
. (16)

Equation (15) is fulfilled if and only if the unique periodic solution of the
linear system given by (16) is the trivial one. Therefore, it would be enough to
prove that its characteristic polynomial is Hurwitz. For this, notice that, the
characteristic polynomial associated to (16) is given by

p(λ) = λ2 − tr(B)λ+ det(B), (17)
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where

B =

(
−(µ+ η + β̄f(I1)) −η − β̄S1f

′(I1)

β̄f(I1) β̄S1f
′(I1)− (γ + µ+ r1 + r2)

)
. (18)

Keeping that in mind, the following result is proved. �X

Lemma 3.4. The characteristic polynomial given by (17) is Hurwitz.

Proof. It is known that if tr(B) < 0 and det(B) > 0, then the characteristic
polynomial is Hurwitz. From conditions i) and ii) we can establish

f(I1) ≥ I1f ′(I1). (19)

Using (19) a direct calculation yields

tr(B) = −(µ+ η)− β̄f(I1)− (γ + µ+ r1 + r2) + β̄S1f
′(I1)

=
β̄(γ + µ+ r1 + r2)I1f

′(I1)

β̄f(I1)
− β̄f(I1)− (µ+ η)− (γ + µ+ r1 + r2)

≤ −β̄f(I1)− (µ+ η),

< 0.

On the other hand, the following result is obtained.

det(B) = ((µ+ η) + β̄f(I1))(γ + µ+ r1 + r2 + η)−(η + µ)(η + β̄S1f
′(I1))

≥ ((µ+ η) + β̄f(I1))(γ + µ+ r1 + r2 + η)−(η + µ)(η + γ + µ+ r1+r2)

> 0.

Therefore, the inequalities tr(B) < 0 and det(B) > 0 are satisfied. So, the char-
acteristic polynomial associated to the system (16) is Hurwitz. In particular,
it does not have imaginary or null roots. Therefore, the linear system (16) has
no periodic orbits different from the trivial solution.

From Lemma 3.4, we get that (15) is valid, hence deg(F0, U) 6= 0. �X

Proof of Theorem 3.1. Using the invariance of the Leray-Schauder degree
under homotopy, by Lemma 3.2 and Lemma 3.3, we get deg(F1, U) 6= 0. So
the system (8) admits a non-trivial periodic solution, which proves Theorem
3.1. �X

So far, we have analyzed a particular case of the general seasonal epidemi-
ological model (6). Now, the will prove the result for the general case.

For τ ∈ [0, 1], we define the homotopy

S′ = −ηI + (µ+ η)(1− S)− β(t)Sf(I),

I ′ = βλSf(I)− (γ + µ)I − (r1+r2e
−r3τI)I

1+kτIn .
(20)
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The operator Mτ : C0
T → C0

T , which is needed for applying the Leray-Schauder
theory, is given by

Mτ (S, I) :=

(
−ηI + (µ+ η)− β(t)Sf(I), β(t)Sf(I)− (r1 + r2e

−r3τI)I

1 + kτIn

)
.

Therefore system (20) becomes L(S, I) = Mτ (S, I) where L is as defined earlier.
Consider

Hτ (S, I) := (S, I)− L−1 ◦Mτ (S, I). (21)

Thus, (21) is a functional reformulation of the problem (20). In particular,
periodic solutions of (20) correspond to zeros of Hτ . Notice that, H0 = F1,
therefore deg(H0, U) 6= 0. Recall that the existence of a solution for H1 in U
is guaranteed via Leray-Schauder degree if both deg(H0, U) 6= 0 and Hτ is an
admissible homotopy i.e. 0 /∈ Hτ (∂U),∀τ ∈ [0, 1]. So, it is necessary to establish
that Hτ is an admissible homotopy.

Lemma 3.5. If R0 >
f1(0)
f1(1) , then for any τ ∈ [0, 1] there are no solutions (S, I)

of (20) on the boundary of the set U .

Proof. Observe that if (S, I) ∈ ∂U , then (S, I) /∈ ∂D. Therefore,

(S, I) ∈ D and S(t) ≥ δ, ∀t. (22)

Dividing by I and simplifying the second equation in system (20), we obtain
the expression

I ′

I
=
β(t)Sf(I)

I
−(γ+µ)− (r1 + r2e

−r3τI)

1 + kτIn
≥ β(t)Sf1(I)−(γ+µ+r1+r2). (23)

Since I is T -periodic then
∫ T

0
I′

I dt = 0, it follows that

γ + µ+ r1 + r2 =
1

T

∫ T

0

≥ β(t)Sf1(I). (24)

Now, from the condition R0 >
f1(0)
f1(1) and the fact that f1 is decreasing, we get

γ+µ+r1+r2 ≥
1

T

∫ T

0

β(t)Sf1(1)dt ≥ δf1(1)β >
f1(0)

R0
β ≥ γ+µ+r1+r2, (25)

which is a contradiction. Therefore, the lemma is proved. �X

Recapitulating, from the previous lemma, Hτ is an admissible homotopy
since H0 = F1, then deg(H0, U) 6= 0 (see proof of Theorem 3.1) and thus
deg(H1, U) 6= 0. Therefore, the Leray-Schauder degree system (6) admits a
non-trivial periodic solution. Finally we obtain
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Theorem 3.6. If R0 >
f1(0)
f1(1) , then there is at least one T -periodic orbit of (6)

whose components are positive.

Notice that, Theorem 3.6 is associated to the two dimensional model given
by (6). Therefore, there is at least one positive T -periodic solution
(S(t), I(t), R(t)) for system (3) such that N = 1.

4. Numerical simulations

In this section, we illustrate that model (3) admits a limit cycle for different
functions that model the infection force and the treatment rate. To do this, we
use the software Mathematica 11. The values of the parameters of the model
are chosen so that the conditions in Theorem 3.6 are satisfied. To exemplify
seasonal effects in the spreading of the infectious disease, we use the periodic
function

β(t) = 10 (1 + 0.5 cos(2πt)) (26)

in all examples shown in this section.

Example 4.1. In this scenario, we use the factor f1(I) = 1
1+αI2 in the in-

cidence of the disease. Therefore, the number of new infections is given by

β(t)Sf(I) = β(t)SIf1(I) = β(t)
1+αI2SI. In this scenario, we can interpret that

the infection rate, β(t), strongly decreases as a function of the number of in-
fectious individuals. Therefore, the model is given by

S′ = ηR+ µ(1− S)− β(t)S I
1+αI2 ,

I ′ = β(t)S I
1+αI2 − (γ + µ)I − (r1+r2e

−r3I)I
1+kIn ,

R′ = γI − (µ+ η)R+ (r1+r2e
−r3I)I

1+kIn .

(27)

For the numerical simulation, the values of the parameters are η = 0.2, µ =
0.0001, γ = 0.9, k = 0.001, r1 = 0.2, r2 = 0.3, r3 = 0.4, α = 0.01 and n = 2.

With these values of the parameters of the model, R0 = 7.1423 and f1(0)
f1(1) = 0.99.

Then, the condition R0 >
f1(0)
f1(1) is satisfied. Therefore, the model (27) admits

at least one T-periodic orbit with positive components; see Figure 1.

To exemplify that model (27) admits periodic orbits for f1(I) = 1
1+αI2 and

other treatment functions, we show an scenario in which T (I) = 0.2I
1+0.001I2 . In

this scenario, r2 = 0, in (r1+r2e
−r3I)I

1+kIn , and all other parameters of the model
are the same as the values used in the first case. Then, R0 = 9.0901. Notice

that the right hand side of the condition R0 >
f1(0)
f1(1) does not depend on the

parameter r2. Particularly, f1(0)
f1(1) = 0.99. Therefore, the conditions of Theorem

3.6 are satisfied in this scenario. Then, model (27) admits at least one T-
periodic solutions with positive components. Figure 2 shows the dynamics of
the infectious class when r2 > 0 and r2 = 0.
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Figure 1. Figure shows the existence of a periodic solution of the model (27) when

f1(I) = 1
1+αI2

and T (I) = (r1+r2e
−r3I )I

1+kIn
. For the numerical simulations

the initial conditions are given by S0 = 0.9, I0 = 0.1 and R = 0.

Figure 2. Figure shows the dynamics of the infectious class when f1(I) = 1
1+αI2

and

T (I) = (r1+r2e
−r3I )I

1+kIn
or T (I) = r1I

1+kIn
. The initial conditions are given by

S0 = 0.9, I0 = 0.1 and R = 0.
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Example 4.2. In this example, we use the function f1(I) = e−αI as a factor in
the incidence of the infectious disease. In this scenario, the new infections are
modeled by β(t)Sf(I) = β(t)SIf1(I) = β(t)e−αISI. Observe that the infection
rate β(t)e−αI decreases when the number of infectious individuals increases. In
this scenario, the seasonal model is

S′ = ηR+ µ(1− S)− β(t)SIe−αI ,

I ′ = β(t)SIe−αI − (γ + µ)I − (r1+r2e
−r3I)I

1+kIn ,

R′ = γI − (µ+ η)R+ (r1+r2e
−r3I)I

1+kIn .

For the numerical simulations, all values of the parameters of the model are the
same as the values used in the Example 1. In this example, R0 = 7.1423 and
f1(0)
f1(1) = 1.01. So, the conditions of the Theorem 3.6 are satisfied. Therefore,

model (27) with the proposed function f1(I) = e−αI admits at least a T-
periodic orbit. Figure 3 shows the dynamics of the epidemiological classes in
this scenario.

Figure 3. Figure shows the existence of sustained oscillations for the epidemiological

model given by (27) when f1(I) = e−αI and T (I) = (r1+r2e
−r3I )I

1+kIn
. For the

numerical simulations, the initial conditions are given by S0 = 0.9, I0 = 0.1
and R = 0.

Now, we consider the case where the number of treated individuals is mod-
eled by the treatment rate T (I) = 0.2I

1+0.001I2 . To do this, we take r2 = 0 in
(r1+r2e

−r3I)I
1+kIn . In this case, R0 = 9.0901 and f1(0)

f1(1) = 1.01. Then, model (27)

with f1(I) = e−αI and T (I) = 0.2I
1+0.001I2 admits at least a feasible T-periodic

solution. Figure 4 shows the behavior of the number of infectious individuals
when r2 > 0 and r2 = 0.
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Figure 4. Figure shows the behavior of the infectious class when f1(I) = e−αI and

T (I) = (r1+r2e
−r3I )I

1+kIn
or T (I) = r1I

1+kIn
. In this scenario, S0 = 0.9, I0 = 0.1

and R = 0.

Numerical simulations show that sustained oscillations can appear as solu-
tions of the proposed model for a wide variety of incidence and treatment rates.
However, periodic solutions can be avoided if R0 < 1.

5. Conclusions

Modeling the dynamics of infectious diseases can help to make decisions in de-
signing public health strategies. In this direction, it is of paramount importance
to know the evolution of infectious diseases when there are environmental or
social seasonal drivers. To do this, in the modeling process, it must be consid-
ered how the number of new infectious individuals are affected by seasonally.
This allows decision makers to propose strategies to control the spreading of
the disease.

In epidemiological mathematical literature there are models that describe
the incidence of an infectious disease using different functions. In these models,
the infection rate can be either a constant or a periodic function; see [6, 16, 21,
20, 9, 15, 2, 19]. Also, there are epidemic models that analyze how the dynamics
of an infectious disease can be controlled when infectious individuals are treated
against the infection. To do this, the per-capita treatment rate is modeled by
different functions that describe a wide variety of social or epidemiological
mechanisms; see [7, 10, 11, 23, 30, 27, 31, 26].

In this work, we analyze a general epidemic model that describes a seasonal
infectious disease when infectious individuals recover from the disease in a
natural way or due to the application of a treatment. For this purpose, we
modeled the number of new infectious individuals assuming a general force of
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infection and a treatment function that generalize some recovery functions that
are commonly used.

We proved that periodic solutions exist for a wide variety of SIRS models
when a seasonal general force of infection is assumed even though a treatment is
applied to infectious individuals. Figures 1-4 show numerical solutions of model
(27) when the incidence of the disease is modeled by two different functions
and a general treatment function is considered. Particularly, Figures 2 and 4
compare the effects in the number of infectious individuals, that are modeled
by the same incidence function, when different treatment rates are used. That
is, the application of a treatment to infectious individuals does not avoid un-
desirable epidemic scenarios such as periodicity. If periodical scenarios want to
be excluded, the basic reproduction number must be small enough such that

the condition R0 >
f1(0)
f1(1) is not satisfied.

Sustained oscillations in the incidence of the disease can be catastrophic
for the population because if the amplitude of the oscillation is large enough,
then the number of infectious individuals can increase suddenly until it reaches
a critical population threshold. In this work, we proved that, even though a
treatment is applied, periodicity persists although the infection rate decreases
due to behavioral changes in the susceptible class as a function of the infectious
disease. That is, the model admits periodic orbits despite the infection rate
decreasing. This decreasing might occur because the susceptible population is
now a more cautious population since there are more infectious individuals and
there are recovered individuals. In contrast, periodic solutions can be avoided
if some conditions on the parameters of the model are satisfied. Therefore, the
results obtained in this work can help the health decision makers in the design
of public health strategies to control an infectious disease. However, it is of
paramount importance to continue with the modeling of seasonal effects in the
evolution of infectious diseases, particularly, when changes in environmental or
social drivers lead to an asynchronicity that affects the seasonal infection rate
making it more difficult to know the evolution of an infectious disease and,
consequently, control it.
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e-mail: shaday@matmor.unam.mx

Instituto de F́ısica y Matemáticas
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