
Revista Colombiana de Matemáticas
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Abstract. A streamlined exposition of Frécon’s theorem on non-existence of
bad groups of Morley rank 3. Systematising ideas by Poizat and Wagner, we
avoid incidence geometries and use group actions instead; the proof becomes
short and completely elementary.
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Resumen. Presentamos una breve demostración depurada del teorema de Frécon
sobre la no existencia de grupos malos de rango de Morley 3. Abstrayendo ideas
de Poizat y Wagner, evitamos el uso de las geometŕıas de incidencia. En su
lugar usamos acciones de grupos; aśı la demostración se torna verdaderamente
elemental y concisa.

Palabras y frases clave. Grupos de rango de Morley finito, grupos malos.

1. Introduction and prerequisites

History

Groups of finite Morley rank are the model-theoretic generalisation of affine al-
gebraic groups over algebraically closed fields. Although their original definition
was influenced by Morley’s analysis of uncountable categoricity, which accounts
for their name, they can be described purely algebraically after Borovik and
Poizat: a ranked group is a group equipped with a dimension function on its
definable sets, which behaves like the Zariski dimension in algebraic geometry.
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Details can be found in the classical book [1]. The main open question in the
field is the following.

Algebraicity Conjecture (Cherlin-Zilber). An infinite simple ranked group
G is isomorphic, as a group, to Γ(K) for some algebraic group Γ and some
algebraically closed field K.

In the seminal [2], where he formulated the conjecture, Cherlin undertook
the classification of connected groups of small rank. If G has rank 1, a theorem
by Reineke [7] already implied abelianity. In rank 2, Cherlin proved that G is
soluble; in rank 3, that G is either soluble or simple. In the rank 3, simple case,
Cherlin saw two subcases:

• either G has a definable subgroup of rank 2; in that case he could show
G'PGL2(K), where K is an algebraically closed field interpretable in G,

• or G is what Cherlin called a bad group: a simple group of rank 3 in which
all definable, proper subgroups have rank ≤ 1.

Cherlin could not eliminate such ‘bad groups’ of rank 3 and the problem re-
mained open until 2016. Frécon [4] proved non-existence of bad groups of rank
3, thus deriving the Cherlin-Zilber Algebraicity Conjecture in rank 3. Then
Poizat and Wagner [6, 8, 5] provided rewritings of Frécon’s proof, extending
his non-existence result to a whole class of configurations with rank 2n+ 1.

Our article reformulates the latter proof, but avoids any reference to Frécon’s
planes or to incidence geometries. Instead our language is action-theoretic, with
focus on involutions as one should expect. Clearly our results are not original.
But our exposition shows the actual computational contents of the argument.
Our point is that focus on planes brings no clarity as it hides more algebraic
phenomena.

Prerequisites

We expect our reader to be familiar with basic model-theoretic notions. Here
definable sets are truly interpretable with parameters. In a ranked groups, such
sets bear an integer-valued dimension which enables basic fibre computations.
We use the following facts on ranked groups.

Facts. Let G be a ranked group.

(1) There is a notion of genericity on definable sets and on points, a notion
obeying the usual rules of algebraic geometry.

(2) There are notions of degree (for definable sets) and connected component
(for definable subgroups); a definable subgroup is connected iff it has
degree 1.
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(3) Unique divisibility: if G has no involutions, then every g ∈ G has a unique
square root [1, exercises 11 and 12 of § 5.1].

(4) If G is simple and acts definably on a set of rank and degree 1, then
G ' PGL2(K) (Hrushovski) [1, Theorem 11.98].

Theorem 1.1 (Borovik, Corredor, Delahan, Nesin, Poizat; [1, Theorem 13.3]).
Let G be a simple, ranked group in which all definable, connected, soluble sub-
groups are nilpotent; call bad such a group and Borel subgroups its maximal,
connected, soluble subgroups. Then:

(5.a) Borel subgroups are self-normalising, conjugated, ti (distinct conjugates
meet trivially), and covering (viz. their union is G);

(5.b) for g 6= 1 there is a unique Borel subgroup B = B(g) containing g; if
g ∈ Z(B) then B = CG(g);

(5.c) G has no definable, involutive automorphisms and in particular no invo-
lutions.

The recent [3] generalises the absence of involutions, and also explains and
unifies other phenomena; however it does not generalise the lack of involutive
automorphisms.

Remark

One may view the Frécon-Poizat-Wagner result as a reinforcement of a folklore
observation (left as an exercise): let G be a simple group with an almost self-
normalising, ti subgroup of rank n > 0. If rkG ≤ 2n then equality holds, and
G has an involution.

2. Short proof of the theorem by Frécon and Poizat–Wagner

Definition 2.1. Let G be a group. A ∗-bi-G-set is a set Ω equipped with an
action of G×G and an involutive bijection ∗ : Ω→ Ω satisfying ((a, b) · ω)∗ =
(b, a) · ω∗.

Notice that Ω need not be definable; and neither does the action. However
G×G is a group structure (possibly not a pure group); an important condition
is when all stabilisers StabG×G(ω) are definable subgroups. If so we say that
the ∗-bi-G-set has definable stabilisers.

Examples 2.2.

(i) G acts on itself by left- and right-translation (with an inverse on the
right), and star is inversion, viz (a, b) · g = agb−1 and g∗ = g−1;
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(ii) The latter induces an action of G on P(G) and on Pdef(G), the class of all
definable subsets of G: (a, b) ·X=aXb−1 and X∗= X−1 = {x−1 : x ∈ X}.
If G is a ranked group, both the action and the star are compatible with
the equivalence relation on definable subsets: X ∼ Y if rk(X4Y ) < rkX.
(By convention rk∅ = −∞; put [∅]∼ = {∅} to deal with the empty set).

(iii) Therefore Ω = Pdef(G)/∼ is yet another ∗-bi-G-set. One easily sees that
although Ω is not a definable set, stabilisers and orbits of its points are
definable. The only points of Pdef(G)/∼ fixed under G×G are [∅]∼ and
[G]∼.

Definition 2.3 (after a reading of Poizat). Let Ω be a ∗-bi-G-set. For g ∈ G,
the symmetry through g is the involutive bijection of Ω given by σg(ω) =
(g, g−1) · ω∗.

In the above action on Pdef(G)/ ∼, these functions are uniformly defined.

Definition 2.4. A subset X ⊆ G is non-confined if it is contained in no finite
union definable, proper cosets.

Lemma 2.5. The following is inconsistent: G is a simple ranked group with no
definable, involutive automorphisms; Ω is a ∗-bi-G-set with definable stabilisers;
ω ∈ Ω is not fixed under G × G but Σ(ω) := {g ∈ G : σg(ω) = ω} is non-
confined.

Proof. First notice that elements of G have unique square roots. Indeed, an in-
volution would induce a definable automorphism of order at most 2; by assump-
tion and since G is centreless, there are no involutions. Then we use Fact 3. Let
G1 = G×{1}, G2 = {1}×G, and G = G×G with projections π1, π2 : G→ G.

Let g0 ∈ Σ(ω) and h0 ∈ G be its unique square root; let ω′ = (h−1
0 , h0) · ω.

One easily sees Σ(ω′) = h−1
0 Σ(ω)h−1

0 . Clearly Σ(ω′) is non-confined as well
so up to considering ω′ we may assume 1 ∈ Σ(ω). In particular ω∗ = ω. For
simplicity let Σ = Σ(ω).

Let H = StabG(ω) ≤ G, which is definable by assumption. Using ω∗ =
ω, one sees that for (a, b) ∈ G, one has (a, b) ∈ H iff (b, a) ∈ H. We say
that H is swap-invariant. We shall prove that H is the graph of an involutive
automorphism of G, like H definable.

Clearly g ∈ Σ iff (g, g−1) ∈ H, so that Σ ⊆ πi(H). Since Σ is non-confined,
πi(H) = G. Moreover πi(H∩Gi) E πi(H) = G which is simple, so πi(H∩Gi) =
{1} or πi(H ∩ Gi) = G. In the latter case, swap-invariance implies H = G,
contradicting ω not being fixed under G.

Thus H is a multiplicative relation with full domain and image, and trivial
fibres: it is the graph of an automorphism α of G, which is definable. Since H
is swap-invariant, α2 = Id; since H contains a non-trivial set of pairs (g, g−1),
one has α 6= Id: a contradiction. �X
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Theorem 2.6 (Frécon, the Poizat–Wagner version). There is no simple bad
group of rank 2n+ 1 in which Borel subgroups are abelian of rank n.

Proof. Let G be such a group. For each g ∈ G \ {1}, let H(g) = CG(g)
be the only Borel subgroup containing it (Fact 1.1, with abelianity of Borel
subgroups). Let β : G → G be the commutator map β(x, y) = [x, y]; let c0 be
generic in β(G). Let X = π1(β−1({c0})).

We first show rkX ≤ 2n. Otherwise X is generic. Since centralisers have
rank n, a trivial fibre computation reveals rkβ−1({c0}) = rkX + n. This is
invariant under conjugation, so for each g ∈ G one has rkβ−1({c0g}) = rkX+n.
Taking the disjoint sum,

rkβ−1(cG0 ) = rk(cG0 ) + rkX + n = rkG+ rkX.

Since X is generic in G, the set U = β−1(cG0 ) is generic in G.

Let U↔ = {(y, x) : (x, y) ∈ U}, still generic in G; so is U ∩ U↔ by con-
nectedness of G. Taking a generic pair (x, y), the pair (y, x) is generic as well,
so images g = β(x, y) = [x, y] and [y, x] = [x, y]−1 = g−1 are in the same con-
jugacy class. Thus there is a ∈ G with ga = g−1; and a2 ∈ CG(g). By unique
divisibility in G and CG(g), we find a ∈ CG(g) whence g2 = 1 and g = 1, a
contradiction. Therefore rkX ≤ 2n.

For each a0 ∈ X, say with [a0, b0] = c0, let:

Ya0
=

⋃
b∈H(a0)b0

H(b)a0

Then Ya0 ⊆ X; indeed for a ∈ Ya0 , say a ∈ H(b)a0 with b ∈ H(a0)b0, one has:

[a, b] = [a0, b] = [a0, b0] = c0.

We claim that rkYa0 = 2n. Indeed the various subgroups H(b) for b ∈ H(a0)b0
intersect trivially. Otherwise, by Fact 1.1 there are commuting bi = dib0 with
di ∈ H(a0). Then b1b

−1
2 = d1d

−1
2 ∈ H(a0), and also equals b−1

2 b1 = b−1
0 d−1

2 d1b0 ∈
H(a0)b0 . By disjointness, H(a0)b0 = H(a0), implying b0 ∈ NG(H(a0)) =
H(a0), contradicting c0 6= 1. Hence the cosets used in the definition of Ya0

are disjoint. Thus rkYa0 = 2 rkH = 2n ≥ rkX ≥ rkYa0 .

In the ∗-bi-set Pdef(G) (example 2.2), one has σa0(Ya0) = a0Y
−1
a0
a0 = Ya0 .

Clearly deg Ya0 = 1; however degX is unknown. Let X = X1 t · · · t Xd be
a decomposition of X into degree 1 subsets (there is no notion of ‘connected
component’ in the absence of an algebraic structure). There is j such that for a0

generic in X1, the intersection Ya0
∩Xj has rank 2n; viz. Ya0

∼ Ya0
∩Xj ∼ Xj .

Therefore for a0 in some subset X̌ ⊆ X1 of rank 2n, one has Xj ∼ Ya0
=

σa0
(Ya0

) ∼ σa0
(Xj). Working in the ∗-bi-set Pdef(G)/ ∼ (example 2.2) and

following notation in the Lemma, ω := [Xj ]∼ satisfies X̌ ⊆ Σ(ω).
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By Fact 4, no rank 2n set is confined; so Σ(ω) is non-confined. Finally
ω 6= [G]∼, [∅]∼, so it is not fixed under G (example 2.2); use the Lemma to
derive a contradiction. �X

The simplification was found while the second author was visiting the first
in Bogotá in the spring of 2017.
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cnrs, F-75005 Paris, France

e-mail: adrien.deloro@imj-prg.fr
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