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Abstract. This paper presents a stability analysis of a differential equations
model related to the cancer treatment with an oncolytic virus in its classical
and fractional version via Caputo derivatives. Numerical simulations of three
possible scenarios are presented and support the discussions on the advantages
of using fractional modeling.
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Resumen. Este art́ıculo presenta un análisis de estabilidad de un modelo de
ecuaciones diferenciales ordinarias para el tratamiento de cáncer usando virus
oncológicos siendo consideradas las versiones clásica y fraccionaria. Usando
diferentes valores para el orden de la derivada fraccionaria de Caputo, se
presentan y discuten tres escenarios para tal tratamiento.

Palabras y frases clave. Modelación fraccionaria, Ecuación diferencial Frac-
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1. Introduction

Cancer is a major global cause of mortality and treatments have many side
effects for the patient. A new form of treatment, without damaging healthy
cells, uses viruses to fight tumors. The so-called oncolytic viruses are viruses
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modified through genetic engineering to destroy cancer cells and induce im-
mune responses [7]. Therapy using oncolytic viruses offers several important
advantages over traditional approaches such as greater therapeutic selectivity
since only cancer cells will suffer damage; prevents normal tissues from being
exposed to excessive doses of chemotherapy and radiation therapy; ability to
destroy cancer cells that have metastasized and lytic death of cancer cells pro-
vides a pro-inflammatory microenvironment and the potential for induction of
an anticancer vaccine response [34].

With continuous advancements in treatment methods, studies have found
that the virus has great potential for cancer treatment [4]. Many advances have
been made and we mention some of them.

The first oncolytic virus drug approved was T-Vec virus (Talimogene la-
herparepvec), created by modifying the virus herpes simplex type 1 (HSV-1)
armed with GM-CSF, approved in the USA, in October 2015, in Europe, in
January 2016, and Australia, in May of the same year. T-Vec stops tumor
growth, prolonging patient survival [13].

The use of oncolytic viruses against glioblastoma with Zika virus (ZIKV) is
currently being studied in mice. Preliminary results showed that ZIKV infected
and killed glioblastoma stem cells, completely eradicating the tumor or giving
the patient greater life expectancy. Thus, genetically modified strains may have
therapeutic efficacy for adult patients with glioblastoma [20, 51].

Oncolytic viruses have demonstrated promise in treating diverse tumor
types, including hepatocellular and pancreatic carcinomas, mesotheliomas,
myelomas, squamous cell carcinomas of the head and neck, and breast cancers
[50]. For example, hepatocellular carcinoma (HCC) is the sixth most common
malignancy and the third most common cause of cancer-related death world-
wide and is a highly aggressive type of cancer and numerous oncolytic viruses
are being tested in preclinical HCC models, with good direct evidence and
anti-tumor efficacy [22].

There are various papers dealing with mathematical models applied to the
dynamics of the oncolytic viruses on tumor cells. For example, [10] studied
an ordinary differential equation (ODE) model to verify the potent efficacy
of modified M1 virus; in [26] a mathematical model for treatment of cancer
is presented using oncolytic virotherapy in the presence of immune effectors;
[23] developed a mathematical model dealing with the interactions between
the oncolytic virus, the tumor cells, the normal cells, and the antitumoral and
antiviral immune responses; in [12] a mathematical model is presented with a
combined therapy using oncolytic virus and a checkpoint inhibitor and evalu-
ated the efficacy of the combination therapy; a mathematical model describing
the interaction between tumor cells and an oncolytic virus is presented in [19]
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where they use experimental data to obtain optimized parameters; a theoreti-
cal study giving a mathematical model that describes the dynamics of cancer
treatment with the oncolytic viruses is presented in [27].

The construction of a mathematical model that describes a natural phe-
nomenon is not an easy task, but scenarios that such a model can present are
very important [17]. Usually, the closer we get to a better description of a real
problem, the greater are the number of variables involved and the complexity
of the equations [21]. The mathematical modeling of complex phenomena using
nonlinear differential equations is a hot topic in the present era, due to exten-
sive applications and the need for dealing with real-world problems raised in
day-to-day life [30, 49]. Recently, many researchers pointed out and also illus-
trated that the integer-order differential operators are not always appropriate
tools to model the complex and nonlinear phenomena [31, 40].

In this sense, the fractional (non-integer) derivative, which is as old as the
classical (integer) derivative, has demonstrated its relevance in modeling real
phenomena. In recent decades, many articles cite the contribution of fractional
modeling to better describe and understand real phenomena [5, 42, 48]. De-
spite not having a physical and geometric interpretation for fractional deriva-
tives [37], fractional differential equations are related to systems with memories,
since they are generally non-local operators, that is, the calculation of the frac-
tional temporal derivative at a given point requires all previous points [11].
Memory processes exist in many biological systems [6, 11, 29, 32, 36]. The ad-
vantage that fractional models have is that they can describe the evolution over
time of tumors taking into account their history, attribute that may improve
ODE-based tumor models [1]. Also, fractional differential equations can help
us reduce errors arising from the parameters of modeling real-life phenomena
(multiscale nature and better fitting to data) [2, 3, 25, 35]. Finally, the pa-
per [25] brings another reason to choose fractional modeling to describe tumor
growth and treatment: Fractality (connections between fractional calculus and
fractal structures, revealing patterns in nature, such as tumor growth).

For these reasons, we propose the fractional version of a classic model with
ordinary differential equations, which describes the interaction between popu-
lations of cancer cells, cancerous infected by viral particles, and viral particles
in the fight against cancer by oncolytic viruses. The advantage of this model
is that it lists through a seemingly simple system all the relevant biological
facts that are known about various terms of tumor dynamics with oncolytic
treatment and it is possible to carry out a general analysis of the resulting
system. In this way, all results are a consequence of the stated biological as-
sumptions. Oncolytic viruses specifically infect cancer cells, replicate in them,
kill them, and spread to other tumor cells. It is a promising treatment. The
goal of therapy is to reduce this population, stabilizing it at low levels. Sup-
ported by numerical and analytical results, our studies indicate that fractional
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modeling, in addition to recovering the classic version, can describe a greater
number of scenarios and models better reality.

Over time, several definitions of fractional operators, techniques for analyti-
cal and numerical solutions emerged [15, 28, 41, 43]. The well-known Riemann-
Liouville, Grünwald-Letnikov, and Caputo operators have been successfully
used to model the anomalous structures in many biological systems applica-
tions. We opted for the Caputo Fractional Derivative as a fractional operator
in this work because its initial conditions are physically interpretable and it is
quite recurrent in the literature [38]. For the numerical simulations we use the
Grünwald-Letnikov method for fractional differential equations [33] since it is
easier to implement [44].

The paper is organized as follows. In Section 2, we present the model. In
Sections 3 and 4, we discuss its predictions and results in the light of clinical
oncology pratice. Finally, Section 5 we present our concluding remarks.

2. Mathematical model

The simple mathematical model proposed in [45, 46, 47], describes in a simpli-
fied way the dynamics of tumor infection. The understanding of the possible
scenarios of this model is decisive for the success of the therapy. The model
assumes that tumor cells grow and are infected by viruses. The infected tumor
cells stop dividing, produce new viruses and eventually die. We present the
model:



dx

dt
= rx

(
1− x+ y

w

)
− dx− βxv

dy

dt
= βxv −

(
d+ a

)
y

dv

dt
= ky − uv

, (1)

where the variable x represents the number of tumor cells not infected by the
virus, y the number of tumor cells infected by the virus, and v the viral particles.
The amount of cancer cells in each instant t is given by x + y. The growth
of uninfected cells is described by the logistic equation, with r the intrinsic
growth rate and w the carrying capacity of the total amount of cancer cells. In
biological terms, this means that the cancer cells divide and that this results
in exponential growth at small tumor cell densities, but that growth is slowed
down as the tumor reaches larger sizes and runs out of space, nutrients, and
other resources required for growth. The parameter d represents the natural
mortality rate of cancer cells, infected or not. Uninfected cancer cells become
infected in proportion to βxv. In addition to the natural mortality rate, infected
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cancer cells have a mortality rate a due to the virus. Viral particles grow at a
rate of k and decay at a rate of u.

To obtain the fractional version of the model (1) we must analyze carefully
the dimensions of the variables and parameters. Following [5, 16], the dimension

of
d

dt
is time−1, in the fractional version the dimension of

dα

dtα
, 0 < α ≤ 1, is

time−α, so that both sides of each equation have the same dimension we take a

parameter τ in dimension time that results
1

τ1−α
dα

dtα
in the unit time−1. Then,

the fractional version is given by:

1

τ1−αD
αx(t) = rx

(
1− x+ y

w

)
− dx− βxv

1

τ1−αD
αy(t) = βxv −

(
d+ a

)
y

1

τ1−αD
αv(t) = ky − uv

,

where Dα is the Caputo derivative of order α, 0 < α ≤ 1.

Let us consider m = τ1−αm for each parameter, then we can rewrite the
model as: 

Dαx(t) = rx

(
1− x+ y

w

)
− dx− βxv

Dαy(t) = βxv − (d+ a) y

Dαv(t) = ky − uv

. (2)

The meaning of each parameter is similar to that of the integer order model
given by (1).

3. Stability analysis

We present the stability analysis to the fractional model (2). The equilibrium
points are given by:

E1 = (0, 0, 0),

E2 =

(
w(r − d)

r
, 0, 0

)
,

E3 = (x, y, v) ,

with

x =
(d+ a)u

kβ
, y =

u [wkβ(r − d)− ru(d+ a)]

kβ (ru+ wkβ)
, v =

wkβ(r − d)− ru(d+ a)

β(ru+ wkβ)
,
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and E2 > 0, if r > d and E3 > 0, if wkβ(r − d) > ru(d+ a).

In the equilibrium points E1 and E2 there are not viral particles and the
equilibrium point E1 shows an absence of total cancer cells, while E2 shows
only a population of cancer cells not infected by the virus. The equilibrium
point E3 shows the coexistence of the three populations.

To study the stability of the equilibrium points, we present the following
result:

Theorem 3.1. Let λi, i = 1, 2 and 3, be the roots of the characteristic poly-
nomial equation (eigenvalues) associated with the Jacobian matrix of the model
(2) at the equilibrium point studied. If

|arg(λi)| > α
π

2
,

the equilibrium point is locally stable [24].

The Jacobian matrix of (2) evaluated at E1 is:

J(E1) =

 r − d 0 0

0 −(d+ a) 0

0 k −u

 ,

and, consequently, the eigenvalues are

λ1 = r − d, λ2 = −(d+ a) < 0 and λ3 = −u < 0. (3)

Theorem 3.2. The equilibrium point E1 of model (2) is locally stable if, and
only if, r < d.

This is, the tumor will only be fully cleared if the intrinsic growth rate of
the cancer cells is less than the natural death rate.

The Jacobian matrix of (2) evaluated at E2 is:

J(E2) =


−r + d −r + d −βw(r − d)

r

0 −(d+ a) β
w(r − d)

r
0 k −u

 ,

and then, the characteristic equation of J(E2) is:

[λ− (d− r)]
[
(λ+ d+ a) (λ+ u)− kβw(r − d)

r

]
= 0. (4)

Therefore, one of the eigenvalues is λ1 = d− r, and solving

λ2 + (d+ a+ u)λ+ (d+ a)u− kβw(r − d)

r
= 0,
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we obtain two other eigenvalues given by

λ2,3 =
−(d+ a+ u)±

√
∆

2
,

where

∆ = (d+ a+ u)2 − 4

[
(d+ a)u− kβw(r − d)

r

]
= (d+ a− u)2 + 4kβ

w(r − d)

r
.

We have E2 > 0, if r > d and, consequently, ∆ > 0, and the eigenvalues λ2 and
λ3 are real.

Therefore,

λ2 =
−(d+ a+ u)−

√
∆

2
< 0.

For λ3 =
−(d+ a+ u) +

√
∆

2
< 0, it must occur (d+ a+ u)2 > ∆. So,

d2 + a2 + u2 + 2ad+ 2au+ 2du > d2 + a2 + u2 + 2ad− 2au− 2du

+ 4kβ
w(r − d)

r
⇒

4au+ 4du > 4kβ
w(r − d)

r
⇒ (a+ d)u

kβ
>
w(r − d)

r

r − d < ru(a+ d)

kβw
. (5)

Theorem 3.3. The equilibrium point E2 of the model (2) is locally stable if,

and only if, 0 < r − d < ru(a+ d)

kβw
.

The Jacobian matrix of (2) calculated in E3 = (x, y, v) is:

J(E3) =

 r − 2xr

w
− ry

w
− d− βv −rx

w
−βx

βv −(d+ a) βx

0 k −u

 .
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The value M is given by

−M = r − 2xr

w
− ry

w
− d− βv

= r − ru[wkβ(r − d)− ru(d+ a)]

wkβ(ru+ wkβ)
− d− βkwkβ(r − d)− ru(d+ a)

kβ(ru+ wkβ)

− 2ru(d+ a)

wkβ

= −ru(d+ a)

wkβ
,

and of N = d+ a, and then the characteristic equation associated with J(E3)
is:

λ3 + (M +N + u)λ2+

[
MN +Mu+Nu− kβx+

βr

w
xv

]
λ

+MNu+ β2kxv − kβMx+
uβr

w
xv = 0. (6)

As kβMx = MNu and kβx = Nu, we can rewrite the equation as:

λ3 + (M +N + u)λ2 +

[
MN +Mu+

βr

w
xv

]
λ+ β2kxv +

uβr

w
xv = 0. (7)

Let us write a1 = M+N+u, a2 = MN+Mu+
βr

w
xv and a3 = β2kxv+

uβr

w
xv.

Thus, all the coefficients of (6) are real and positive, so, by Descartes’ rule of
signs, there is no positive root. In other words, we can have three negative roots
or one negative root and a pair complex conjugate.

Given a characteristic polynomial equation of the third degree of the form
λ3 + a1λ

2 + a2λ + a3 = 0, by the Routh-Hurwitz stability criterion, the equi-
librium point is stable if, and only if, a1 > 0, a3 > 0 and a1a2 > a3 [8]. We can
now state the following theorems:

Theorem 3.4. The characteristic equation associated with the Jacobian matrix
evaluated at the equilibrium point E3 of the model (2), when it exists, has three
real and negative roots or one negative real root and a pair of complex conjugate
roots.

Theorem 3.5. The equilibrium point E3 of integer order model (2), α = 1, is
locally stable if, and only if, a1a2 > a3.

And the stability theorem for the fractional case is given by:

Theorem 3.6. The equilibrium point E3 of model (2), with 0 < α < 1, is
locally stable if one of the following occurs:

• a1a2 > a3, that is, the three eigenvalues are negative (λ1, λ2, λ3 < 0),

• λ1 < 0, |arg(λ2)| > απ
2 and |arg(λ3)| > απ

2 .
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4. Numerical simulations

For the numerical simulations we use the Grünwald-Letnikov method for frac-
tional differential equations [33]. The parameters were based on the articles by
[45, 46, 47] with the initial conditions: x0 = 4, y0 = 1 and v0 = 1. Since τ does
not affect the stability of the equilibrium points, in the simulatations we set
τ = 1.

For the situation that we do not have treatment, k = 0 (there is no virus
replication), the tumor grows until it reaches its carrying capacity (see Fig-
ure 1).

0 10 20 30
t

3

4

5

6

7

8

x+
y

Figure 1. The growth curves for cancer cell population, for k = 0 (without virus
replication), r = 0.5, w = 10, d = 0.1, β = 1.5, a = 0.2 and u = 0.1, with
α = 1 (black line), α = 0.97 (blue line), α = 0.9 (red line) e α = 0.8 (green
line).

As observed by [39], in the classical model, the population goes to the carrying
capacity faster than expected. On the other hand, it is one of the advantages
of the fractional model, as noted, the lower the order of the derivative the
slower is the convergence to the carrying capacity. This slower convergence
towards the carrying capacity is consistent with the growth of some types of
cancer tumors [14], which is highly relevant to the study, as long as this model
includes competition between tumor cells for vital resources and predicts that
it takes longer to reach the maximum size of a tumor.
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Next, we present three simulations (S1, S2 and S3) varying the parameters a,
β e k (see Table 1). These parameters are influential in the interaction between
populations [47].

S1 S2 S3

r 0.5 0.5 0.5

w 10 10 10

d 0.1 0.1 0.1

β 0.1 1.5 0.1

a 1 0.2 1

k 0.04 0.04 0.2

u 0.1 0.1 0.1

Table 1. Parameters of the model (2).

4.1. Simulation 1 (S1)

With the parameters of S1 given in Table 1, the point E1 is unstable, therefore,
r > d. The E2 equilibrium point is stable, as it satisfies Theorem 3.3. And there
is no equilibrium point E3. We have much smaller k and β constants when
compared to the mortality rate a of cells infected due to the virus.

From Figure 2, observe that smaller values of α are associated with faster
growth of cancer cells, however, this occurs only at the beginning of the dy-
namics, and then these values are associated with a slower convergence for the
E2 equilibrium point.

Fractional modeling, with an order of lower derivatives, can characterize
tumors that in a short period of time grow quickly and then tend to the carrying
capacity more slowly.

4.2. Simulation 2 (S2)

For model (2) with the parameters of S2, we will analyze the equilibrium point
E3. The characteristic equation associated with the Jacobian matrix is:

λ3 + 0.425λ2 + 0.01866λ+ 0.01125 = 0.

So, the eigenvalues are given by:

λ1 = −0.4406,

λ2,3 = 0.00781± 0.1596i.
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Figure 2. Dynamics of cancer cells, for simulation 1, different values of α, α = 1
(black line); α = 0.9 (red line); α = 0.8 (blue line) and α = 0.7 (green
line).

From Theorem 3.6 the equilibrium point E3 is stable for the model of order
α, if

α <
2

π
arctan

0.1596

0.00781
' 0.968.

In Figures 3, 4 and 5 we present the dynamic of cancer cells considering
different values of α.
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Figure 3. Dynamics of cancer cells, for simulation 2, with α = 0.97 (blue line) and
α = 0.96 (red line).

In Figure 3 it is possible to observe that for α = 0.97 the equilibrium point E3

is unstable and for α = 0.96 is stable, which is consistent with the result, since

α = 0.96 <
2

π
arctan

0.1596

0.00781
= 0.968.
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Figure 4. Dynamics of cancer cells, for simulation 2, with α = 1 (black line), α = 0.9
(red line); α = 0.8 (green line) and α = 0.7 (blue line).
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Figure 5. Phase portrait: uninfected cancer cells × infected cancer cells, for simula-
tion 2 and α = 1 (black line); α = 0.9 (red line) e α = 0.8 (blue line).

In Figure 5, for α = 1 (black line), it is observed that the number of uninfected
cancer cells oscillates periodically in time. And the same is true of infected
cancer cells. And this is represented by the figure in which the phase portrait is
very similar to a centre (black line). However, for α = 0.9 and 0.8, there is the
damping of oscillations over the equilibrium point, the phase portrait resembles
a stable spiral.

When comparing the results (see Figures 3, 4 and 5) for different values of
α, it is possible to observe that stability is related to the order of the fractional
derivative and we observe also that, as the order of the derivative decreases,
there is greater damping of the system with losses of oscillations.

4.3. Simulation 3 (S3)

For the model (2) with the parameters of S3, the point E1 is unstable, because
r > d. By Theorem 3.3 the equilibrium point E2 is also unstable. Now let us
analyze the point E3 = (5.5, 0.5, 1).

The characteristic equation associated with the Jacobian matrix at this
point is:

λ3 + 1.475λ2 + 0.3575λ+ 0.07375 = 0,

and the eigenvalues are:

λ1 = −0.04745, λ2 = −0.24504 and λ3 = −1.18251.

As the three eigenvalues are negative, the equilibrium point E3 is stable for
all order α, 0 < α ≤ 1. This fact is in agreement with Theorem 3.5, because
a1a2 = 0.5273125 > 0.01375 = a3.
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Figure 6. Dynamics of uninfected cancer cells (x), infected (y) and total (x + y)
during the time parameters for the simulation 3 (S3), with order α = 1
(black line); α = 0.9 (red line) and α = 0.8 (blue line).

We observed that there are no oscillations of the cancer cells over time and,
when decreasing the order of the fractional derivative, the uninfected cancer
cells go more slowly to the equilibrium point.

5. Discussion and conclusion

Clinical trials in the treatment of various types of cancer using oncolytic viruses
have shown a significant reduction in tumor size and prolonged patient sur-
vival rates [9]. Since this therapy has significant potential benefits in the fight
against cancer, there has been much interest in constructing and analyzing
mathematical models of the effects of virotherapy. So, we take a simple model
with ordinary differential equations that describe the dynamics of tumor treat-
ment with virotherapy and generalize using the Caputo Derivative in order to
capture the effect of memory present in biological systems, the fractality and,
the multiscale nature that fit better the data.

We explore the stability analysis and numerical simulations of the model
and the work showed that the fractional derivative of Caputo provides a bet-
ter model. For the three different sets of parameters for some values of the
order of the derivative, it was possible to find scenarios that represent tumor
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control, which best describes the tumor dynamics with the oncolytic virus.
It was demonstrated that in the fractional-order dynamics the model is more
stable than its equivalent in the integer-order since the stability domain in the
fractional-order model is greater than the corresponding domain for the integer-
order model. We also observed that the order derivative fractional dampens the
behavior of oscillations over the equilibrium point (Figures 3, 4, and 5). Thus,
a more reliable model can be obtained by choosing the relevant fractional order
according to the actual data.

As pointed out in [18] there are two primary ways to interpret biologically
the presence of long period orbits (as can be observed in the Figure 3) in
oncolytic virotherapy: complete tumor eradication or tumor remission. The
fractional model, compared to the classical one, describes a wider range of
scenarios, especially the case in which there is tumor remission.

Our results reinforce the current vision that Fractional Calculus is a very
powerful tool in Biomathematics since it incorporates the memory effect and
may reduce errors arising from simplifications made in the usual modeling.

Our results corroborate with the literature and highlight that a scenario
of total tumor eradication is difficult and that treatment with an oncolytic
virus can usually cause tumor control. As future work, we intend to study
virotherapy using mathematical models combined with other treatments and
through clinical data to obtain the order of the derivative that best describes
the scenario.
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[38] E. Ucar, N. Özdemir, and E. Altun, Fractional order model of immune
cells influenced by cancer cells, Math. Model. Nat. Phenom. 14 (2019),
no. 3, 308.

[39] N. Varalta, A. V. Gomes, and R. F. Camargo, A prelude to the fractional
calculus applied to tumor dynamic, TEMA 15 (2014), no. 2, 211–221.

[40] P. Veeresha and D. G. Prakasha, A reliable analytical technique for frac-
tional Caudrey-Dodd-gibbon equation with Mittag-Leffler kernel, Nonlinear
Eng. 9 (2020), no. 1, 319–328.

[41] , Solution for fractional generalized Zakharov equations with
Mittag-Leffler function, Results Eng. 5 (2020), 100085.
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