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On n-th roots of meromorphic maps

Sobre ráıces n-ésimas de funciones meromorfas
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Abstract. Let S be a connected Riemann surface and let ϕ : S → Ĉ be
branched covering map of finite type. If n ≥ 2, then we describe a simple
geometrical necessary and sufficient condition for the existence of some n-th
root, that is, a meromorphic map ψ : S → Ĉ such that ϕ = ψn.
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Resumen. Sea S una superficie de Riemann conexa y ϕ : S → Ĉ un cubri-
miento ramificado holomorfo de tipo finito. Para cada n ≥ 2 describimos una
condición geométrica necesaria y suficiente para la existencia de alguna ráız
n-ésima, esto es, una función meromorfa ψ : S → Ĉ de manera que ϕ = ψn.

Palabras y frases clave. Superficies de Riemann, cubrimientos ramificados holo-
morfos, mapas.

1. Introduction

In this paper, S will denote a connected (not necessarily compact or of finite

type) Riemann surface and Ĉ = C ∪ {∞} will be the Riemann sphere. A

holomorphic surjective map ϕ : S → Ĉ is a holomorphic branched covering if:
(i) it has a finite set Bϕ ⊂ Ĉ of branching points, (ii) ϕ : S \ϕ−1(Bϕ)→ Ĉ\Bϕ
is a holomorphic covering map and (iii) around each point q ∈ Bϕ there is a
open disc ∆q such that ϕ−1(∆q) consists of a collection of pairwise disjoint
discs Vj such that each of the restrictions ϕ : Vj → ∆q is a finite degree dq,j
holomorphic map (i.e., there are biholomorphisms z : Vj → D and w : ∆q → D,
where D is the unit disc, such that w ◦ ϕ ◦ z−1(z) = zdq,j ). For each q ∈ Bϕ,
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let Mq ⊂ {1, 2, . . .} be the set of local degrees of ϕ at the points in the fiber
ϕ−1(p). We say that ϕ is of finite type if the sets Mq are finite. This condition
permits to define the branch order of q ∈ Bϕ as the minimum common multiple
of the values in Mq.

Let ϕ : S → Ĉ a holomorphic branched covering of finite type. If n ≥ 2, then
a meromorphic map ψ : S → Ĉ such that ϕ = ψn is called an n-th root of ϕ
(the others n-th roots of ϕ are of the form e2kπi/nψ, where k = 0, 1, . . . , n− 1).

The existence of an n-th root of ϕ necessarily implies that: (a) ∞, 0 ∈ Bϕ
and (b) the branch orders of both 0 and ∞ are multiples of n. These two

conditions are not sufficient for ϕ to have an n-root. For S = Ĉ the existence
of an n-th root is equivalent for each zero and each pole of the rational map ϕ
to have degree a multiple of n (which in particular asserts conditions (a) and
(b)). But, for other Riemann surfaces, the above is not sufficient in general.

In [3] there was provided a simple geometrical necessary and sufficient con-
dition for ϕ to have a 2-th root. In this paper, we generalize such a description
for every n ≥ 2 (Theorem 2.3).

In the final section we generalize some of the tools in the proof of the main
result to the context of Kleinian groups of higher dimension.

Remark 1.1 (A connection to Fuchsian groups). Let K be a finitely generated
Fuchsian group, acting on the hyperbolic plane H2, such that H2/K is an

orbifold of genus zero (so its underlying Riemann surface structure is Ĉ) and let
k1, . . . , kr be the orders of its cone points. Let Γ be a subgroup of K and let S be
the underlying Riemann surface structure associated to the hyperbolic orbifold
H2/Γ (if Γ is assumed to be torsion free, then this orbifold has no cone points).
It is well known that S is of finite type if and only if Γ is finitely generated
(in particular, by taking infinitely generated subgroups we obtain examples of
surfaces of infinite type). The inclusion Γ ≤ K induces a holomorphic branched

covering of finite type S = H2/Γ → Ĉ. The local degree of ϕ at each point of
S is either 1 (the generic case) or a divisor of some kj (if Γ is torsion free,
then the local degree at each point over a cone point of order kj is also kj).
Conversely, the uniformization theorem asserts that, for a connected Riemann
surface S of hyperbolic type, each branched covering of finite type ϕ : S → Ĉ
is obtained in such a way for suitable choices of Γ and K.

2. Main results

Before stating our main result we need some definitions.

2.1. Admissible arcs and n-Z-orientability

Let us recall that a map on an orientable and connected surface X is a 2-cell
decomposition of it, induced by the embedding of a connected graph H for
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which each of its vertices has a finite degree and each face (i.e., the connected
components of X \ H) are finite-sided polygons.

An admisible arc for a branched covering of finite type ϕ : S → Ĉ, with
0,∞ ∈ Bϕ, is a simple arc δ ⊂ Ĉ whose end points are 0 and ∞, and Bϕ \
{0,∞} ⊂ δ. For such an admissible arc, the graph ϕ−1(δ) = Gδ ⊂ S defines
a map Fδ on S; each of it faces is a polygon with 2(r − 1) sides, r = #Bϕ.
We say that Fδ is n-Z-orientable if we may label its faces with numbers inside
{1, 2, . . . , n} (see Figure 1 at the end for the case n = 3), such that the following
two properties hold:

(1) around each vertex q ∈ ϕ−1(0) (respectively, q ∈ ϕ−1(∞)), following the
counterclockwise (respectively, the clockwise) orientation, the labelling
is a finite consecutive sequence of the ordered tuple (1, 2, . . . , n) (these
correspond, respectively, to the first two figures at the left of Figure 1),

(2) around each vertex q /∈ ϕ−1{0,∞}, following the counterclockwise orien-
tation we see a finite sequence of a same tuple (i, i+1), if i = 1, . . . , n−1,
or of the tuple (1, n) (i.e., we see as labelling i, i+ 1, i, i + 1, . . . , i, i+ 1,
or we see 1, n, 1, n, . . . , 1, n) (these correspond to the last three figures at
the left of Figure 1).

Remark 2.1. For instance, if we let ϕ : Ĉ → Ĉ to be ϕ(z) = z3, then it can
be seen that the positive real line is an admissible arc. As in this case Fδ has
exactly three faces (cyclicly permuted by the rotation A(z) = e2πi/3z), this
cannot be n-Z-orientable for n 6= 3.

The 2-Z-orientable definition was introduced by Zapponi in [9, 10, 11] (he
used the term “orientable”) in order to decide if a given Strebel quadratic
meromorphic form Q [8] on a closed Riemann surface has an square root (the
2-cell decomposition is obtained from the graph whose vertices are the zeroes
of Q and the edges are its non-compact horizontal trajectories).

Remark 2.2. If δ1 and δ2 are admissible arcs for ϕ, then there is an orientation-
preserving homeomorphism h : Ĉ→ Ĉ fixing the points 0 and∞ and such that
h(δ1) = δ2.

2.2. n-Z-orientability is a necessary and sufficient condition

The following generalizes the results in [3] done for the case n = 2.

Theorem 2.3. Let S be a connected Riemann surface. Let ϕ : S → Ĉ be a
holomorphic branched covering map of finite type with 0,∞ ∈ Bϕ and each one
with branch order a multiple of n ≥ 2. If δ is an admissible arc for ϕ, then the
existence of n-th roots of ϕ is equivalent for the map Fδ to be n-Z-orientable.

In terms of Fuchsian groups, Theorem 2.3 asserts the following.
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Corollary 2.4. Let K < PSL2(R) be a co-compact Fuchsian group acting on
the hyperbolic plane H2 such that H2/K has genus zero. Let n ≥ 2 be an integer
and assume that there are two cone points p, q ∈ H2/K whose cone orders are
multiples of n. Let δ ⊂ H2/K be a simple arc whose end points are p and q and
containing all other cone points in its interior. Let Fδ be the map of H2 induced
by the lifting of δ to H2. Then the existence of a normal subgroup Γn, of index
n ≥ 2, in K such that K/Γn ∼= Zn and H2/Γn has genus zero, is equivalent for
Fδ to be n-Z-orientable.

In order to see the above, we identify H2/K with Ĉ and p = 0, q = ∞.

Then in Theorem 2.3 we set S = H2 and take ϕ : H2 → Ĉ a branched regular
covering with K as its deck group.

2.3. Case of compact Riemann surfaces

If S is a compact Riemann surface, then every non-constant meromorphic map
ϕ : S → Ĉ is a holomorphic branched covering of finite type. In this way,
Theorem 2.3 can be rewritten as follows.

Corollary 2.5. Let S be a compact Riemann surface. Let ϕ : S → Ĉ be a non-
constant meromorphic map with 0,∞ ∈ Bϕ and each one with branch order a
multiple of n ≥ 2. If δ is an admissible arc for ϕ, then the existence of n-th
roots of ϕ is equivalent for the associated map Fδ to be n-Z-orientable.

The compact Riemann surface S can be defined by a complex projective
algebraic curve inside Pn and the meromorphic map ϕ : S → Ĉ can be described
by a rational map.

Let us assume S is defined as the zero locus of the homogeneous polyno-
mials P1, . . . , Pr ∈ C[x1, · · · , xn+1] and that ϕ corresponds to the quotient
Q1/Q2, where Q1, Q2 ∈ C[x1, . . . , xn+1] are homogeneous polynomials of the
same degree. If σ ∈ Gal(C), the group of field automorphisms of C, then we set
Sσ (respectively, ϕσ) the projective algebraic curve defined by the polynomi-
als Pσ1 , . . . , P

σ
r (respectively, Qσ1/Q

σ
2 ), where Pσj (respectively, Qσj ) is obtained

from Pj (respectively, Qj) by applying σ to all of its coefficients. It can be

checked that Sσ is again a compact Riemann surface and that ϕσ : Sσ → Ĉ is
a holomorphic branched covering map of finite type.

If (S1, ϕ1) and (S2, ϕ2) are isomorphic (i.e., there is an isomorphism ψ :
S1 → S2 such that ϕ1 = ϕ2 ◦ ψ), then for every σ ∈ Gal(C) it holds that the
two new pairs (Sσ1 , ϕ

σ
1 ) and (Sσ2 , ϕ

σ
2 ) are still isomorphic (by ψσ). This process

provides of an action of Gal(C) on (equivalence classes) of pairs (S, ϕ). As the
property of having an n-th root is a Gal(C)-invariant, the above asserts the
following.

Corollary 2.6. Let S be a compact Riemann surface. Let ϕ : S → Ĉ be a non-
constant meromorphic map with 0,∞ ∈ Bϕ and each one with branch order
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a multiple of n ≥ 2. Then the n-Z-orientability property of a pair (S, ϕ) is a
Gal(C)-invariant.

Belyi’s theorem [2] asserts that a compact Riemann surface S can be defined
by a curve over the field Q of algebraic numbers if and only if there is a non-
constant meromorphic map, called a Belyi map, β : S → Ĉ whose branching
points are contained inside {∞, 0, 1}. On S there is a 2-cell decomposition Dβ ,
called a dessin d’enfant [6], whose underlying graph β−1([0, 1]) is bipartite (the
black vertices are β−1(1) and the white ones are β−1(0)). Corollary 2.5 provides
a geometrical condition for the new Belyi map ϕ = β/(β− 1) to have n-square
roots. Such a geometrical condition, in terms of the dessin Dβ , is that its faces
can be labeled using numbers in {1, 2, . . . , n} such that around each black vertex
(respectively, white vertex), following the counterclockwise orientation, we see
a finite consecutive sequence of the tuple (1, 2, . . . , n) (respectively, (n, n −
1, . . . , 2, 1)). This condition provides a Galois invariant for the dessin Dβ . In
[4], for n = 2, it was observed that this is a new Galois invariant on dessins
d’enfants. We expect (but we have no explicit evidence) that for each n ≥ 3 it
provides a new Galois invariant.

3. Proof of Theorem 2.3

3.1.

Let r ≥ 2 be the cardinality of Bϕ and let δ ⊂ Ĉ an admissible arc for ϕ,
starting at the branch point p1 = 0, ending at the branch point pr = ∞. We
label the rest of the branch points of ϕ as p2, . . . , pr−1, such that pj is between
pj−1 and pj+1. Let us denote by kj be the branch order of pj . We are assuming

that k1 and kr are both multiples of n ≥ 2. Set X to be either Ĉ, C or H2

depending on if
r∑
j=1

(1− k−1
j )− 2

is negative, zero or positive, respectively.

3.2.

Let K be a discrete group of isometries of X such that X/K = Ĉ and whose cone

points are p1, . . . , pr, with respective cone orders k1, . . . , kr. Let πK : X → Ĉ
be a regular holomorphic branched covering with K as deck group.

The arc δ defines a fundamental domain Pδ for K (see Figure 2 at the end),
with 2(r − 1) sides, and set of side pairings APδ = {C1, . . . , Cr−1}, such that

K = 〈C1, . . . , Cr−1 : Ck11 = (C−1
1 C2)k2 = · · · = (C−1

r−2Cr−1)kr−1 = Ckrr−1 = 1〉.

The K-translates of Pδ produces a 2-cell decomposition TK,Pδ of X, that is, a
map on X. As k1 and kr are multiples of n, the following produces a surjective
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homomorphism

θ0 : K → G = 〈σ〉 ∼= Z/nZ : Cj 7→ σ, j = 1, . . . , r − 1.

As ker(θ0) is the group generated by the K-conjugates of the elements

Cn1 , C
−1
1 C2, C1C

−1
2 , . . . , C−1

1 Cr−1, C1C
−1
r−1,

it follows that adjacent faces of the map TK,Pδ have different labels.

Let x1, . . . , xr ∈ X be the fixed points of the elements C1, C
−1
1 C2, C−1

2 C3, . . . ,
C−1
r−2Cr1 and Cr−1, respectively. Then, πK(xj) = pj , for j = 1, . . . , r.

Remark 3.1. The map TK,Pδ is n-Z-orientable. To see this, for each T ∈ K,
we label the T -translated of Pδ by the element θ0(T ) ∈ G. Now, in order to
be consequent with our definiton of n-Z-orientability as in the introduction, we
make the identification of σj with the integer j + 1, for j = 0, 1, . . . .n− 1.

The orbifold X/ ker(θ0) can be identified with the Riemann sphere Ĉ with
exactly n(r − 2) + 2 cone points, these being of orders k1/n, k2, n. . ., k2, . . . ,
kr−1, n. . ., kr−1, kr/n. The pair (K, ker(θ0)) induces a Möbius transformation A,
of order n, and (by using the above identification) a degree n meromorphic

map η : Ĉ→ Ĉ, whose deck group is 〈A〉 ∼= Z/nZ, branched at the end points
of δ, i.e., 0 and ∞. Up to conjugation by a suitable Möbius transformation, we
may assume that A(z) = e2πi/nz and η(z) = zn.

The set η−1(δ) is a collection of n simple arcs (containing all the cone points
of X/ ker(θ0) and whose end points are the two fixed points of A, i.e., 0 and∞)
which are cyclically permuted by A. This provides a n-Z-orientable map F0 on
Ĉ and it is induced by the map TK,Pδ .

Remark 3.2. Each index normal subgroup Γ0 of K, such that that K/Γ0
∼=

Z/nZ, is given as the kernel of a surjective homomorphism θ : K → Z/nZ.
Let us assume that X/Γ0 has genus zero. In this case, the inclusion Γ0 � K

induces a regular holomorphic branched covering πΓ0
: X → Ĉ with Γ0 as its

deck group, such that πK = R ◦ πΓ0
, where R(z) = zn. Let us restrict to those

Γ0 such that πΓ0
(x1) = 0 and πΓ0

(xr) =∞. (Note that if each of the kj , where
j = 2, . . . , r−1, are not a multiple of n, then this is the only possibility). In this
case, for j = 2, . . . , r − 1, πΓ0(xj) is a cone point of order kj (since that point
is not critical point of R). This asserts that C−1

j−1Cj ∈ Γ0. If we set σ = θ(C1),
which is a generator of Z/nZ, the previous asserts that θ(Cj) = σ, for every
j = 1, . . . , r− 1. In other words, up to post-composing by an automorphism of
Z/nZ, we obtain θ0, i.e., Γ0 is uniquely determined.

3.3.

As a consequence of the uniformization theorem, there is a proper subgroup
Γ of K such that S is the Riemann surface structure of the orbifold X/Γ, a
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regular holomorphic (possible branched) covering πΓ : X→ S, with deck group
Γ, such that πK = ϕ ◦ πΓ (i.e., ϕ is induced by the inclusion Γ < K).

Let us observe that the πΓ-image of the n-Z-orientable map TK,Pδ on X is
the map Fδ (which might or not be n-Z-orientable in principle).

Now, the existence of a meromorphic map ψ : S → Ĉ, such that ϕ =
η ◦ψ = ψn is equivalent to have that Γ ≤ ker(θ0) (see Remark 3.2). By lemma
3.3 (whose arguments follow the same ideas as in [3] for n = 2), the previous is
equivalent for the n-Z-orientability of Fδ. This will provide the desired result.

Lemma 3.3. The map Fδ is n-Z-orientable if and only if Γ ≤ ker(θ0).

Proof. Let us assume Γ ≤ ker(θ0). The idea is to push-down the (n-Z-orientable)
labelling on the faces of TK,Pδ to the faces of Fδ. Two faces F1 and F2 of TK,Pδ
are projected to the same face if and only if there is some T ∈ Γ such that
F2 = T (F1). As we are assuming Γ ≤ ker(θ0), the induced labelling is well de-
fined. It is not difficult to observe that induced labelling on the map Fδ satisfies
the condition for being n-Z-orientable.

In the other direction, let us assume we have a labelling for Fδ satisfying the
n-Z-orientability. By the connectivity of S, we may construct a fundamental
(connected) domain Q for Γ by gluing some copies K-translated of Pδ (as
many as the index of Γ in K). The projection of those copies of Pδ, used in
the construction of Q, projects under πΓ exactly to the faces of Fδ. Now, lift
the labelling of the n-Z-orientable map Fδ to obtain labelling of these copies
of Pδ included in Q. Use the group K to translate these labels to the rest
of K-translates of Pδ. This provides a labelling on TK,Pδ satisfying the n-Z-
orientability property. By Remark 3.2, this can be assumed to be the labelling
provided by θ0. As the above procedure of pulling-down the labelling from
TK,Pδ to Fδ induces the given labelling, it follows from the first part that
Γ ≤ ker(θ0). �X

4. A remark: θ-Zapponi-orientability of Kleinian groups

In the previous section we have considered a Fuchsian group K, a fundamental
polygon P , the set AP ⊂ K of its side pairings, and a surjective homomorphism
θ0 : K → G = Z/nZ such that ker(θ0) ∩ AP = ∅. The homomorphism θ0

permitted to label each of the faces of the map TK,P , using as labelling the
elements of G, and such that adjacent faces have different labels. This procedure
can be generalized for any Kleinian group as follows.

Let K be a discrete group of isometries of Xm, where Xm is either the m-
dimensional hyperbolic Hm or the m-dimensional Euclidian space Em or the
m-dimensional sphere Sm. Let P ⊂ Xm be a fundamental polyhedron of K and
let AP the subset of K consisting of the side-pairings of P . It is well known that
AP is a set of generators for K and that a complete set of relations is provided
by how the sides of P are glued by these side-pairings (Poincaré Polyhedron
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Theorem, see [1, 5, 7]). The K-translates of P provides a n-tessellation TK,P
of Xm.

4.1. (K,P )-admissible homomorphisms

Let θ : K → G, where G is a finite group, be a surjective homomorphism. For
each T ∈ K we proceed to label the n-face T (P ) using the element θ(T ) ∈ G.
If adjacent faces have different labels, then we say that θ is (K,P )-admissible.

Lemma 4.1. θ is (K,P )-admissible if and only if AP ∩ ker(θ) = ∅.

Proof. This follows from the fact that, for T1, T2 ∈ K, one has that T1(P ) and
T2(P ) are adjacent if and only if there is some L ∈ AP such that T2 = T1L. �X

Remark 4.2. For every surjective homomorphism θ : K → G, it is possible
to find a fundamental polyhedron P for K such that θ is (K,P )-admissible.

Example 4.3. (1) If KP is the subgroup of K generated by all the elements
of the form AB, where A,B ∈ AP , then either KP = K or has index two in K.
If θ : K → G = Z2 is any homomorphism, then KP ≤ ker(θ). It follows that
θ is (K,P )-admissible if and only if K 6= KP = ker(θ) (in particular, there is
at most one (K,P )-admissible homomorphism onto Z2). (2) Let n, r ≥ 2 and
let us consider a Fuchsian group, acting in the hyperbolic plane H2, with the
following presentation

K = 〈C1, . . . , Cr−1 : Ck11 = (C−1
1 C2)k2 = · · · = (C−1

r−2Cr−1)kr−1 = Ckrr−1 = 1〉.

Let P be a fundamental domain of K as shown in Figure 2. Its set of side-
pairings is AP = {C1, . . . , Cr−1}. Let G = 〈σ〉 ∼= Z/nZ. If k1 and kr are both
multiples of n, then we may consider the surjective homomorphism θ0 : K → G,
defined by θ0(Cj) = σ, for every j = 1, . . . , r−1. As ker(θ0) is the group gener-
ated by the conjugates of the elements Cn1 , C

−1
1 C2, C1C

−1
2 , . . . , C−1

1 Cr−1, C1C
−1
r−1,

it follows that θ0 is (K,P )-admissible. The induced labelling of TK,P by θ0 sat-
isfies to be n-Z-orientable.

4.2. θ-Z-orientable subgroups

Let θ : K → G be a (K,P )-admissible homomorphism. If Γ is a proper subgroup
of K, then the tessellation TK,P induces an m-dimensional tessellation TK,P,Γ
on the geometric orbifold OΓ = Xm/Γ. The labelling on the faces of TK,P ,
provided by the (K,P )-admissible homomorphism θ, induces a labelling of the
faces of the tessellation TK,P,Γ. It is not difficult to see that the adjacent m-
faces of this last tessellation have different labels if and only if Γ ≤ ker(θ). If
this is the situation, we say that (K,P,Γ) is θ-Z-orientable.

We summarize all the above in the following.

Volumen 54, Número 1, Año 2020



ON N-TH ROOTS OF MEROMORPHIC MAPS 73

Lemma 4.4. Let K be a discrete group of isometries of Xm, P ⊂ Xm be a
fundamental polyhedron for it and AP ⊂ K be the set of side-pairings of P .
Let θ : K → G be a (K,P )-admissible homomorphism onto a finite group G
(equivalently, ker(θ)∩AP = ∅). Then (K,P,Γ) is θ-Z-orientable if and only if
Γ ≤ ker(θ).
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Figure 1. The labelling for 3-Z-orientability
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Figure 2. The fundamental polygon Pδ
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