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Volumen 53(2019)2, páginas 221-236
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Christian Pommerenke1, Margarita Toro0,2,B

1Technische Universität Berlin, Berlin, Germany
2Universidad Nacional de Colombia-Sede Medelĺın, Medelĺın,
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Abstract. We study various aspects of the family of groups generated by
the parabolic matrices A(t1ζ), . . . , A(tmζ) where A(z) = ( 1 z

0 1 ) and by the
elliptic matrix ( 0 −1

1 0 ). The elements of the matrices W in such groups can
be computed by a recursion formula. These groups are special cases of the
generalized parametrized modular groups introduced in [16].

We study the sets {z : tr W (z) ∈ [−2,+2]} [13] and their critical points
and geometry, furthermore some finite index subgroups and the discretness of
subgroups.
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Resumen. Estudiamos algunos aspectos de la familia de grupos generados
por matrices parabólicas A(t1ζ), . . . , A(tmζ) donde A(z) = ( 1 z

0 1 ) y por la
matriz eĺıptica ( 0 −1

1 0 ). Los elementos de las matrices W en tales grupos se
pueden calcular mediante una fórmula de recurrencia. Estos grupos son casos
especiales de la generalización del grupo modular parametrizado estudiado en
[16].

Estudiamos los conjuntos {z : tr W (z) ∈ [−2,+2]} [13] y sus puntos
cŕıticos y geometŕıa, aśı como también algunos subgrupos de ı́ndice finito
y la discreticidad de tales subgrupos.
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1. Introduction

A parabolic matrix is determined by one parameter. In this paper we study
a family of groups generated by a finite number of parabolic matrices, where
the parameter lies in a polynomial ring of one variable over the complex num-
bers. The groups that we consider have one additional generator, an ellip-
tic element of order four. More specifically, we consider the parabolic matrix
A(ξ) =

(
1 ξ
0 1

)
and the elliptic matrix B =

(
0 −1
1 0

)
. For ξ = 1, the group gener-

ated by A(1) = ( 1 1
0 1 ) and B is the classical modular group. In [13] we studied

a more general case when ξ runs through all complex numbers, so we introduce
the parametrized modular group

Π =
〈
A(ξ), B; B4 = I

〉
⊂ SL(2,C[ξ]),

see also the paper of P.M.Cohn [3]. A free purely parabolic subgroup of Π with
index 4 had been considered by various authors, for instance J.Gilman and
P.Waterman [8] and in [14].

In [16] we had considered the more general case of m parabolic matrices
A(pk) where the pk are any polynomials in C[ξ]. All group elements can be
written in a precise form, see (2.2) below.

The group defined in [16] is too general for many purposes. In the present
paper however, we restrict ourselves to polynomials of the special form pk = tkξ
where tk are complex numbers, therefore we study the group

Π = Π[t1ξ, . . . , tmξ] :=
〈
A(t1ξ), . . . , A(tmξ), B; B4 = I

〉
.

Now the matrices in Π can be computed by a recursion formula, see Section 2.
In a way this paper takes up more the ideas of our first paper [13].

In Section 3 we study the critical points, i.e, the points where our group has
an additional relation. We consider two methods to find critical points, namely
by the Riley operator and by using Chebyshev polynomials.

Section 4 is about the singular set. For a member W of our group we form
the set of all complex numbers ζ for which the trace of W lies in the interval
[−2,+2]. The singular set S is then the union of all the sets formed. Its closure
is of particular interest, see for instance [8, 14, 21].

In Section 5 we study the problem of discreteness of subgroups. This prob-
lem had not been considered in our previous papers. For instance we prove
that the group

〈
A
(√
p
)
, A
(
i
√
q
)
, B
〉

with p, q ∈ N is discrete. This family
of groups contains some very well known examples: For p = 1, q = 2 we have
Π[1, i

√
2] = SL(2, O2) and for p = q = 1 we obtain the Picard group Π[1, i] =

SL(2, O1). We also give examples of non discrete groups.

Using ideas of T. Jörgensen [9] and of A.F.Beardon [1], R.Riley [21, Th.1]
proved the following beautiful theorem:
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Theorem 1.1. (Riley) Let Γ(ζ) (|ζ| < 1) be a holomorphic family of subgroups
of SL(2,C) which is non-elementary except possibly for countably many ζ. Then

T := {ζ ∈ D : Γ(ζ) is discrete}

is closed and the critical points are dense in the complement of T .

The boundary of T lies in the closure of the singular set S defined in Section
4. We will not use these results but they serve as a guide line for our Theorem
4.2 and Proposition 5.1. In Section 6 some subgroups are discussed.

The motivation to introduce the parametrized modular group [13] was the
study of representations of the group of 2-bridge links. This problems was solved
by Riley in a beautiful collection of paper [18, 19, 20]. The problem of the rep-
resentations of 3-bridge links is not solved, but Riley gave some examples in his
seminal paper [19]. This paper give us the motivation to study the generalized
parametrized group [16] and now to specialized this group to the particular
case considered in this paper. In [17] we apply our ideas in order to develop
an algorithm to compute representations of 3-bridge knot groups and continue
the work in [16].

Now we introduce some notation and review some of our previous results
that are the motivation of this paper.

In [13] we studied the subgroup of SL(2,Z[ξ]), Π = Π [ξ] = 〈A (ξ) , B〉,
where Z[ξ] is the ring of polynomials in the variable ξ. For ζ ∈ C, let Π(ζ) be
the subgroup of SL(2,C) obtained by substituting the indeterminate ξ by the
number ζ and W (ζ) the matrix obtained by substituting ξ by ζ in an element
W in Π. The modular group Γ, which have been amply studied, is Π(1) in our
notation. The groups Π(2 cos(π/q)) (q ≥ 3) become the classical Hecke groups
after projecting to PSL(2,C), and Π(ζ) for ζ ∈ R become the generalized Hecke
groups. The group Π1 generated by

(
1 ξ
0 1

)
,
(

1 0
ξ 1

)
is a free subgroup of Π [ξ] with

index 4. The group Π1 is conjugate to the much investigated two-parabolic
group generated by ( 1 2λ

0 1 ) , ( 1 0
1 1 ). We studied algebraic and analytic properties

of this group. First we provide the algebraic descriptions of the group Π = Π [ξ]
and its subgroup Π1. We use combinatorial techniques to describe precisely the
elements of both groups. To each element W in Π we associate a sequence
of non zero integers and an inductive way to compute the polynomial that
conforms the entries of the matrix W . We also describe some technical aspects
of a word W with some particular type of associated sequences. We complete
the algebraic aspects of Π by studying the set of words W such that for some
ζ, ±W (ζ) becomes a relator in the group Π (ζ), i.e, W (ζ) = ±I. Then we
consider analytic aspects of sets related to the groups Π and Π1. We define the
singular set of Π, denoted S (Π), as the set of elements ζ ∈ C such that W (ζ) is
not loxodromic, for some W ∈ Π. Notice that any relator provides elements in
S (Π), so it is a “natural” transition to pass from studying the relators to study
S (Π) and S (Π1). For the proofs in this part we rely heavily on the description
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224 CHRISTIAN POMMERENKE & MARGARITA TORO

of the elements in Π and Π1. We give examples of singular sets for particular
words, showing some pictures to illustrate the behavior of S (Π). We exhibit
symmetry properties of S(Π) and estimate the logarithmic capacity. In a much
more general context, the closure of the singular set has been studied in [21]
and [12]. Very little is known about the set-theoretic properties of ∂S(Π). Is
it connected?, does it have infinite linear measure or even positive Haussdorff
dimension? A computer generated picture by Wright in [8, p.11] suggests that
it is well behaved, another in [12] suggests that it is chaotic. The singular set
S(Π) is the union of countably many analytic arcs. The closure of the singular
set of analytic families of subgroups of PSL(2,C) has been much studied, see
e.g. [9, 21].

In [15] we studied free subgroups of index four of the parametrized mod-
ular group Π. We show that there are eight free subgroups, four of which are
normal and four are non-normal. Then we studied the intersections of the nor-
mal subgroups. We give canonical presentations of these subgroups in terms of
generators and relations. The derivation of our presentations relies on the re-
sults about the enumeration of the word in Π. We proved that the commutator
subgroup Π′ has infinite index in Π, which is quite different in other contexts,
for instance, the first three commutator subgroups of the Picard group have
finite index. At the end of [15] we find connections between Π and the Picard
group and other Bianchi groups and to a group from relativity theory. In order
to establish the connections we needed to enlarge the groups Π(ζ) and consider
groups generated by two or more parabolics. This was a motivation to study
the generalized parametrized modular group in [16]. Given a set of polynomials
p1, . . . , pm with complex coefficients and a indeterminate ξ which is the same
for all µ, pµ 6= 0 (µ = 1, . . . ,m), we define in [16] the generalized parametrized
modular group Π = Π[p1, , . . . , pm] = 〈A(p1), . . . , A(pm), B 〉. For ζ ∈ C, the
notation Π(ζ) := Π[p1, . . . , pm](ζ) ∈SL(2,C) (ζ ∈ C), means that the polyno-
mials pµ are evaluated at ζ. If W =

(
a b
c d

)
then, for instance, a = a(ξ) is a

polynomial whereas a(ζ) is a complex number. We did not impose any restric-
tions on the polynomials p1, . . . , pm but we were able to show the existence of
a simple algorithm to obtain the elements of Π. We show a way to describe the
element in the group by a set of polynomial, but in general these polynomials
are not uniquely determined. However, we have uniqueness under some spe-
cial conditions on the pµ, (µ = 1, . . . ,m). By imposing the restrictions on the
polynomial we were able to proved similar results to the ones in [13]. These con-
ditions are the motivation for the conditions we are imposing on the polynomial
in the present paper. We discuss several concrete examples and its applications
to knot theory. In many of our examples the pµ are complex numbers, and
therefore, we obtain subgroups of SL(2,C); and PSL(2,C) is isomorphic to the
group of orientation preserving isometries of the hyperbolic space H3. Our ap-
plications to knot theory use the fact that many knots K have groups with
representations in PSL(2,C) and therefore S3 − K admits the structure of a
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hyperbolic 3-manifold, [19]. The use of the indeterminate ξ, however, allows us
to arrange matrix elements according to the degree of polynomials. We intro-
duce the subgroup Π1 of index 4 which is generated by the parabolic matrices
A(z) and C(z) = BA(z)B−1. For m = 1 and p1 = ξ this generalizes the group
studied in [14]. As an example, we consider two-bridge and three-bridge knots.
Using an idea of Riley [18] we show that at least some of these knots lead to
subgroups of Π1 generated by four or less parabolic matrices. An example is the
“figure-eight knot” [11, p.60], the matrix group that represent its fundamental
group is generated by A(1), C(ω), ω = e2πi/3 which is a subgroup of Π1[1, ω].

2. The group Π

2.1. Let m ∈ N and t1, . . . , tm ∈ C \ {0} be given and let

M := {r = k1t1 + . . .+ kmtm : k1, . . . , km ∈ Z},
assuming that r = 0 =⇒ k1 = . . . = km = 0 .

(1)

The set M does not depend on the order or the signs of the tµ. Let

A(z) =

(
1 z

0 1

)
(z ∈ C), B =

(
0 −1

1 0

)
.

Note that A(z)n = A(nz). We shall study the group defined by the presentation

Π = Π[t1ξ, . . . , tmξ] :=
〈
A(t1ξ), . . . , A(tmξ), B ; B4 = I

〉
(2)

where ξ will always be the indeterminate of polynomials in C[ξ]. The group Π
does not depend on the order and signs of the parameters t1, .., tm.

The notation Π(ζ) means that the indeterminate ξ is replaced by the com-
plex number ζ. Hence we have the presentation

Π(ζ) :=
〈
A(t1ζ), . . . , A(tmζ), B ; B4 = I

〉
∈ SL(2,C).

2.2. The following theorem was proved in [16, Th.2.1] except for the statement
about uniqueness which is true here [16, Th.2.5] because Π has the special form
(2).

Theorem 2.1. Every W ∈ Π can be written uniquely as

W = BκUnB
λ, κ = 0, 1, 2, 3, λ = 0, 1, n ∈ N0 , (3)

Un = A(rnξ)B · · ·A(r1ξ)B , U0 = I (4)

with rν ∈M (ν = 1, . . . , n), see (1).
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Let rn ∈M (n ∈ N) be given. We recursively define polynomials αn and βn
by

α0 = 1, α1 = r1ξ, αn+1 = rn+1ξαn − αn−1 ,

β0 = 0, β1 = −1, βn+1 = rn+1ξβn − βn−1 .
(5)

Then we have [16, Prop.2.2]

Un(ξ) =

(
αn βn
αn−1 βn−1

)
, αn = rn · · · r1ξ

n + . . . (n ∈ N) . (6)

We will often write W =
(
a b
c d

)
. Multiplying by B it is easy to check that

W =
(
a b
c d

)
, WB =

(
b −a
d −c

)
, BWB =

(−d c
b −a

)
, BW =

(−c −d
a b

)
. (7)

3. Critical points

A point ζ0 ∈ C is called a critical point if there exists a non-constant word
V ∈ Π such that V (ζ0) = I and we then say that the critical point ζ0 is
associated to V . Then we obtain the presentation

Π(ζ0) = 〈A(t1ζ0), . . . , A(tmζ0), B ; B4 = V (ζ0) = I〉.

Since Π has only a countable number of words it follows that B4 = I is the
only relation of Π(ζ) except for a countable number of ζ ∈ C.

Remark 3.1. Writing V =
(
α β
γ δ

)
we have 1 = αδ − βγ. We differentiate and

use that β = γ = 0 because V (ζ0) = I. Hence we have 0 = αδ
′

+ α
′
δ − β′γ −

γ
′
β = α

′
+ δ

′
. It follows that V

′
(ζ0) = 0.

In this section we always write

W =
(
a b
c d

)
∈ Π, tr W = a+ b.

We shall present two methods to obtain critical points.

(i) The first method use the Riley operator W 7→ W∼. By definition the
Riley operator replaces allA(rξ) byA(−rξ) and allB± byB∓ without changing
the order of these matrices in W . We have

W∼ = QWQ−1 =

(
a −b
−c d

)
, where Q :=

(
i 0

0 −i

)
. (8)

This follows by the repeated application of the identities QA(rξ)Q−1 = A(−rξ)
and QBQ−1 = −B. See [13, p.117].
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Theorem 3.2. If the polynomial a (ζ)− d (ζ) is not constant then there exists
ζ0 ∈ C such that

W (ζ0)W∼(ζ0) = W (ζ0)QW (ζ0)Q−1 = I (9)

so that ζ0 is a critical point associated to V (ζ0) := W (ζ0)QW (ζ0)Q−1.

Proof. It follows from (8) that

V = W ·W∼ =

(
1 + a(a− d) −b(a− d)

c(a− d) 1− d(a− d)

)
.

Since a − d is not constant by assumption, there exist one or more ζ0 with
a(ζ0)− d(ζ0) = 0 and therefore with V (ζ0) = I. �X

(ii) We will use the monic Chebyshev polynomials [11, p.112] [2] tn(x) =
xn+. . . and un(x) = xn+. . . defined by tn(x) = 2Tn(x/2) and un(x) = Un(x/2)
where Tn(x) and Un(x) are the classical Chebyshev polynomials.

For instance we have

t2 (x) = x2 − 2, t3 (x) = x3 − 3x, t4 (x) = x4 − 4x2 + 2,

u2 (x) = x2 − 1, u3 (x) = x3 − 2x, u4 (x) = x4 − 3x2 + 1.
(10)

The monic Chebyshev polynomials appear under various names.

Since tn(2 cos θ) = 2 cos (nθ) and un(2 cos θ) = (1/n) t
′

n(2 cos θ) we have

tn(2 cos
2νπ

n
) = +2, un−1(2 cos

2νπ

n
) = 0 for ν = 1, . . . , b(n− 1)/2c. (11)

For W ∈ SL(2,C) and τ := tr W we have

Wn =
1

2
tn(τ)I + un−1(τ)(W − 1

2
τI). (12)

Theorem 3.3. If n ≥ 3 and tr W = a + d is not constant then there exist
distinct ζν ∈ C such that

Wn(ζν) = I for ν = 1, . . . , b(n− 1)/2c . (13)

Hence the ζν are critical points associated to V (ζν) := Wn(ζν).

Proof. There are ζν ∈ C such that

τ(ζν) = 2 cos(2νπ/n) for ν = 1, . . . , bn− 1

2
c.

Hence it follows from (11) that tn(τ(ζν)) = 2, un−1(τ(ζν)) = 0 so thatWn(ζν) =
I. �X
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The first possible case is n = 3. By (11) and (12) we have

W 3 (τ) =
1

2

(
τ3 − 3τ

)
I +

(
τ2 − 1

) (
W (τ)− τ

2
I
)
.

We want that W 3 (τ) = I. This holds if and only if τ = −1.

As an example we consider the Picard group Π[1, i] with r1 = 1 + i, r2 =
r ∈ Z, r3 = 1− i. For W = U3 we have a− d = ξ(2rξ2 + r − 2). The solutions
of a(ζ)− d(ζ) = 0 are ζ = 0,±

√
1/2 if r = 1 but only ζ = 0 if r = 2. Note that

the solution ζ = 0 is of little interest because W (0) = −B.

Now we briefly discuss the assumption that the polynomials a− d or a+ d
are not constant. The following result was proved in [13, Pro.3.1], see also [16,
Sect.2.4] and [7].

Proposition 3.4. The polynomials a± d are constant if and only if

rn−ν+1 = ±rν (ν = 1, . . . , bn/2c). (14)

If a± d is constant then a± d ∈ {0, 2,−2}.

4. The singular set

4.1. As before let Π = Π[t1ξ, . . . , tmξ]. For W ∈ Π we define

S0(W ) := {ζ ∈ C : tr W (ζ) ∈ [−2,+2]} if tr W is not constant (15)

and S0(W ) := ∅ if tr W is constant, see Proposition 3.4 for the W ∈ Π with
constant trace. If ζ0 is a critical point associated with W then ζ0 ∈ S0(W ).

Remark 4.1. Let τ(ζ) := tr W (ζ) and n = deg(τ). Then [−2,+2] has n pre-
images under the map ζ 7→ τ(ζ) except for the finitely many ζ with τ ′(ζ) = 0.
Each pre-image is an arc of S0(W ) and the endpoints ζ of these arcs satisfy
τ(ζ) = ±2. If ζ is a critical point then τ(ζ) = 2 and τ ′(ζ) = 0 by Remark 3.1.

The singular set of Π is defined as

S = S(Π) =
⋃
W∈Π

S0(W ) (16)

and it is the union of countably many analytic arcs.

The following result is closely related to a theorem proved by Robert Riley
in a larger context, see Theorem 1.1. Using the monic Chebyshev polynomials
introduced in Section 3.1 we construct explicit critical points.

Theorem 4.2. The critical points are dense in the closure S̄ of S.
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Proof. Let W ∈ Π and k = deg(tr W ). The structure of S0(W ) was described
in Remark 4.1. As in part (ii) of the proof of Theorem 3.2 we construct points

ζnνj ∈ S0(W ) with n ≥ 3, j = 1, . . . , k , ν = 1, . . . , b(n− 1)/2c (17)

for which τ(ζnνj) = 2 cos(2νπ/n).

We obtain from (12) that Wn(ζnνj) = I so that ζnνj is a critical point. By
(11) their union is dense in S0(W ). Now it follows from (16) that the critical
points are dense in S and therefore dense in the closure S̄. �X

4.2. Let Π = Π[t1ξ, . . . , tmξ] and r ∈M . Starting with W0 = W we define

Wn = [Wn−1, A(rζ)] =:

(
an bn
cn dn

)
∈ Π (n ∈ N) (18)

where [·, ·] denotes the commutator. As in [13, Th.5.1] we obtain

Wn+1 =

(
1− rζancn rζ(a2

n − 1) + (rζ)2ancn
−rζc2n 1 + rζancn + (rζcn)2

)
. (19)

By induction it follows that

rζcn(ζ) = −(rζc(ζ))2n , tr Wn = 2 + (rζc(ζ))2n+1

. (20)

Theorem 4.3. Let ρ := inf{|r| : r ∈ M, r 6= 0} and W =
(
a b
c d

)
∈ Π. If the

polynomial c is not constant then

{ζ ∈ C : |ζc(ζ)| ≤ 1

ρ
} ⊂ S̄. (21)

The same is true with c(ζ) replaced by a(ζ), b(ζ) or d(ζ).

Proof. Let r ∈M . For n ∈ N and 0 < k ≤ 2n+1 let

Ln,k = {ζ ∈ C : |rζc(ζ)| ≤ 1, arg(rζc(ζ)) =
2k − 1

2n+1
π}. (22)

For ζk ∈ Ln,k we therefore have

0 ≥ (rζkc(ζk))2n+1

= −|(rζkc(ζk))2n+1

| ≥ −1 .

Hence it follows from (20) that

tr Wn(ζk) = 2 + (rζkc(ζk))2n+1

∈ [1, 2]

and therefore from (15) and (16) that ζk ∈ S0(Wn) ⊂ S.
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Now we let ζ ∈ C and |rζc(ζ)| ≤ 1. Then there exists ζk ∈ Ln,k with
|ζk| = |ζ| and | arg ζk − arg ζ| ≤ 2−n. Since ζk ∈ S it follows that ζ ∈ S̄. Hence
we have proved that {ζ ∈ C : |ζc(ζ)| ≤ 1/r} ⊂ S̄ which implies (22) by the
definition of ρ.

To conclude the proof we apply the above result to the matrices BW,BWB
and BW using (7) and we obtain (21) with a, b, d instead of c �X

4.3. Now we state some geometric properties of the components S0(W ) of the
singular set.

Theorem 4.4. Let S0(W ) 6= ∅, see (15). (i) The logarithmic capacity is

4 cap S0(W ) = |rn · · · r1|1/n. (23)

(ii) If S0(W ) ⊂ {z ∈ C : |z| ≤ q} then the length satisfies

len S0(W ) ≤ (1 + q2)πn. (24)

Proof. (i) Using (6) the first assertion follows from a theorem of Fekete [5]
and the fact that cap [−2,+2] = 1, see [13, p.122].

(ii) The second assertion is a consequence of an important result of Ere-
menko and Hayman [4, Th.2]:

Let f be a polynomial of degree n and let Fp = {z ∈ C : f(z) ∈ [−p, p]} for
0 < p ≤ ∞. Then ∫

F∞

1

1 + |z|2
|dz| ≤ πn. (25)

We apply this result to the polynomial f(z) := tr W (z) and F2 = S0(W ). By
(25) we obtain

len S0(w) =

∫
F2

|dz| ≤
∫
F2

1 + q2

1 + |z|2
|dz| ≤

∫
F∞

1 + q2

1 + |z|2
|dz| ≤ (1 + q2)πn.

�X

5. Discrete groups

5.1. The following result about discrete groups complements Theorem 4.3.

Proposition 5.1. Let W =
(
a b
c d

)
∈ Π and let r ∈ M, ζ0 ∈ C, ζ0 6= 0. If the

polynomial c(ζ) is not constant and if

|rζc(ζ)| < 1 with r ∈M . (26)

then the group Π(ζ) is not discrete in a neighbourhood of ζ0 except that Π(ζ0)
may be discrete if c(ζ0) = 0. The same holds for a, b, d instead of c.
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Proof. We use the notation and results at the beginning of Section 4.2. Be-
cause of (26) we may assume by continuity that 0 < |rζc(rζ)| < 1 holds in a
punctured neighbourhood of ζ0. Now we show by induction that

|1− an| ≤ (|a|+ n− 1)|rζc|2
n−1

(n ∈ N). (27)

This is true for n = 1 because 1−a1 = rζac by (19). Now let (27) be true for n.
By (27) and since |rζc| ≤ 1, we have |an| ≤ |1−an|+1 ≤ (|a|+n−1)+1 = |a|+n.
Also, by (20) we have |rζcn| = |rζc|2

n

. It follows from (30) that

|an+1| = |an||rζcn| ≤ (|a|+ n)|rζc|2
n

.

This proves (27) for n+ 1.

Furthermore we have |rζcn| ≤ |rζc|2
n → 0 as n → ∞. Using (19) we

therefore obtain

an+1 → 1, bn+1 → 0, cn+1 → 0, dn+1 → 1

with cn+1 6= 0 because rζc 6= 0, see (20). It follows that I 6= Wn+1(ζ) →
I as n→∞. Since Wn+1(ζ) ∈ Π(ζ) we conclude that Π(ζ) is not discrete. �X

5.2. Let Π = Π[t1ξ, . . . , tmξ]. We will use the following sufficient condition of
Beardon [1, p.14] where ‖ . . . ‖ is the matrix norm.

Lemma 5.2. The group Π(ζ) is discrete if

inf{‖W − I‖ : W ∈ Π(ζ), W 6= I} > 0 .

Theorem 5.3. The groups

Π[
√
p , i
√
q ] (p, q ∈ N) (28)

are discrete.

For p = 1, q = 2 we obtain the well-known fact that the group Π[1, i
√

2] =
SL(2, O2) is discrete. For p = q = 1 we obtain again that the Picard group
Π[1, i] = SL(2, O1) is discrete, the often used additional generator

(
i 0
0 −i

)
is

redundant, see e.g. [3][16, Cor.4.3]. Note that we have put ξ = 1. For general
ξ ∈ C these groups are not always discrete by Proposition 5.4.

Proof. (a) The first of the following two sets was defined in (1). Now we define

M := {k√p+ il
√
q : k, l ∈ Z},

M ′ := {k + il
√
pq) : k, l ∈ Z}.

(29)

Revista Colombiana de Matemáticas
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Now let ρ1, ρ2 ∈M and ρ′1, ρ
′
2 ∈M ′. Then it follows from (29) that

ρ1ρ2 = (k1k2p− l1l2q) + i(k1l2 + l1k2)
√
pq ∈M ′

ρ′1ρ
′
2 = (k′1k

′
2 − l′1l′2pq) + i(k′1l

′
2 + l′1k

′
2)
√
pq ∈M ′

ρ1ρ
′
2 = (k1k

′
2 − l1l′2q)

√
p+ i(l1k

′
2 + k1l

′
2p)
√
q ∈M

(30)

and similarly for ρ′1ρ2. Here we have used that p, q ∈ N.

(b) Let W ∈ Π[
√
p, i
√
q]. By (3) and (4) we have

W = BκUnB
λ, Un =

(
αn βn
αn−1 βn−1

)
= A(rn)B · · ·A(r1)B (31)

with rν ∈M . We claim that

α2ν−1, β2ν ∈ M , α2ν , β2ν−1 ∈ M ′ for ν ∈ N . (32)

By (31),(5) and (30) we have a1 = r1 ∈ M, α2 = r1r2 − 1 ∈ M ′, furthermore
β1 = −1 ∈M ′, β2 = r1 ∈M . This proves (32) for ν = 1.

Suppose that (32) is true for some ν. Then we have

α2ν+1 = r2ν+1α2ν − α2ν−1 ∈M ′

by the induction hypothesis (32) and by (30) with ρ1 = r2ν+1 ∈M, ρ2 = α2ν ∈
M ′ and we obtain

α2ν+2 = r2ν+2α2ν+1 − α2ν ∈M

by (32) and by (30) with ρ1 = r2ν+2 ∈M ′, ρ2 = α2ν−1 ∈M and by (30). This
proves (32) for ν + 1.

(c) Now let W =
(
a b
c d

)
∈ Π[
√
p, i
√
q]. The factors B in (31) only rotate the

matrix W . Hence it follows from (6) and (32) that the a and d form a mesh
≥ 1 in the (k, l)− plane, see (29)

We want to apply Lemma 5.2 and therefore consider

|W − I|2 = |a− 1|2 + |b|2 + |c|2 + |d− 1|2. W 6= I.

If |b|2 + |c|2 > 0 then it follows from (29) that |W − I|2 ≥ 1 because p, q ≥ 1.
Now let b = c = 0. Since det W = 1 we have ad = 1. Since W 6= I we cannot
have a = d = 1. Hence |1 − a| > δ with some constant δ with 0 < δ < 1. It
follows that |W − I| > δ. Hence Π is a discrete group by Lemma 5.2. �X

5.3. Finally we give some examples of groups that are not discrete. The first
two examples are related to Theorem 5.3 and their proofs rely on Proposition
5.1.

Proposition 5.4. Let q ∈ N. If 0 < |ζ − 1| ≤ 1
4 then the group Π[ζ, i

√
qζ] is

not discrete. If 0 < |ζ − 1| ≤ 1
20 then Π[

√
2ζ, i
√
qζ] is not discrete.
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Note that, by Theorem 5.3, the above groups are discrete for ζ = 1, the
center of the above disks.

Proof. (a) With r1 = r2 = 1 it follows from (5) that α2(ζ) = ζ2− 1. Hence we
have

0 < |ζα2| = |ζ(1 + ζ)(1− ζ)| < 1 for 0 < |ζ − 1| ≤ 1
4 .

Therefore ζα2(ζ) satisfies (26) so that Π[1, i
√
q](ζ) is not discrete.

(b) With r1 = r2 = r3 =
√

2 it follows from (5) that α3(ζ) = 2
√

2(ζ3 − ζ).
Hence

0 < |
√

2ζα3(ζ)| = 4|ζ|2|ζ + 1||ζ − 1| < 1 for 0 < |ζ − 1| ≤ 0.05.

Therefore
√

2ζα2(ζ) satisfies (26) so that Π[
√

2,
√
q](ζ) is not discrete. �X

Proposition 5.5. If t1, t2 ∈ R and Π = Π[t1ξ, t2ξ] then the group Π(ζ) is not
discrete for any ζ ∈ C, ζ 6= 0.

Proof. We need a classical result about diophantine approximation [10, Th.5]:
If α ∈ R is irrational then there exist sequences pn, qn ∈ Z such that

|qnα− pn| < 1/qn, qn →∞ (n→∞). (33)

First we show that α := t1/t2 is irrational. Otherwise we would have α = k/l
with k, l ∈ Z and therefore lt1 − kt2 = 0 which contradicts (1).

Now let pn, qn be as in (33) and rn := qnt1−pnt2. Then we have 0 6= |rn| =
|t1||qnα− pn| ≤ |t1/pn| → 0 and thus

I 6= Wn(ζ) := A(rnζ) =

(
1 rnζ

0 1

)
→ I (n→∞)

for ζ 6=∞. Hence Π(ζ) is not discrete. �X

6. Some subgroups

Let Π = Π[t1ξ, . . . , tmξ] and

C(z) :=

(
1 0

−z 1

)
= BA(z)B−1 (z ∈ C). (34)

Let the word W ∈ Π contain precisely the matrices A(rνξ) where ν = 1, . . . n,
0 ≤ n < ∞ and rν = k1,νt1 + . . . + km,νtm, compare (1). Then we define
σ(W ) :=

∑n
ν=1(k1,ν + . . .+ km,ν). Furthermore we define τ(W ) as the number

of B in W where B−1 counts as −1. Then we have σ(W1W2) = σ(W1)+σ(W2)
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and σ(W−1) = −σ(W ), correspondingly for τ . In the special case Π[ξ] a much
more detailed free group structure could be proved, see [15].

All the following congruences ≡ will be modulo 4. We shall consider the
subgroups

Π1 := {W ∈ Π : τ(W ) ≡ 0}, Π2 := {W ∈ Π : τ(W ) ≡ σ(W )}. (35)

It follows that Π1 ∩Π2 = {W ∈ Π : σ(W ) ≡ τ(W ) ≡ 0}. In [16, Th.3.2] it was
proved that

Π1 =
〈
A(t1ξ), . . . , A(tmξ), C(t1ξ), . . . , C(tmξ)

〉
. (36)

Proposition 6.1. The groups Π1 and Π2 are normal subgroups of Π with
indices |Π : Π1| = |Π : Π2| = 4 and |Π : Π1 ∩Π2| = 16.

Proof. It follows from (34) that Π1 and Π2 are normal subgroups of Π. For
k = 0, 1, 2, 3 the cosets

BkΠ1 = {W ∈ Π : τ(W ) ≡ k}, BkΠ2 = {W ∈ Π : τ(W ) ≡ σ(W ) + k}

are distinct and their union is Π. Hence Π1 and Π2 have index 4 in Π.

Furthermore we have

Bl(Π1 ∩Π2) = {W ∈ Π2 : τ(W ) = l} (l = 0, 1, 2, 3).

It follows that |Π2 : Π1 ∩ Π2| = 4 and therefore that |Π : Π1 ∩ Π2| = |Π :
Π2| |Π2 : Π1 ∩Π2| = 16. �X

Let W ∈ Π. The Riley operator W 7→ W∼ was introduced in Section 3.
Since W∼ exchanges the exponents of B and A(rξ) we obtain that τ(W ) =
0, σ(W ) = 0. It follows that

WW∼ ∈ Π1 ∩Π2. (37)

Proposition 6.2. The commutator subgroup Π′ of Π[t1ξ, . . . , tmξ] is a normal
subgroup of Π1 with infinite index.

Proof. Since τ(W ) = 0 holds for all W ∈ Π′ we have Π′ ⊂ Π1. Let r ∈M, r 6=
0 and Wn = (A(rξ)B)4n for n ∈ N. Then we have

Wn+νW
−1
n = (A(rξ)B)(4ν−1)4n /∈ Π′ for n, ν ∈ N.

Hence the WnΠ′ form an infinite system of disjoint cosets in Π1. �X

The situation can be different for Π′(ζ) with ζ ∈ C. Let Π = Π[ξ, iξ]. Then
Π(1) is the Picard group SL(2,Z[i]). In [6, Th.2] it was proved that Π′(1) is the
only normal subgroup of Π(1) with index 4. It follows that Π′(1) = Π1(1).
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