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On Symmetric (1, 1)-Coherent Pairs and

Sobolev Orthogonal polynomials: an

algorithm to compute Fourier

coefficients

Sobre (1, 1) pares coherentes simétricos y polinomios ortogonales
Sobolev: un algoritmo para calcular coeficientes de Fourier
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Abstract. In the pioneering paper [13], the concept of Coherent Pair was
introduced by Iserles et al. In particular, an algorithm to compute Fourier
Coefficients in expansions of Sobolev orthogonal polynomials defined from
coherent pairs of measures supported on an infinite subset of the real line is
described. In this paper we extend such an algorithm in the framework of the
so called Symmetric (1, 1)−Coherent Pairs presented in [8].

Key words and phrases. Orthogonal polynomials, Symmetric (1, 1)−coherent
pairs, Sobolev-Fourier series.

2010 Mathematics Subject Classification. 33C45, 42C05.

Resumen. En el art́ıculo pionero [13], fue introducido el concepto de Par Co-
herente por Iserles et al. En particular, alĺı es descrito un algoritmo para
calcular coeficientes de Fourier de expansiones de polinomios ortogonales de
tipo Sobolev definidos a partir de pares de medidas coherentes soportadas en
un subconjunto infinito de la recta real. En esta contribución extendemos tal
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algoritmo en el contexto de los llamados Pares Simétricos (1, 1)−Coherentes
presentados en [8].

Palabras y frases clave. Polinomios ortogonales, Pares Simétricos (1, 1)−Coherentes,
Series Sobolev-Fourier.

1. Introduction

Let {µ0, µ1} be a pair of positive Borel measures supported on an infinite subset
E on the real line. Let {Pn}n≥0 and {Rn}n≥0 be the corresponding sequences of
monic orthogonal polynomials, (SMOP in short). The pair {µ0, µ1} is said to be
coherent if there exist real numbers an 6= 0, n ≥ 1, called coherent coefficients,
such that

Rn+1(x) =
P ′n+2(x)

n+ 2
+ an

P ′n+1(x)

n+ 1
, n ≥ 0.

This concept is introduced in [13], where sequences of Sobolev polynomials, i.e.
orthogonal with respect to the Sobolev inner product

〈p, q〉S =

∫
R
p(x)q(x)dµ0 + λ

∫
R
p′(x)q′(x)dµ1, λ > 0, p, q ∈ P, (1)

are studied. Here P denotes the linear space of polynomials with real coeffi-
cients. In the last three decades special attention has been paid to the so-called
general Sobolev Orthogonality defined by the inner product

〈f, g〉S =

m∑
i=0

∫
R
f (i)(x)g(i)(x)dµi(x), (2)

where every µj , j = 0, 1, . . . ,m, is a positive Borel measure supported on an
infinite subset of the real line. Such an inner product is known in the literature
as a Sobolev inner product. In 1947 the foundations of the theory of Sobolev
Orthogonality were stated in the pioneering work [15] by D. C. Lewis, where
finite Fourier expansions in terms of Sobolev polynomials are the solution of
certain extremal problem related to smooth polynomial approximation. In early
60s, P. Althammer presented his first work, see [1], based on the seminal paper
of Lewis, and rewrote the Lewis’s problem as follows. Given the inner product

〈f, g〉S =

m∑
i=0

∫ b

a

f (i)(x)g(i)(x)wi(x)dx, (3)

where the w′is are weight functions in [a, b], and a function, f , defined in [a, b],
to determine

min
Q∈Pn

‖f −Q‖S ,

where Pn represents the linear space of polynomials of degree less than or
equal to n and ‖.‖S is the norm induced by 〈, 〉S . If {Sn}n≥0 is the sequence
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ON SYMMETRIC (1, 1)-COHERENT PAIRS 141

of orthonormal polynomials with respect to (3), the polynomial Q∗, where
the minimum is achieved, will be a linear combination of Sobolev orthogonal
polynomials, namely,

Q∗(x) =

n∑
k=0

akSk(x), with ak = 〈f, Sk〉S .

[17] and [19] constitute nice surveys on the historical development and state
of the art of Sobolev orthogonality. In addition, in [13] a relation between the
sequence of monic Sobolev polynomials

{
Sλn
}
n≥0

(orthogonal with respect to

(1)) and {Pn}n≥0 , the sequence of monic polynomials orthogonal with respect
to dµ0 is given. Namely,

Sλn+2(x) + ηn(λ)Sλn(x) = Pn+2(x) + anPn(x), n ≥ 0,

where the values ηn(λ) are called Sobolev coefficients. Let consider the Sobolev
space

W 1,2(E,µ0, µ1) =
{
g : E → R | g ∈ L2(E;µ0), g′ ∈ L2(E;µ1)

}
.

For a function f in such a space, an efficient algorithm to compute Fourier
coefficients when f is expanded by using the orthogonal basis

{
Sλn
}
n≥0

is des-

cribed. Such an algorithm does not need the explicit expression of Sobolev
orthogonal polynomials. In [6], the most general case of coherence for standard
orthogonal polynomials is known in the literature and presented as follows.

Definition 1.1. A pair of positive Borel measures {µ0, µ1} is said to be a
(M,N)−coherent pair of order (m, k) if the corresponding SMOPs satisfy

M∑
i=0

ai,nP
[m]
n+m−i(x) =

N∑
i=0

bi,nQ
[k]
n+k−i(x), (4)

where m, k,M,N ∈ N ∪ {0} , P [i]
n (x) :=

P
(i)
n+i(x)

(n+ 1)i
, and {ai,n}n≥0 , {bj,n}n≥0 ,

0≤ i ≤ M, 0≤ j ≤ N are sequences of real numbers with a0,n = b0,n = 1.
Here (n)k, k = 0, 1, . . . , denotes the Pochhammer symbol, i.e. (n)k = n(n +
1) · · · (n+ k − 1), k ≥ 1 and (n)0 = 1.

Thus, in [5] the algorithm proposed in [13] for (1, 0)−coherent pairs of order
(1, 0) is generalized in a natural way for (M,N)−coherent pairs of measures of
order (m, 0). On the other hand, when the measures µ0 and µ1 are symmetric,
i.e. invariant under the transformation x 7−→ −x, and the respective SMOPs,
{Pn}n≥0 and {Rn}n≥0 satisfy

Rn+2(x) =
P ′n+3(x)

n+ 3
+ an

P ′n+1(x)

n+ 1
, n ≥ 0.
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The pair {µ0, µ1} is said to be symmetric coherent, a concept that has been
also introduced in [13]. A generalization is presented in [8] with the so called
symmetric (1, 1)−coherent pairs of measures, i.e. when the respective SMOPs
satisfy

Rn+2(x) + bnRn(x) =
P ′n+3(x)

n+ 3
+ an

P ′n+1(x)

n+ 1
, n ≥ 0.

Therein, connection properties between the coherent and recurrence coeffi-
cients, among others, are obtained, as well as a special emphasis in the case µ0

classical, (Hermite, Gegenbauer) is pointed out. In particular, the symmetric

(1, 1)−coherent pair {e−x2

dx, x
2+a
x2+b e

−x2

dx}, a, b > 0, is obtained. Taking into
account the above pair, in [9] asymptotic properties of Sobolev polynomials
associated with the above (1,1) Hermite symmetric coherent pair are studied.
Finally, in [10] a classification of symmetric (1, 1)−coherent pairs is presented.

The aim of this contribution is to study the natural generalization of the al-
gorithm displayed in [13], in the symmetric (1, 1)−coherent framework. So, the
structure of this manuscript is as follows. In Section 2 the basic background on
orthogonal polynomials associated with a linear functional is presented. In Sec-
tion 3 the algebraic relation between the Sobolev polynomials and polynomials
orthogonal with respect to µ0 is deeply analyzed. In Section 4 the algorithm
to compute Fourier coefficients is described. Finally, some numerical examples
are studied.

2. Preliminaries

Let P be the linear space of polynomials with real coefficients. Pn will denote
the linear subspace of polynomials of degree at most n. Let u be a linear
functional in the algebraic dual space of P. It will be denoted P′. 〈u, p〉 is
the action of the linear functional u on the polynomial p ∈ P. Let {un}n≥0

be a sequence of real numbers. u is a moment functional associated with the
moment sequence {un}n≥0 if u is linear and un = 〈u, xn〉 , n ≥ 0. A sequence
of polynomials {Pn}n≥0 , with degPn = n, determines an unique sequence of
linear functionals {pn}n≥0, called dual basis associated with {Pn}n≥0 , in such
a way that 〈pn, Pm〉 = δn,m, where δn,m denotes the Kronecker delta symbol.
As a consequence, every u ∈ P′ can be expressed in terms of the basis {pn}n≥0

as follows:

u =
∑
k≥0

〈u, Pk〉pk.

On the other hand, if q ∈ P and u ∈ P′, then we define qu ∈ P′, the left
multiplication, as

〈qu, p〉 := 〈u, qp〉 , p ∈ P. (5)

The linear functional δ(x − c) such that 〈δ(x− c), p〉 := p(c), p ∈ P, c ∈ C, is
said to be the Dirac delta linear functional at c.
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ON SYMMETRIC (1, 1)-COHERENT PAIRS 143

Given u ∈ P′, let σ ∈ P be a polynomial of degree n and denote by xk ∈ C,
1 ≤ k ≤ r, their zeros with multiplicities nk, respectively, i.e.

∑r
k=1 nk = n.

Then for every p ∈ P, we define the linear functional σ−1(x)u ∈ P′ as follows:〈
σ−1(x)u, p(x)

〉
:=

〈
u,
p(x)− Lσ(x; p)

σ(x)

〉
, (6)

where Lσ(x; p) is the interpolatory polynomial

Lσ(x; p) =

r∑
i=1

ni−1∑
j=0

p(j)(xi)Li,j(x) (7)

and Li,j(x) is the polynomial of degree at most n − 1 such that L
(k)
i,j (xl) =

δi,lδk,j , i, l = 1, · · · , r, p(j) the j − th derivative of p and 0 ≤ k, j ≤ ni − 1.

On the other hand, given q ∈ P we will denote by uq ∈ P, the right-
multiplication of u ∈ P′ by q, the polynomial

(uq)(t) :=

〈
u,
tq(t)− xq(x)

t− x

〉
,

where u acts on the variable x.

The p− th derivative of the functional u, p ∈ Z+ ∪ {0}, denoted by Dpu, is
a linear functional such that

〈Dpu, q(x)〉 := (−1)p
〈
u, q(p)(x)

〉
, q ∈ P. (8)

For a more detailed description of this algebraic approach to linear functionals,
see [18].

2.1. Quasi-definite and Positive-definite linear functionals

Let u be a linear functional and {un}n≥0 be the corresponding moment se-
quence. We define the Hankel determinant of order n+ 1

∆u
n =

∣∣∣∣∣∣∣∣∣
u0 u1 · · · un
u1 u2 · · · un+1

...
...

. . .
...

un un+1 · · · u2n

∣∣∣∣∣∣∣∣∣ , n ≥ 0. (9)

u is said to be quasi-definite or regular(see [4]) if the leading principal
submatrices of the Hankel matrix (ui+j)

∞
i,j=0 are non-singular, i.e. ∆u

n 6= 0 for

n ≥ 0. u is called positive-definite if 〈u, π(x)〉 > 0 for every non identically
zero and non-negative real polynomial π. When there is not risk of confusion
we will write ∆n instead of ∆u

n.

The positive definiteness of a linear functional can be characterized through
the associated moment sequence. Namely,
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Theorem 2.1. ([4]). u is positive definite if and only if ∆n > 0 for n ≥ 0.

If u is positive-definite, then there exists a positive Borel measure µ sup-
ported on an infinite set E ⊆ R such that u has an integral representation

〈u, p〉 =

∫
E

p(x)dµ(x), p ∈ P.

Given a quasi-definite linear functional u on the space P, a bilinear form 〈, 〉u :
P × P → R is defined as 〈p, q〉u := 〈u, pq〉 . If u is positive definite, then the
bilinear form is an inner product on P and, as usual, the induced norm will be
represented as

‖p‖u = 〈p, p〉1/2u =
〈
u, p2

〉1/2
=

(∫
E

p2(x)dµ(x)

)1/2

,

where µ is the positive Borel measure, supported on E, associated with u.

2.2. Orthogonal polynomials

Definition 2.2. A polynomial sequence {Pn}n≥0 is said to be an orthogonal
polynomial sequence, OPS in short, with respect to a linear functional u if for
n,m ≥ 0,

i) Pn is a polynomial of degree n.

ii) 〈u, PnPm〉 = 0, for n 6= m.

iii)
〈
u, P 2

n

〉
6= 0, n ≥ 0.

If the leading coefficient of Pn is 1 for every n ≥ 0, then {Pn}n≥0 is said
to be a monic orthogonal polynomial sequence, (SMOP in short). The next
result gives us conditions for the existence of an OPS associated with a linear
functional.

Proposition 2.3. ([4]). Let u be a linear functional. u is quasi-definite if and
only if there exists an OPS {Pn}n≥0 with respect to u.

Under the conditions of above proposition, if {un}n≥0 is the moment se-
quence associated with u, then every monic polynomial Pn can be written as

Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣∣

u0 u1 · · · un
u1 u2 · · · un+1

...
...

. . .
...

un−1 un · · · u2n−1

1 x xn

∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1, P0(x) = 1.

Given a quasi-definite linear functional there exists an infinite number of OPS
associated with u. Indeed, if {Pn}n≥0 is an OPS associated with u, then
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{knPn}n≥0 is also an OPS associated with u for non-zero constants kn. Thus
{Pn}n≥0 is uniquely determined if the leading coefficients are fixed. Conversely,
if {Pn}n≥0 is an OPS associated with u, for any k 6= 0, then {Pn}n≥0 is also
an OPS associated with the linear functional ku. In order to the quasi-definite
linear functional and the OPS are uniquely determined, a normalization will
be required. In this way, in the sequel we will assume that 〈u, 1〉 = 1 as well as
the respective OPS is monic, unless stated otherwise.

The next theorem describes an important characterization of the orthogo-
nality of a sequence of monic polynomials in terms of a recurrence relation
satisfied by them. In the literature it is partially accepted that the original
version of this result is due to J. Favard[11], but essentially it means the spectral
resolution of the multiplication operator.

Theorem 2.4 (Favard’s theorem). ([4]). Let {Pn}n≥0 be a sequence of monic
polynomials. {Pn}n≥0 is a MOPS with respect to a quasi-definite linear func-
tional u if and only if there exist sequences of real numbers {βn}n≥1 and
{γn}n≥1, with γn 6= 0, n ≥ 1, such that

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n ≥ 1, (10)

P0(x) = 1, P1(x) = x− β0.

On the other hand,

βn =

〈
u, xP 2

n

〉
〈u, P 2

n〉
, n ≥ 0, γn =

〈u, xPnPn−1〉〈
u, P 2

n−1

〉 =

〈
u, P 2

n

〉〈
u, P 2

n−1

〉 , n ≥ 1.

The relation (10) is the so-called Three-Term Recurrence Relation, (TTRR
in short). A nice survey about the Favard’s theorem, its origins and further
development is given in [16]. The TTRR is equivalent to the well known and
useful Christoffel-Darboux Identity.

Theorem 2.5. ([3], [4]). A SMOP {Pn}n≥0 associated with a quasi-definite
linear functional u satisfies (10) if and only if

n∑
k=0

Pk(x)Pk(y)

〈u, P 2
k 〉

=
1

〈u, P 2
n〉
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x− y
.

2.3. Symmetric Linear Functionals

A linear functional u ∈ P′ is said to be symmetric if u2n+1 =
〈
u, x2n+1

〉
=

0, n ∈ N. (See [4] for more characterizations of symmetric quasi-definite linear
functionals). If u ∈ P′ is symmetric and quasi-definite and {Pn}n≥0 is its
corresponding SMOP, we can define ũ ∈ P′ by

〈ũ, xn〉 =
〈
u, x2n

〉
, n ∈ N. (11)
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In such situation, there exist monic polynomials An and Ãn, n ≥ 0, such that

P2n(x) = An(x2) and P2n+1(x) = xÃn(x2). (12)

As a consequence of the above definition, if u is a symmetric and quasi-definite
linear functional, then {An}n≥0 and {Ãn}n≥0 are the SMOP corresponding to
ũ and xũ, respectively. When u is symmetric and positive definite and it has
an integral representation in terms of the even weight function w on [−ζ, ζ],
then

〈u, p(x)〉 =

∫ ζ

−ζ
p(x)w(x)dx

yields

〈ũ, p(x)〉 =

∫ ζ2

0

p(x)x−1/2w(x1/2)dx,

assuming the integrals converge.

3. Sobolev polynomials and Symmetric (1, 1)− Coherent Pairs

We begin with the definition of Symmetric (1, 1)−Coherent Pair introduced in
[8]. From now on in this manuscript we assume that any linear functional u is
normalized by the condition 〈u, 1〉 = 1.

Definition 3.1. Let u and v denote two symmetric quasi-definite linear func-
tionals and {Pn}n≥0 and {Rn}n≥0 will denote their respective SMOP. Assume
that there exist sequences of non-zero real numbers {an}n≥0 and {bn}n≥0 , with
anbn 6= 0, such that

P ′n+3(x)

n+ 3
+ an

P ′n+1(x)

n+ 1
= Rn+2(x) + bnRn(x), n ≥ 0, (13)

holds. Then the pair {u, v} is said to be a Symmetric (1, 1)−Coherent Pair. Fur-
thermore, if u and v are positive-definite and µ0 and µ1 are the respective pos-
itive Borel measures, then {µ0, µ1} is said to be a Symmetric (1, 1)−Coherent
Pair of measures.

With the condition anbn 6= 0, n ≥ 0, we are assuming that the relation (13)
is non-degenerated. Moreover if ai 6= bi, i = 0, 1, we get

Proposition 3.2. ([7]). Let {u, v} be a Symmetric (1, 1)−coherent pair satis-
fying (13). The following statements are equivalent.

i) ai 6= bi, i = 0, 1.

ii) Rn(x) 6=
P ′n+1(x)

n+ 1
, for n ≥ 2.
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Let {u, v} be a symmetric (1, 1)−coherent pair with {Pn}n≥0 and {Rn}n≥0

as their respective SMOP such that (13) holds. We assume that u and v are
positive-definite with µ0 and µ1 as the corresponding positive Borel measures.
Let {un}n≥0 and {vn}n≥0 be, respectively, their moment sequences. Then we
consider the Sobolev inner product

〈p, q〉S =

∫
R
p(x)q(x)dµ0(x) + λ

∫
R
p′(x)q′(x)dµ1(x), λ > 0. (14)

Let
{
Sλn
}
n≥0

be the sequence of monic Sobolev polynomials orthogonal with

respect to (14). The above inner product also will be written as

〈p, q〉s = 〈p, q〉µ0
+ λ 〈p′, q′〉µ1

= 〈u, pq〉+ λ 〈v, p′q′〉 .

For n ≥ 1, we consider the expansion Sλn(x) = xn +
∑n−1
j=0 c

λ
n,jx

j , and let

∆S,n = det [µi,j ]
n
i,j=0 be the determinant of the leading principal submatrix of

size (n+ 1)× (n+ 1) associated with the moments µi,j :=
〈
xi, xj

〉
S
. According

to (14) if i+ j = 0, 1, then µi,j = ui+j , and if i+ j ≥ 2 we have

µi,j =
〈
xi, xj

〉
S

=

∫
R
xi+jdµ0(x) + ijλ

∫
R
xi+j−2dµ1(x)

= ui+j + ijλvi+j−2.

Moreover, if i+ j is odd or ij = 0, then µi,j = ui+j . It is well known that

Sλn(x) =
1

∆S,n−1

∣∣∣∣∣∣∣∣∣∣∣∣

1 u1 u2 · · · un
u1 µ1,1 µ1,2 · · · µ1,n

...
...

...
. . .

...

un−1 µn−1,1 µn−1,2 · · · µn−1,n

1 x x2 · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1.

Furthermore, cλn,j =
(−1)n+2+j∆j

S,n−1

∆S,n−1
, where ∆j

S,n−1 is obtained deleting the

j − th column and the (n+ 1)− th row of the matrix [µi,j ]
n
i,j=0 .

Remark 3.3. Notice that Pk(x) = Sλk (x) for k = 0, 1, 2.
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Using properties of the determinants and after cumbersome calculations we
obtain

∆S,n−1 =

∣∣∣∣∣∣∣∣∣
1 u1 · · · un−1

u1 µ1,1 · · · µ1,n−1

...
...

. . .
...

un−1 µn−1,1 · · · µn−1,n−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 u1 · · · un−1

u1 u2 + λv0 · · · un + (n− 1)λvn−2

...
...

. . .
...

un−1 un + (n− 1)λvn−2 · · · u2n−2 + (n− 1)2λv2n−4

∣∣∣∣∣∣∣∣∣
= ((n− 1)!)

2
∆v
n−2λ

n−1 + · · ·+ ∆u
n−1.

From the above, every coefficient of Sλn is a rational function in λ where the
degree numerator is at most the degree of the denominator. Then it makes
sense to define the sequence {Wn}n≥0

Wn(x) := lim
λ→∞

Sλn(x),

where, as a consequence of the symmetry, if n is even (resp. odd), then Wn is
an even function (resp. odd).

On the other hand, if deg(q) ≤ n, then〈
Sλn+1, q

〉
S

=

∫
R
Sλn+1(x)q(x)dµ0(x) + λ

∫
R

(
Sλn+1

)′
(x)q′(x)dµ1(x) = 0.

When λ→∞,
∫
RW

′
n+1(x)q′(x)dµ1(x) = 0, i.e.

W ′n+1(x) = (n+ 1)Rn(x), n ≥ 0. (15)

Moreover, for n ≥ 0,
〈
Sλn+1, 1

〉
S

=
∫
R S

λ
n+1(x)dµ0(x) = 0. If λ → ∞, then we

get ∫
R
Wn+1(x)dµ0(x) = 0. (16)

From (13) and by using (15) we have

Wn+3(x)

n+ 3
+ bn

Wn+1(x)

n+ 1
=
Pn+3(x)

n+ 3
+ an

Pn+1(x)

n+ 1
+ kn, n ≥ 0.

Integration of the above expression with respect to the measure µ0, and using
(16) yields kn = 0, i.e.

Wn+3(x) + b̃nWn+1(x) = Pn+3(x) + ãnPn+1(x), n ≥ 0, (17)

Volumen 53, Número 2, Año 2019



ON SYMMETRIC (1, 1)-COHERENT PAIRS 149

where

ãn = an
n+ 3

n+ 1
, b̃n = bn

n+ 3

n+ 1
, n ≥ 0.

Now let consider the expansion of Wn by using the basis
{
Sλn
}
n≥0

Wn(x) = Sλn(x) +

n−1∑
j=0

σn,jS
λ
j (x). (18)

Notice that

σn,j =

〈
Wn, S

λ
j

〉
S∥∥Sλj ∥∥2

S

=

∫
RWn(x)Sλj (x)dµ0(x) + λ

∫
RW

′
n(x)

(
Sλj
)′

(x)dµ1(x)∥∥Sλj ∥∥2

S

,

and
∥∥Sλj ∥∥2S :=

〈
Sλj , S

λ
j

〉
S
. In the same way, Wn+3(x) = Sλn+3(x) +

∑n+2
j=0 σn+3,j

Sλj (x), and multiplying by b̃n in (18) we get

Wn+3(x)+b̃nWn+1(x)=Sλn+3(x)+σn+3,n+2S
λ
n+2(x)+

(
σn+3,n+1 + b̃n

)
Sλn+1(x)

+

n∑
j=0

(
σn+3,j + b̃nσn+1,j

)
Sλj (x).

Taking into account the polynomials Wn+3 and Wn+1 are either even or odd
functions, then σn+3,n+2 = 0 holds. Thus

Wn+3(x) + b̃nWn+1(x) = Sλn+3(x) +

n+1∑
j=0

ηn,j(λ)Sλj (x),

where every coefficient ηn,j (λ), j ≤ n, can be written as

ηn,j (λ)

=σn+3,j + b̃nσn+1,j

=

∫
R

(
Wn+3(x)+b̃nWn+1(x)

)
Sλj (x)dµ0(x)+λ

∫
R

(
W ′n+3(x)+b̃nW ′n+1(x)

)(
Sλj

)′
(x)dµ1(x)∥∥∥Sλj ∥∥∥2

S

,

and σn+1,n+1 := 1.

By using (17) we obtain∫
R

(
Wn+3(x)+b̃nWn+1(x)

)
Sλj (x)dµ0(x)=

∫
R
(Pn+3(x)+ãnPn+1(x))Sλj (x)dµ0(x)=0,

for j = 0, 1, . . . , n, and the relation (15) yields∫
R

(
W ′n+3(x) + b̃nW

′
n+1(x)

) (
Sλj
)′

(x)dµ1(x) = 0.
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As a consequence,

Wn+3(x) + b̃nWn+1(x) = Sλn+3(x) + ηn,n+1(λ)Sλn+1(x). (19)

Equivalently,

Sλn+3(x) + ηn,n+1(λ)Sλn+1(x) = Pn+3(x) + ãnPn+1(x), n ≥ 0. (20)

Taking derivatives(
Sλn+3

)′
(x)

n+ 3
+ ηn,n+1(λ)

(
Sλn+1

)′
(x)

n+ 3
= Pn+2(x) + anPn(x), n ≥ 0. (21)

Notice that

ηn,n+1(λ)=σλn+3,n+1 + b̃n

=

∫
RWn+3(x)Sλn+1(x)dµ0(x)+λ

∫
RW

′
n+3(x)

(
Sλn+1

)′
(x)dµ1(x)∥∥Sλn+1

∥∥2

S

+ b̃n,

and, again, using (15) we obtain∫
R
W ′n+3(x)

(
Sλn+1

)′
(x)dµ1(x) = 0.

Thus

ηn(λ) := ηn,n+1(λ) =

∫
RWn+3(x)Sλn+1(x)dµ0(x)∥∥Sλn+1

∥∥2

S

+ b̃n. (22)

We summarize the above results in the next

Theorem 3.4. Let {µ0, µ1} be a symmetric (1, 1)−coherent pair of measures
with {Pn}n≥0 and {Rn}n≥0 as their respective SMOPs satisfying (13) and let{
Sλn
}
n≥0

be the Sobolev polynomials orthogonal with respect to (14). Then, for
n ≥ 0

Sλn+3(x) + ηn(λ)Sλn+1(x) = Pn+3(x) + ãnPn+1(x), (23)

holds with

ηn(λ) =

∫
RWn+3(x)Sλn+1(x)dµ0(x)∥∥Sλn+1

∥∥2

S

+ b̃n. (24)

The coefficients ηn(λ) will be called Sobolev Coefficients.

Lemma 3.5. For n ≥ 0

ηn(λ) =
b̃n(n+ 1)2

〈
v,R2

n

〉
λ+ ãn

〈
u, P 2

n+1

〉∥∥Sλn+1

∥∥2

S

. (25)
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Proof. From (13), multiplying by Rn and using the measure µ1, we get

bn
〈
v,R2

n

〉
=

〈
P ′n+3(x)

n+ 3
, Rn(x)

〉
µ1

+ an

〈
P ′n+1(x)

n+ 1
, Rn(x)

〉
µ1

=

〈
W ′n+3(x)

n+ 3
+ bn

W ′n+1(x)

n+ 1
, Rn(x)

〉
µ1

=
1

λ

(〈
Sλn+3(x)

n+ 3
+ ηn(λ)

Sλn+1(x)

n+ 3
,
Wn+1(x)

n+ 1

〉
S

−
〈
Pn+3(x)

n+ 3
+ an

Pn+1(x)

n+ 1
,
Wn+1(x)

n+ 1

〉
µ0

)

=
1

λ

(
ηn(λ)

(n+ 1) (n+ 3)
‖Sn+1‖2S −

an

(n+ 1)
2

〈
u, P 2

n+1

〉)
.

Then

λbn (n+ 1) (n+ 3)
〈
v,R2

n

〉
+

an
(n+ 1)

(n+ 3)
〈
u, P 2

n+1

〉
= ηn(λ) ‖Sn+1‖2S ,

and the result follows. �X

On the other hand, we use (13), (17), (20) and the notation 〈u, p(x)q(x)〉 :=
〈p(x), q(x)〉µ0

, i.e. we express u in terms of the associated bilinear form in order
to obtain〈

Wn+3(x), Sλn+1(x)
〉
µ0

= ãn
〈
u, P 2

n+1

〉
− b̃n

〈
u, P 2

n+1

〉
− b̃nãn−2 〈Wn+1(x), Pn−1(x)〉µ0

+ b̃nηn−2(λ)
〈
Wn+1(x), Sλn−1(x)

〉
µ0

and

〈Wn+1(x), Pn−1(x)〉µ0

=
〈
Pn+1(x) + ãn−2Pn−1(x)− b̃n−2Wn−1(x), Rn−1(x)

〉
µ0

=
(
b̃n−2 − ãn−2

) 〈
u, P 2

n−1

〉
.

Then, from the above relations, for n ≥ 2 we get〈
Wn+3(x), Sλn+1(x)

〉
µ0

=
(
ãn−b̃n

)〈
u, P 2

n+1

〉
−b̃nãn−2

(
ãn−2−b̃n−2

) 〈
u, P 2

n−1

〉
+ b̃nηn−2(λ)

〈
Wn+1(x), Sλn−1(x)

〉
µ0
.
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If we denote Ik(λ) :=
〈
Wk(x), Sλk−2(x)

〉
µ0
, the above relation can be written

as

In+3(λ)=
(
ãn − b̃n

) 〈
u, P 2

n+1

〉
−b̃nãn−2

(
ãn−2 − b̃n−2

) 〈
u, P 2

n−1

〉
+b̃nηn−2(λ)In+1(λ).

(26)

Moreover, from (25) we get

In+3(λ) = b̃n(n+ 1)2λ
〈
v,R2

n

〉
+ ãn

〈
u, P 2

n+1

〉
− b̃n

∥∥Sλn+1

∥∥2

S
. (27)

With In+1(λ) from (24) and from (26) and (27) we get the next.

Lemma 3.6. For n ≥ 2,∥∥Sλn+1

∥∥2

S
= (n+ 1)2λ

〈
v,R2

n

〉
+
〈
u, P 2

n+1

〉
+ ãn−2

(
ãn−2 − b̃n−2

) 〈
u, P 2

n−1

〉
− ηn−2

(
ηn−2 − b̃n−2

)∥∥Sλn−1

∥∥2

S
. (28)

The above formula is useful in order to compute the norms
∥∥Sλn∥∥2

S
if the Sobolev

coefficients are known. We are going to describe the initial conditions which
are needed. First, from their definitions it is easy to see that

∥∥Sλ1 ∥∥2

S
= λ+

〈
u, P 2

1

〉
, η0(λ) =

b̃0λ+ ã0

〈
u, P 2

1

〉
λ+ 〈u, P 2

1 〉
. (29)

On the other hand, for n = 1,

η1(λ) =
4b̃1
〈
v,R2

1

〉
λ+ ã1

〈
u, P 2

2

〉∥∥Sλ2 ∥∥2

S

, (30)

and since P2(x) = x2 −
〈
u, P 2

1

〉
, we get∥∥Sλ2 ∥∥2

S
=
〈
Sλ2 , S

λ
2

〉
S

= 4λ
〈
v,R2

1

〉
+
〈
u, P 2

2

〉
.

As a consequence,∥∥∥Sλ2 ∥∥∥2
S

= 4λ
〈
v,R2

2

〉
+
〈
u, P 2

2

〉
+
(〈
u, P 2

1

〉
− u2

)2
, η1(λ) =

4b̃1
〈
v,R2

1

〉
λ+ ã1

〈
u, P 2

2

〉
4 〈v,R2

1〉λ+ 〈u, P 2
2 〉

.

(31)

Thus, using (29) and for n = 2 in (28) we obtain
∥∥Sλ3 ∥∥2

S
. Then, from (25),

we find η2(λ). In an analogue way, for n = 4, 6, 8, 10, . . . in (28) we obtain∥∥Sλ2k+1

∥∥2

S
and η2k(λ), for every k ∈ N. Similarly, from(31) we can obtain recur-

rently
∥∥Sλ2k+2

∥∥2

S
and η2k+1(λ), for every k ∈ N. In the next section we study a

recurrence formula for the coefficients ηn(λ).
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3.1. The Sobolev Coefficients

We define Tn+1(x) = Wn+1(x) + b̃n−2Wn−1(x). Through straightforward cal-
culations it is not difficult to prove that

ηn(λ) =
〈Tn+3(x), Tn+1(x)〉S

〈Tn+1(x), Tn+1(x)〉S − ηn−2(λ) 〈Tn−1(x), Tn+1(x)〉S
. (32)

This expression is well defined since the denominator is non zero. Indeed,

〈Tn+1(x), Tn+1(x)〉S − ηn−2(λ) 〈Tn−1(x), Tn+1(x)〉S
=
〈
Tn+1(x)− ηn−2(λ)Tn−1(x), Sλn+1(x) + ηn−2(λ)Sλn−1(x)

〉
S

=
〈
Sλn+1(x), Sλn+1(x)

〉
S
6= 0.

We will express each term in (32) in a simpler form.

〈Tn+3(x), Tn+3(x)〉S
= 〈Pn+3(x) + ãnPn+1(x), Pn+3(x) + ãnPn+1(x)〉µ0

+ λ
〈
W ′n+3(x) + b̃nW

′
n+1(x),W ′n+3(x) + b̃nW

′
n+1(x)

〉
µ1

=
〈
u, P 2

n+3

〉
+ ã2

n

〈
u, P 2

n+1

〉
+λ
〈
(n+ 3)Rn+2(x) + b̃n(n+ 1)Rn(x), (n+ 3)Rn+2(x) + b̃n(n+ 1)Rn(x)

〉
µ1

= pn+3 + ã2
npn+1 + λ

(
(n+ 3)2rn+2 + b̃2n(n+ 1)2rn

)
.

Here we have used the notation rn :=
〈
v,R2

n

〉
and pn :=

〈
u, P 2

n

〉
. Also, in a

similar way

〈Tn+1(x), Tn+3(x)〉S = ãnpn+1 + λb̃n(n+ 1)2rn

and, replacing in (32), we get for n ≥ 1,

ηn(λ)

=
ãnpn+1 + λb̃n(n+ 1)2rn

pn+1+λ(n+1)2rn+ã2n−2pn−1+λb̃2n−2(n−1)2rn−2−ηn−2(λ)
[
ãn−2pn−1+λb̃n−2(n−1)2rn−2

] ,
where a−n = b−n = 0, n ∈ N.

Remark 3.7. In connection with the Sobolev inner products, a particular
case of symmetric (1, 1)−coherent pair was studied in [2], when u is classical,
and where it is possible to obtain an expression for the Sobolev coefficients
{ηn(λ)}n≥0 as the above one. In adittion, a relation of the type (23) is obtained,
which is a necessary and sufficient condition in order to obtain the respective
symmetric (1, 1)−coherence relation.
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Furthermore, if we define for n ≥ 1,

An = b̃n(n+1)2rn, Bn = ãnpn+1, Cn = (n+1)2rn+ã2
n−2pn−1, Dn = pn+1,

C1 = 4r1, then we can write

ηn(λ) =
Anλ+Bn

Cnλ+Dn − ηn−2(λ) [An−2λ+Bn−2]
.

With this notation we can prove the next

Theorem 3.8. There exist sequences of polynomials {Qn(λ)}n≥0 and{
Q̃n(λ)

}
n≥0

, with deg (Qn) = deg
(
Q̃n

)
= n for every n, such that the follow-

ing three term recurrence relations hold.

Qn+1(λ) = (C2nλ+D2n)Qn(λ)− (A2n−2λ+B2n−2)
2
Qn−1(λ), (33)

Q̃n+1(λ) = (C2n+1λ+D2n+1) Q̃n(λ)− (A2n−1λ+B2n−1)
2
Q̃n−1(λ), (34)

with the initial conditions Q0(λ) = Q̃0(λ) = 1, Q1(λ) = λ +
〈
u, P 2

1

〉
, and

Q̃1(λ) = 4
〈
v,R2

1

〉
λ+
〈
u, P 2

2

〉
. Furthermore, the Sobolev coefficients are rational

functions in terms of such polynomials, namely

η2n(λ) = (A2nλ+B2n)
Qn(λ)

Qn+1(λ)
(35)

and

η2n+1(λ) = (A2n+1λ+B2n+1)
Q̃n(λ)

Q̃n+1(λ)
. (36)

Proof. The initial conditions are obtained according to the definition of η0(λ)

and η1(λ). Suppose that η2n−2(λ) = (A2n−2λ+B2n−2)
Qn−1(λ)

Qn(λ)
, then

η2n(λ) =
A2nλ+B2n

C2nλ+D2n − (A2n−2λ+B2n−2)
2 Qn−1(λ)

Qn(λ)

=
(A2nλ+B2n)Qn(λ)

(C2nλ+D2n)Qn(λ)− (A2n−2λ+B2n−2)
2
Qn−1(λ)

.

Thus (33) holds with Qn+1(λ) as the denominator. In an analogous way,

η2n−1(λ) = (A2n−1λ+B2n−1)
Q̃n−1(λ)

Q̃n(λ)
and we get

η2n+1(λ) =
(A2n+1λ+B2n+1) Q̃n(λ)

(C2n+1λ+D2n+1) Q̃n(λ)− (A2n−1λ+B2n−1)
2
Q̃n−1(λ)

.

If we denote the denominator by Q̃n+1(λ), then we get (34). �X
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Remark 3.9. Notice that Bn = b̃nrn+1 6= 0. Moreover, if ãn = 0, then An = 0,
for every n. As a consequence, (13) becomes

Pn+2(x) =
R′n+3(x)

n+ 3
+ bn

R′n+1(x)

n+ 1
, n ≥ 0

and, according to Favard’s theorem, the recurrence relations (33) and (34) mean

that {Qn(λ)}n≥0 and
{
Q̃n(λ)

}
n≥0

are orthogonal in the standard sense.

Remark 3.10. The recurrence relation satisfied by the sequences {Qn(λ)}n≥0

and
{
Q̃n(λ)

}
n≥0

are studied for the first time in [14] and, in the literature,

they are known as RII type recurrence relations.

4. Algorithm for Sobolev-Fourier coefficients

In this section we will describe an algorithm to compute the Fourier coefficients
in expansions of Sobolev polynomials, orthogonal with respect to

〈p, q〉S =

∫
R
p(x)q(x)dµ0(x) + λ

∫
R
p′(x)q′(x)dµ1(x), λ > 0.

For f ∈ W 1
2 [R, µ0, µ1] =

{
f |f ∈ L2(µ0), f ′ ∈ L2(µ1)

}
we can expand f in

terms of monic Sobolev orthogonal polynomials
{
Sλn
}
n≥0

, namely

f(x) ∼
∞∑
n=0

〈
f, Sλn

〉
S

‖Sλn‖
2
S

Sλn(x).

We denote sλn :=
∥∥Sλn∥∥2

S
, fλn := 〈f, Sn〉S and Fλn := fλn/sn. F

λ
n is said to be the

n− th Sobolev-Fourier coefficient. To have the basic tools for implementation
of the algorithms, we deduce the following result.

Lemma 4.1.
fλn+2 + ηn−1 (λ) fλn = wn(f), n ≥ 0, (37)

holds, where

wn(f)=

〈
f, Pn+2(x) + an−1

n+ 2

n
Pn(x)

〉
µ0

+λ

〈
f ′, P ′n+2(x)+an−1

n+ 2

n
P ′n(x)

〉
µ1

,

(38)
with the initial conditions η−1(λ) = 0, fλ0 = 〈f, 1〉S = 〈f, 1〉µ0

, fλ1 = 〈f, x〉µ0
+

λ 〈f ′, 1〉µ1
and

w0(f) := 〈f, P2(x)〉µ0
+ λ 〈f ′, P ′2(x)〉µ1

.

Proof. From (20) and (13) we get

P ′n+3(x)

n+ 3
+ an

P ′n+1(x)

n+ 1
= Rn+2(x) + bnRn(x)
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Sλn+3(x) + ηn(λ)Sλn+1(x) = Pn+3(x) + ãnPn+1(x)

〈
f, Sλn+2

〉
S

= −ηn−1

〈
f, Sλn

〉
S

+

〈
f, Pn+2(x) + an−1

n+ 2

n
Pn(x)

〉
S

= −ηn−1

〈
f, Sλn

〉
S

+

〈
f, Pn+2(x) + an−1

n+ 2

n
Pn(x)

〉
µ0

+ λ

〈
f ′, P ′n+2(x) + an−1

n+ 2

n
P ′n(x)

〉
µ1

= −ηn−1

〈
f, Sλn

〉
S

+

〈
f, Pn+2(x) + an−1

n+ 2

n
Pn(x)

〉
µ0

+ λ (n+ 2) 〈f ′, Rn+1(x) + bn−1Rn−1(x)〉µ1

and the result follows. �X

Now we will summarize the results that, together with (37), yield the struc-
ture of the algorithm.

• For n ≥ 1

An = b̃n(n+ 1)2rn, Bn = ãnpn+1, Dn = pn+1, (39)

and for n ≥ 2
Cn = (n+ 1)2rn + ã2

n−2pn−1, (40)

with a−n = b−n = 0 for n ∈ N, C1 = 4r1, furthermore, for n ≥ 0,

ãn =
n+ 3

n+ 1
an and b̃n =

n+ 3

n+ 1
bn.

• With the initial conditions Q̃−1(λ) = 0, Q0(λ) = Q̃0(λ) = 1, Q1(λ) =

λ+ p1, η0(λ) =
b̃0λ+ ã0p1

λ+ p1
, and η1(λ) =

4b̃1r1λ+ ã1p2

4r1λ+ p2
, we get

η2n(λ) = (A2nλ+B2n)
Qn(λ)

Qn+1(λ)
, n ≥ 1 (41)

and

η2n+1(λ) = (A2n+1λ+B2n+1)
Q̃n(λ)

Q̃n+1(λ)
, n ≥ 1, (42)

with

Qn+1(λ) = (C2nλ+D2n)Qn(λ)− (A2n−2λ+B2n−2)
2
Qn−1(λ) (43)

and

Q̃n+1(λ) = (C2n+1λ+D2n+1) Q̃n(λ)− (A2n−1λ+B2n−1)
2
Q̃n−1(λ).

(44)
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• With initial conditions sλ1 = λ+ p1 and η1(λ) in (30), for n ≥ 1

sλn+1 = (n+ 1)2λrn + pn+1 + ãn−2

(
ãn−2 − b̃n−2

)
pn−1

− ηn−2(λ)
(
ηn−2(λ)− b̃n−2

)
sλn−1. (45)

In order to describe the algorithms, we assume the sequences {an}n≥0 and
{bn}n≥0 are known.

Algorithm 1. (Even order Fourier-Sobolev coefficients). For n even, the Fourier-

Sobolev coefficients Fλn =
fλn
sλn

=
〈f, Sn〉S
‖Sλn‖

2
S

can be computed using the following

algorithm

Starting data. Initial conditions λ, fλ0 , η−1, s
λ
0 , Q̃−1, Q̃0, w0(f), A−1, B−1, C1

and D1.

Step 1. Using the starting data to compute fλ2 with the relation (37) and
n = 0, sλ2 through (45) with n = 1 and finally Fλ2 .

Step 2. Using the starting data and the information in step 1 compute: Q̃1

taking n = 0 in (44) , A1, B1 with (39) and n = 0, η1(λ) taking n = 0 in (42),
w2 with n = 2 in (38), fλ4 through (37) with n = 2, and finally sλ4 taking n = 3
in (45). Then compute Fλ4 .

Step k . For k ≥ 3, using the starting data and the information in steps 1 to
k − 1 we can compute A2k−3, B2k−3, C2k−1 and D2k−1 with n = k − 1 in (39)

and (40), Q̃k taking n = k − 1 in (44), A2k−1, B2k−1 with (39) and n = k − 1,
η2k−1(λ) taking n = k− 1 in (42), w2k with n = 2k in (38), fλ2k+2 through (37)

with n = 2k, and finally sλ2k+2 taking n = 2k+1 in (45). Then, compute Fλ2k+2.

Algorithm 2. (Odd order) For n even, the Fourier–Sobolev coefficients Fλn =
fλn
sλn

=
〈f, Sn〉S
‖Sλn‖

2
S

can be computed using the following algorithm.

Starting data. Initial conditions λ, fλ1 , η0, s
λ
1 , Q0, Q1, w1(f), A0, B0, C2

and D2.

Step 1. Using the starting data compute fλ3 through (37) with n = 1, sλ3
through (45) with n = 2 and then compute Fλ3 .

Step 2. Using the starting data and the information in step 1, compute Q2

taking n = 1 in (43), A2, B2 with (39) and n = 1, η2(λ) taking n = 1 in (41),
w3 with n = 3 in (38), fλ5 through (37) with n = 3, and finally sλ5 taking n = 4
in (45). Then compute Fλ5 .

Step k . For k ≥ 3, using the starting data and the information in steps 1 to
k−1 we can compute A2k−2, B2k−2, C2k and D2k with n = k in (39) and (40),
Qk+1 taking n = k in (44) , A2k, B2k with (39) and n = k, η2k(λ) taking n = k
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in (42), w2k+1 with n = 2k + 1 in (38), fλ2k+3 through (37) with n = 2k + 1,

and finally sλ2k+3 taking n = 2k + 2 in (45). Then, compute Fλ2k+3.

4.1. Numerical examples

Next, with the help of MATHEMATICA, we carry out some numerical experi-
ments where the algorithms described above are implemented.

Example 4.2. (Gegenbauer Polynomials). In [8] the Symmetric (1, 1)−coherent
pairs, when u is the classical Gegenbauer functional, are exhibited. In particu-
lar, the pair

dµ0 = (1− x2)η−1/2dx, dµ1 =
x2 + a

x2 + b
(1− x2)η−1/2dx,

a, b ∈ R+, a 6= b, η > −1/2, x ∈ [−1, 1], is obtained. Let
{
C

(η)
n

}
n≥0

be the

sequence of monic Gegenbauer polynomials, orthogonal with respect to the
inner product

〈p, q〉η =

∫ 1

−1

p(x)q(x)(1− x2)η−1/2dx.

Also, the Gegenbauer polynomials satisfy the TTRR

C
(η)
n+1(x) = xC(η)

n (x)− n(n+ 2η − 1)

4(n+ η − 1)(n+ η)
C

(η)
n−1(x), n ≥ 1,

and C
(η)
0 (x) = 1. The corresponding norm is∥∥∥C(η)

n

∥∥∥2

η
=

4n+η (Γ(n+ η + 1/2))
2

Γ (n+ 2η)

2 (n+ η) (Γ(2n+ 2η))
2 n!.

According to the results of the previous sections, if dµ0 = (1−x2)η−1/2dx, then
we have the symmetric (1, 1)−coherent relation

C(η+1)
n (x) + bn−2C

(η+1)
n−2 (x) = Qn(x) + an−2Qn−2(x), n ≥ 2,

where {Qn}n≥0 is the SMOP with respect to the measure dµ1. Moreover, from
(20) we get

Sλn+3(x) + ηn(λ)Sλn+1(x) = C
(η)
n+3(x) +

n+ 3

n+ 1
bnC

(η)
n+1(x), n ≥ 0.

Explicit relations between recurrence coefficients and the sequences {an}n≥0

and {bn}n≥0 are given in [8]. To be more precise, if {γ̃n}n≥0 are the recurrence
coefficients of the polynomials {Qn}n≥0, we get

b0 −
1

2(η + 1)
= a0 − γ̃1,
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n(n+ 2η − 1)

4(n+ η − 1)(n+ η)
+ bn−2 − bn−1 = γ̃n + an−2 − an−1, n ≥ 2,

bn−2
(n− 2)(n+ 2η − 3)

4(n+ η − 3)(n+ η − 2)
=bn−3

(
n(n+ 2η − 1)

4(n+ η − 1)(n+ η)
+bn−2−bn−1

)
, n ≥ 5,

and
an−2γ̃n−2 = an−3 (γ̃n + an−2 − an−1) , n ≥ 5.

In addition, the sequence {bn}n≥0 satisfies the nonlinear quadratic difference
equation

bn+1 (46)

=
1

4(n+ η + 1)

(
(n+ 1)(n+ 2η)

4(n+ η)
+

(n+ 2)(n+ 2η + 1)

(n+ η + 2)

)
(47)

+

 b3 − 2

1− 3

2b2

− n(n+ 1)(n+ 2η)(n+ 2η − 1)

16(n+ η)2((n+ η)
2 − 1)bn−1

, (48)

for n ≥ 3.

For a fixed initial value b0 we can compute the sequences of parameters
{an}n≥0 and {bn}n≥0 as long as the recurrence coefficients are known. A priori,
we do not know the recurrence coefficients {γ̃n}n≥0 . However, it is possible to
compute them with the desired precision through an efficient algorithm. For
instance, the algorithms 1 and 4 in [12] meet this specific case, where there is
a rational perturbation.

We will use the function f(x) = e−100(x−0.2)2 . It can be seen that f ∈
W 1

2 [R, µ0, µ1]. On one hand, in order to show the graphics of some partial
Fourier-Sobolev sums, we choose η = 5, λ = 0.001, a = 1, b = 2. In Table 1 we
get the first 16 Fourier-Gegenbauer-Sobolev coefficients.
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n an bn ηn(λ) sλn fλn Fλn
0 1.003 1 3 0.71 0.1391 0.1963

1 1.5062 1.5 3 0.051 0.0263 0.5195

2 2.0084 2 3.3 0.0059 −0.004 −0.7336

3 2.21 2.2 3.073 0.00086 −0.0036 −4.221

4 2.2084 2.1985 2.94 0.00014 −0.0001 −0.691

5 2.2199 2.21 2.03 0.000026 0.0005 20.22

6 2.228 2.2177 1.57 5.09× 10−6 0.0001 22.253

7 2.234 2.224 0.051 1.44× 10−6 −0.00007 −48.261

8 2.2387 2.2288 0.038 3.77× 10−7 −0.00003 −81.427

9 2.2427 2.2328 0.018 2.457× 10−7 −0.00005 −20.938

10 2.246 2.2361 0.019 7.243× 10−7 −0.00004 −48.874

11 2.2487 2.2388 0.02 3.395× 10−7 0.00002 62.233

12 2.251 2.2411 0.021 7.26× 10−8 0.00002 268.769

13 2.253 2.2431 0.0211 1.59× 10−8 −5.21× 10−7 −32.765

14 2.2547 2.2447 0.022 3.521× 10−9 −3.71× 10−6 −1053.25

15 2.256 2.2462 0.0221 7.92× 10−10 −5.47× 10−7 −690.56

Table 1. Fourier-Gegenbauer-Sobolev coefficients with η = 5, λ = 0.001, a = 1,
b = 2.

Furthermore, in Figure 1 we show the partial sums for n = 4, 7, 11, 15 and 17.

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­0.2

0.2

0.4

0.6

0.8

1.0

x

y

Figure 1. Partial sums for n = 4, 7, 11, 15 and 17, moreover η = 1, λ = 0.5, a = 1,
b = 2. f in red.
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On the other hand, in order to analyze the variation of the partial sums with
respect to the parameter η. In Figure 2 we set λ = 0.7, a = 2, b = 1 and n = 16.
In particular, we show the partial sums for η = 0.5, 1, 2 and 2.5.

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­0.2

0.2

0.4

0.6

0.8

1.0

x

y

Figure 2. 16 − th partial sums for η = 0.5 (magenta), 1.5 (blue), 2 (green) and 2.5
(siena), when λ = 0.7, a = 2, b = 1, f in red.

Finally, setting η = 1, n = 16, a = 1, b = 3, in Figure 4 we exhibit the partial
sums for λ = 0.1, 0.8, 1.8 and 10.

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­0.2

­0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

Figure 3. 16 − th partial sums for λ = 0.1 (purple), 0.8 (cyan), 1.8 (green) and 10
(blue), when η = 1, a = 1, b = 3

Revista Colombiana de Matemáticas
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0.192 0.194 0.196 0.198 0.200 0.202 0.204 0.206 0.208
0.7740

0.7745

0.7750

0.7755

0.7760

0.7765

x

y

Figure 4. 16− th partial sums, (Zoom), for λ = 0.1 (purple), 0.8 (cyan), 1.8 (green)
and 10 (blue), when η = 1, a = 1, b = 3
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(Recibido en febrero de 2019. Aceptado en julio de 2019)

Departamento de Matemáticas
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