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Abstract. We introduce the notion of reciprocally strongly convex functions
and we present some examples and properties of them. We also prove that
two real functions f and g, defined on a real interval [a, b], satisfy
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)
≤ tg (y) + (1− t)g (x)− ct(1− t)

(
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x
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)2

,

for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a reciprocally strongly convex
function h : [a, b]→ R such that f (x) ≤ h (x) ≤ g (x) for all x ∈ [a, b].

Finally, we obtain an approximate convexity result for reciprocally strongly
convex functions; namely we prove a stability result of Hyers-Ulam type for
this class of functions.
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Resumen. En este art́ıculo introducimos la noción de funciones rećıproca-
fuertemente convexas y presentamos algunos ejemplos y propiedades. Además
se demuestran que dos funciones f y g, definidas en el intervalo real [a, b]
satisfacen la desigualdad
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para todo x, y ∈ [a, b] y t ∈ [0, 1] si, y sólo si, existe una función rećıproca-
fuertemente convexa h : [a, b] → R tal que f (x) ≤ h (x) ≤ g (x) para todo
x ∈ [a, b].

Finalmente, se obtiene un resultado de aproximación convexa para esta
clase de funciones.

Palabras y frases clave. Funciones convexas, Teorema del Sandwich, Hyers-
Ulam.

1. Introduction

Due to its important role in mathematical economics, engineering, management
science and optimization theory, convexity of functions and sets has been stud-
ied intensively; see [3, 7, 9, 11, 12, 13, 19, 22, 23] and the references therein.
Consequently, the classical concepts of convex functions has been extended and
generalized in different directions.

The most important generalizations can be found in works in which, by
changing the way of defining the functions, one obtains generalizations such as
quasi-convex (see [10]), pseudo-convex (see [1]), strongly convex [29], approxi-
mately convex [6]. This midconvex (see [30]), h-convex functions [33], etc.

In this article, we deal with a recent notion of generalized convexity. This
notion was introduced by I. Iscan in [19] Iscan gave the following definition of
harmonically convex functions:

Definition 1.1 ([19]). Let I be an interval in R \ {0}. A function f : I → R is
said to be harmonically convex on I if the inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x), (1)

holds, for all x, y ∈ I and t ∈ [0, 1].

For some recent results and extensions of harmonically convex functions,
the interested readers are referred to [8, 17, 18, 19, 27, 28, 34].

In [8] we can find the following simple but important fact:

Theorem 1.2 ([8]). If [a, b] ⊂ I ⊆ (0,+∞) and if we consider the function

g :

[
1

b
,

1

a

]
→ R, defined by g(t) = f

(
1

t

)
, then f is harmonically convex on

[a, b] if and only if g is convex in the usual sense on

[
1

b
,

1

a

]
.

It is easy to verify that this result is satisfied if we use the interval (0,+∞)
rather than the interval [a, b].

The following theorem on separation of functions (a sandwich theorem) can
be found in the seminal papers of Baron et.al. [2].
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Theorem 1.3 ([2]). Two real-valued functions f and g, defined on a real in-
terval I satisfy

f(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) (2)

for all x, y ∈ I and t ∈ [0, 1], if and only if there exists a convex function
h : I → R such that f ≤ h ≤ g.

2. Reciprocally strongly convex functions

In 1966 Polyak [29] introduced the notions of strongly convex and strongly
quasi-convex functions. In 1976 Rockafellar [31] studied the strongly convex
functions in connection with the proximal point algorithm. They play an impor-
tant role in optimization theory and mathematical economics. Also, Nikodem
et al. have obtained some interesting properties of strongly convex functions
(see [9, 14, 20]).

Definition 2.1 (See [14, 23, 30]). Let D be a convex subset of R and let c > 0.
A function f : D → R is called strongly convex with modulus c if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2 (3)

for all x, y ∈ D and t ∈ [0, 1].

The usual notion of convex function correspond to the case c = 0. For
instance, if f is strongly convex, then it is bounded from below, its level sets
{x ∈ I : f(x) ≤ λ} are bounded for each λ and f has a unique minimum
on every closed subinterval of I ([25], p. 268). Any strongly convex function
defined on a real interval admits a quadratic support at every interior point of
its domain.

The proofs of the next two theorems can be found in [30].

Theorem 2.2. Let D be a convex subset of R and let c be a positive constant.
A function f : D → R is strongly convex with modulus c if and only if the
function g(x) = f(x)− cx2 is convex.

Theorem 2.3. The following are equivalent:

(1) f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y)−t(1−t)c(x−y)2, for all x, y ∈ (a, b)
and t ∈ [0, 1].

(2) For each x0 ∈ (a, b), there is a linear function T such that
f(x) ≥ f(x0) + T (x− x0) + c(x− x0)2 for all x, y ∈ (a, b).

(3) For differentiable f , for each x0 ∈ (a, b) :
f(x) ≥ f(x0) + f ′(x0)(x− x0) + c(x− x0)2, for all x ∈ (a, b).

(4) For twice differentiable f , f ′′(x) ≥ 2c, for all x ∈ (a, b).
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In [5] we proved the following sandwich theorem for harmonically convex
functions:

Theorem 2.4. Let f, g be real functions defined on the interval (0,+∞). The
following conditions are equivalent:

(i) there exists a harmonically convex function h : (0,+∞) → R such that
f (x) ≤ h (x) ≤ g (x), for all x ∈ (0,+∞);

(ii) the following inequality holds

f

(
xy

tx+ (1− t)y

)
≤ tg (y) + (1− t)g (x) , (4)

for all x, y ∈ (0,+∞) and t ∈ [0, 1].

On the other hand, in [4], we introduced the notion of harmonically strongly
convex function, as follows:

Definition 2.5. Let I be an interval in R \ {0} and let c ∈ R+. A function
f : I → R is said to be harmonically strongly convex with modulus c on I, if
the inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)− ct(1− t)(x− y)2,(5)

holds, for all x, y ∈ I and t ∈ [0, 1].

The symbol SHC(I,c) will denote the class of functions that satisfy the
inequality (5). We also establish some Hermite-Hadamard and Fejér type in-
equalities for the class of harmonically strongly convex functions.

Next we will explore a generalization of the concept of harmonically con-
vex functions which we will call reciprocally strongly convex functions, it is a
concept parallel to the definition presented in the definition 2.5.

Definition 2.6. Let I be an interval in R \ {0} and let c ∈ (0,∞). A function
f : I → R is said to be reciprocally strongly convex with modulus c on I, if the
inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)− ct(1− t)

(
1

x
− 1

y

)2

, (6)

holds, for all x, y ∈ I and t ∈ [0, 1].

The symbol SRC(I,c) will denote the class of functions that satisfy the in-
equality (6).
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Theorem 2.7. Let I ⊂ R\{0} be a real interval and c ∈ (0,∞). If f ∈SRC(I,c),
then f is harmonically convex.

Proof. Since ct(1 − t)
(

1

x
− 1

y

)2

≥ 0, it is an immediate consequence of the

definition. �X

For the rest of this paper, we will use I ⊂ R \ {0} to denote a real interval
and c ∈ (0,∞).

Theorem 2.8. Let f : I → R be a function. f ∈SRC(I,c) if and only if the

function g : I → R, defined by g(x) := f(x)− c

x2
is harmonically convex.

Proof. Assume that f ∈SRC(I,c), then

g

(
xy

tx+ (1− t)y

)
= f

(
xy

tx+ (1− t)y

)
− c

(
tx+ (1− t)y

xy

)2

≤ tf(y) + (1− t)f(x)− ct(1− t)
(

1

y
− 1

x

)2

− c
(
t
1

y
+ (1− t) 1

x

)2

= tf(y) + (1− t)f(x)− ct(1− t)
(

1

y2
− 2

xy
+

1

x2

)
− c

(
t2

y2
+

2t(1− t)
xy

+
(1− t)2

x2

)
= tf(y) + (1− t)f(x)− c

(
t

y2
− 2t

xy
+

t

x2
− t2

y2
+

2t2

xy
− t2

x2

+
t2

y2
+

2t

xy
− 2t2

xy
+

1

x2
− 2t

x2
+
t2

x2

)
= tf(y) + (1− t)f(x)− c

(
t

y2
+

1

x2
− t

x2

)
= tf(y) + (1− t)f(x)− c

(
t

y2
+ (1− t) 1

x2

)
= t

(
f(y)− c

y2

)
+ (1− t)

(
f(x)− c

x2

)
= tg(y) + (1− t)g(x),

for all x, y ∈ I and t ∈ [0, 1], which proves that g is harmonically convex.
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Conversely, if g is harmonically convex, then

f

(
xy

tx+ (1− t)y

)
= g

(
xy

tx+ (1− t)y

)
+ c

(
tx+ (1− t)y

xy

)2

≤ tg(y) + (1− t)g(x) + c

(
t
1

y
+ (1− t) 1

x

)2

= tg(y) + (1− t)g(x) + c

(
t2

y2
+

2t(1− t)
xy

+
(1− t)2

x2

)
= tg(y) + (1− t)g(x) + c

(
t(1− 1 + t)

y2
+

2t(1− t)
xy

+
(1− t)(1− t)

x2

)
= tg(y) + (1− t)g(x) + c

(
t(1− 1 + t)

y2
+

2t(1− t)
xy

+
(1− t)(1− t)

x2

)
= tg(y) + (1− t)g(x) + c

(
t

y2
− t(1− t)

y2
+

2t(1− t)
xy

+
1− t
x2
− t(1− t)

x2

)
= t

(
g(y) + c

1

y2

)
+ (1− t)

(
g(x) + c

1

x2

)
− ct(1− t)

(
1

y2
− 2

xy
+

1

x2

)
= tf(y) + (1− t)f(x)− ct(1− t)

(
1

y
− 1

x

)2

,

for all x, y ∈ I and t ∈ [0, 1], showing that f ∈SRC(I,c). �X

Example 2.9. (1) The constant function is harmonically convex but not
reciprocally strongly convex.

(2) The function f : (0,+∞)→ R defined by f(x) = −x2, is not a harmoni-
cally convex function, since f is a not convex and nonincreasing function.
Based on Theorem 2.7, we obtain f /∈ SRC(I,c).

(3) Since g(x) = log(x) is a harmonically convex function, the function

f(x) := log(x) +
c

x2
is a reciprocally strongly convex function.

Lemma 2.10. If f is a reciprocally strongly convex function, then the function
ϕ = f + ε is also a reciprocally strongly convex function, for any constant ε. In
fact,
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ϕ

(
xy

tx+ (1− t)y

)
= f

(
xy

tx+ (1− t)y

)
+ ε

≤ tf(y) + (1− t)f(x) + ct(1− t)
(

1

x
− 1

y

)2

+ ε

= tf(y) + tε+ (1− t)f(x) + (1− t)ε+ ct(1− t)
(

1

x
− 1

y

)2

= t(f(y) + ε) + (1− t)(f(x) + ε) + ct(1− t)
(

1

x
− 1

y

)2

= tϕ(y) + (1− t)ϕ(x) + ct(1− t)
(

1

x
− 1

y

)2

.

Theorem 2.11. If f : [a, b] ⊂ R \ {0} → R and if we consider the function

g :

[
1

b
,

1

a

]
→ R, defined by g(t) = f

(
1

t

)
, then f ∈SRC([a,b],c) if and only if g

is strongly convex in

[
1

b
,

1

a

]
.

Proof. If for all x, y ∈ [a, b] and t ∈ [0, 1], we have

f

(
1

t 1
y + (1− t) 1

x

)
≤ tf(y) + (1− t)f(x)− ct(1− t)

(
1

x
− 1

y

)2

;

this last inequality may be changed by another equivalent one:

g (tw + (1− t)u) ≤ tg (w) + (1− t)g (u)− ct(1− t) (u− w)
2
,

where u,w

[
1

b
,

1

a

]
and t ∈ [0, 1]. This completes the proof. �X

It is easy to see that the result is also valid for intervals (a, b) ⊂ R \ {0}.

Theorem 2.12. The following are equivalent:

(i) f ∈SRC((a,b),c).

(ii) For each x0 ∈ (a, b), there is a linear function T such that

f

(
1

x

)
≥ c(x− x0)2 + T (x− x0) + f

(
1

x0

)
, (7)

for all x ∈
(

1

b
,

1

a

)
.
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(iii) For differentiable f and x0 ∈
(

1

b
,

1

a

)
,

f

(
1

x

)
≥ f

(
1

x0

)
− f ′

(
1

x0

)
x− x0

x2
+ c(x− x0)2, (8)

for all x ∈
(

1

b
,

1

a

)
.

(iv) For twice differentiable f ,

1

x4

[
f ′′
(

1

x

)
+ 2xf ′

(
1

x

)]
≥ 2c, for all x ∈

(
1

b
,

1

a

)
.

Proof. [(i)⇒ (ii)] Assume that f ∈ SRC((a,b),c). Since all the assumptions

of Theorem 2.11 are satisfied, then the function g(x) := f

(
1

x

)
is strongly

convex in

(
1

b
,

1

a

)
. Then by Theorem 2.3, for each x0 ∈

(
1

b
,

1

a

)
, there is a

linear function T such that g(x) ≥ g(x0) + T (x − x0) + c(x − x0)2, for all

x, y ∈
(

1

b
,

1

a

)
. This is equivalent to the inequality (7).

[(i)⇒ (iii)] Assume that f ∈SRC((a,b),c). By Theorem 2.11, the function

g(x) := f

(
1

x

)
is strongly convex in

(
1

b
,

1

a

)
, then by Theorem 2.3, for each

x0 ∈
(

1

b
,

1

a

)
g(x) ≥ g(x0) + g′(x0)(x − x0) + c(x − x0)2, for all x, y ∈ (a, b).

This is equivalent to the inequality (8).

(ii)⇒ (i) and (iii)⇒ (i) are shown using the reciprocals of the theorem and
lemma that we have used in the above part.

[(i)⇔ (iv)] Suppose f is twice differentiable over (a, b). f ∈ SRC((a,b),c)

if only if the function g(x) := f

(
1

x

)
is strongly convex in

(
1

b
,

1

a

)
(by the

theorem 2.11). It follows from Theorem 2.3 that g is a strongly convex function
with modulus c if only if g′′(x) ≥ 2c. Hence it is equivalent to

1

x4

[
f ′′
(

1

x

)
+ 2xf ′

(
1

x

)]
≥ 2c, for all x ∈

(
1

b
,

1

a

)
.

�X

3. Main results

In this section, we derive our main results.
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Theorem 3.1 (Sandwich theorem). Let I ⊂ (0,+∞) be an interval and let
f, g : I → R. The following conditions are equivalent:

(i) there exists a reciprocally strongly convex function with modulus c, h :
I → R such that f (x) ≤ h (x) ≤ g (x), for all x ∈ I;

(ii) the following inequalities hold

f

(
xy

tx+ (1− t)y

)
≤ tg (y) + (1− t)g (x)− ct(1− t)

(
1

x
− 1

y

)2

, (9)

for all x, y ∈ I, t ∈ [0, 1].

Proof. [(i)⇒(ii)] Assume that there exists a reciprocally strongly convex func-
tion with modulus c, h : I → R such that f (x) ≤ h (x) ≤ g (x), for all x ∈ I.

Then,

f

(
xy

tx+ (1− t)y

)
≤ h

(
xy

tx+ (1− t)y

)
≤ th(y) + (1− t)h(x)− ct(1− t)

(
1

x
− 1

y

)2

≤ tg(y) + (1− t)g(x)− ct(1− t)
(

1

x
− 1

y

)2

,

for all x, y ∈ I and t ∈ [0, 1], as desired.

[(ii)⇒(i)] Conversely, if (9) holds, we define the functions f1, g1 : I → R

f1(x) := f(x)− c

x2
and g1(x) := g(x)− c

x2
.

Consequently,

f1

(
xy

tx+(1−t)y

)
=f

(
xy

tx+(1−t)y

)
−c
(
tx+(1−t)y

xy

)2

≤ tg(y)+(1− t)g(x)−ct(1− t)
(

1

x
− 1

y

)2

− c
(
t

y
+

1− t
x

)2

= tg(y)+(1− t)g(x)−t c
y2
−(1− t) c

x2
= tg1(y)+(1− t)g1(x),

for all x, y ∈ I and t ∈ [0, 1]. By Theorem 2.4 there exists a harmonically
convex function h1 : I → R such that f1 ≤ h1 ≤ g1 on I. By Theorem 2.8, the
function h(x) := h1(x) + c

x2 is reciprocally strongly convex and satisfies

f (x) ≤ h (x) ≤ g (x) ,

for all x ∈ I. �X
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Corollary 3.2. If f, g1, g2 are real functions defined on the interval (0,+∞)
satisfying the inequality

f

(
xy

tx+ (1− t)y

)
≤ tg1 (y) + (1− t)g2 (x) ,

for all x, y ∈ (0,+∞) and t ∈ [0, 1] then there exists a reciprocally strongly
convex function h : (0,+∞) → R such that f (x) ≤ h (x) ≤ max{g1, g2} (x),
for all x ∈ (0,+∞).

The Hyers-Ulam stability problem of functional equations was originated
by Ulam in 1940 when he proposed the following question [32]: Let f be a
mapping from a group G1 to a metric group G2 with metric d(·, ·) such that

d(f(xy), f(x)f(y)) ≤ ε, x, y ∈ G1.

Does there exist a group homomorphism h and δε > 0 such that d(f(x), h(x)) ≤
δε, x ∈ G1?

One of the first assertions to be obtained is the following result, due to
Hyers [15], that gives an answer to the question of Ulam.

Theorem 3.3. Suppose that S is an additive semigroup, Y is a Banach space,
ε ≥ 0, and f : S → Y satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε, for all x, y ∈ S. (10)

Then there exists a unique function A : S → Y satisfying A(x+y) = A(x)+A(y)
for which ‖f(x)−A(x)‖ ≤ ε for all x ∈ S.

Since then, stability problems have been investigated in various directions
for many other functional equations [21].

The investigation of approximate convexity started with the paper by Hy-
ers and Ulam [16] who in the year 1952 introduced and investigated ε-convex
functions: If D is a convex subset of a real linear space X and ε is a nonnegative
number, then a function f : D → R is called ε-convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, x, y ∈ D, t ∈ [0, 1].

Hyers and Ulam [16] proved that any ε−convex function on a finite dimensional
convex set can be approximated by a convex function.

As an immediate consequence of Theorem 3.1 we obtain the following sta-
bility result of Hyers-Ulam type for reciprocally strongly convex functions (see
[24, 26]).

Theorem 3.4. Let [a, b] ⊆ (0,+∞) be an interval and ε > 0. A function
f : [a, b]→ R satisfies the inequality∣∣∣∣f ( xy

tx+ (1− t)y

)
− tf(y)− (1− t)f(x)

∣∣∣∣ ≤ ε, (11)
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for all x, y ∈ [a, b] and t ∈ [0, 1] then there exists an reciprocally strongly convex
function ϕ : [a, b]→ R such that

|f(x)− ϕ(x)| ≤ ε

2
, x ∈ [a, b].

Proof. Note that since theorem (3.1) holds with g = f+ε, it follows that there
exists a reciprocally strongly convex function h : [a, b]→ R such that

f(x) ≤ h(x) ≤ f(x) + ε,

for x ∈ [a, b].

Defining ϕ : [a, b] → R by ϕ(x) := h(x) − ε

2
, we obtain a reciprocally

strongly convex function such that

f(x)− ε

2
≤ h(x)− ε

2
≤ f(x) +

ε

2
,

for all x ∈ [a, b]; that is

− ε
2
≤ ϕ(x)− f(x) ≤ ε

2

or
|ϕ(x)− f(x)| ≤ ε

2

for all x ∈ [a, b]. �X
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