
Revista Colombiana de Matemáticas
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Abstract. Let τ be a subgroup functor such that all subgroups of every finite
group G contained in τ(G) are subnormal in G. In this paper, we give a simple
proof of the fact that the lattice of all τ -closed totally composition formations
of finite groups is inductive.
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Resumen. Sea τ un funtor de subgrupo de modo que todos los subgrupos
de cualquier grupo finito G contenido en τ(G) son subnormales en G. En
este art́ıculo, damos una demostración simple de que el ret́ıculo de todas las
formaciones de composición totalmente τ -cerradas de los grupos finitos es
inductivo.
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formación de composición totalmente τ -cerrada, ret́ıculo inductivo de forma-
ciones.

1. Introduction

All groups considered in this paper are finite. A class of groups is a collection
of groups satisfying the property that if a group G belongs to the collection,
then every group isomorphic to G is also in the collection.

If a class of groups is a formation, it is closed with respect to forming
quotient groups and subdirect products. This notion introduced by Gaschütz
[3] in 1963 immediately became an object of extensive investigations. Saturated
formations are very important in group theory; composition formations form a
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broader family of formations. By Baer’s theorem, composition formations are
precisely solvably saturated formations [2, p. 373].

Skiba [10] introduced the concept of an inductive lattice of formations in
order to adapt lattice-theoretical methods for the investigation of saturated
formations. This concept plays an important role in the research of the lattices
of formations and their law systems (see Chapter 4 of the book [10], Chapter
4 of the book [19]; and the papers [5, 6, 7, 8, 12, 13, 14, 18, 20, 21]).

Let Θ be a complete lattice of formations. A satellite f is called Θ-valued
if all its values belong to Θ. We denote by Θc the set of all formations having
a composition Θ-valued satellite. In [11, p. 901], it is shown that this set is a
complete lattice of formations.

A complete lattice Θc is called inductive if for any collection of formations
{Fi = CLF (fi) | i ∈ I}, where fi is an integrated satellite of Fi ∈ Θc, the
following equality holds:

∨Θc(Fi | i ∈ I) = CLF (∨Θ(fi | i ∈ I)).

The inductance of a lattice Θc, in fact, means that a research of the operation
∨Θc on the set Θc can be reduced to a research of the operation ∨Θ on the set
Θ. Therefore, the inductance is one very useful property of the lattice Θc.

Vorob’ev [17] proved that the lattice of all totally saturated formations is
inductive. Moreover, it is already known that the lattice of all multiply com-
position formations is inductive (see [16]). However, the following question was
still open.

Question. Is the lattice of all totally composition formations inductive?

The aim of the present paper is to give a simple proof of the following
theorem which gives a positive answer to this question.

Theorem 1.1. The lattice of all τ -closed totally composition formations cτ∞ is
inductive.

2. Terminologies and notations

All unexplained notations and terminologies are standard. The reader is re-
ferred to [1, 2, 4, 11] if necessary.

2.1. Subgroup functor τ

In various applications of the theory of classes of finite groups, it is often nece-
ssary to use formations closed with respect to some subgroup systems. Skiba
[10] introduced the concept of a subgroup functor, which covers all the systems
of subgroups under consideration.

In each group G, we select a system of subgroups τ(G). We say that τ is a
subgroup functor if (1) G ∈ τ(G) for every group G; (2) for every epimorphism
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ϕ : A → B, and each H ∈ τ(A) and T ∈ τ(B), we have Hϕ ∈ τ(B) and

Tϕ
−1 ∈ τ(A).

If τ(G) = {G}, then the functor τ is called trivial. A formation F is called
τ -closed if τ(G) ⊆ F for every group G of F (see [10]).

We consider only subgroup functors τ such that for every group G all sub-
groups of τ(G) are subnormal in G.

2.2. Composition formations

The set of all primes is denoted by P. Let p ∈ P, and G a group. Then the
subgroup Cp(G) is the intersection of the centralizers of all the abelian p-chief
factors of G, with Cp(G) = G if G has no abelian p-chief factors.

For every collection of groups X, we write Com(X) to denote the class of
all groups L such that L is isomorphic to some abelian composition factor of
some group in X. If X is the set of one group G, then we write Com(G) instead
of Com(X).

The symbol R(G) denotes the product of all solvable normal subgroups of
G. We consider a function f of the form

f : P ∪ {0} → {formations of groups}, (∗)

and the class of groups

CLF (f) = (G | G/R(G) ∈ f(0); G/Cp(G) ∈ f(p) for all p ∈ π(Com(G))).

If F is a formation such that F = CLF (f) for a function f of the form (∗), then
F is said to be composition (solvably saturated) formation, and f is said to be
a composition satellite of F (see [4, p. 4]).

If the values of composition satellites of some formation are themselves
composition formations, then this circumstance leads to the following natural
definition. Every formation is 0-multiply composition; for n > 0, a formation
F is called n-multiply composition if F = CLF (f), and all nonempty values of
f are (n− 1)-multiply composition formations (see [11]).

A formation is called totally composition if it is n-multiply composition for
all positive integers n.

2.3. Lattices of formations

A set of formations Θ is called a complete lattice of formations if the intersection
of every set of formations in Θ belongs to Θ, and there is a formation F in Θ
such that M ⊆ F for every other formation M of Θ (see [10]).

Every complete lattice of formations is a complete lattice in the ordinary
sense. Various collections of formations form complete lattices; for example,
the set of all saturated formations [10, p. 151], and the set of all composition
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(solvably saturated) formations [9, p. 97] are complete lattices of formations.
Moreover for all positive integers n, the set of all n-multiply composition for-
mations cn, and the set of all totally composition formations c∞ =

⋂∞
n=1 cn are

complete lattices of formations (see [11, p. 904]).

A formation in Θ is called a Θ-formation. Let Θ be a complete lattice of
formations, and let {Fi | i ∈ I} be an arbitrary collection of Θ-formations. We
denote

∨Θ(Fi | i ∈ I) = Θform(
⋃
i∈I

Fi).

In particular, we write ∨τ∞(Fi | i ∈ I) = cτ∞form(∪i∈IFi).
If M,H ∈ Θ, then M

⋂
H is the greatest lower bound for {M,H} in Θ; and

M ∨Θ H is the least upper bound for {M,H} in Θ.

Let {fi | i ∈ I} be a collection of Θ-valued functions of the form (∗). Then
by ∨Θ(fi | i ∈ I) we denote a function f such that

f(a) = Θform(∪i∈Ifi(a))

for all a ∈ P ∪ {0}.

3. Preliminaries

Following the paper [11], we set for every collection of groups X:

X(Cp) =

{
form(G/Cp(G) | G ∈ X) if p ∈ π(Com(X));

∅ if p ∈ P \ π(Com(X)).

We recall that the symbol Np denotes the class of all p-groups. Let F =
CLF (F ), where F (0) = F and F (p) = NpF(Cp) for all p ∈ P. Then the
satellite F is called a canonical composition satellite of the formation F. By
[11, Remark 1], every composition formation possesses a canonical composition
satellite.

Lemma 3.1. [11, Lemma 8] Let Θ be a complete lattice of formations such
that Θc ⊆ Θ and let the formation NpH belongs to Θ for each formation H ∈ Θ
and every prime p. If F = CLF (F ) ∈ Θc, then the satellite F is Θ-valued.

Lemma 3.2. [16, Lemma 1] Let n be a positive integer. Then we have

(cτn−1)c = cτn.

Corollary 3.3. The following equality holds: (cτ∞)c = cτ∞.

Proof. The inclusion (cτ∞)c ⊆ cτ∞ is obvious. Let F ∈ cτ∞ and F be a canonical
composition satellite of F. Then by Lemmas 3.1 and 3.2 for all a ∈ P∪{0} and
each positive integer n, the formation F (a) is τ -closed n-multiply composition.
Thus, the satellite F is cτ∞-valued. Consequently, F ∈ (cτ∞)c, and we have
cτ∞ ⊆ (cτ∞)c. �X
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Lemma 3.4. [22, Lemma 2.1] Let F = CLF (F ) be a τ -closed n-multiply com-
position formation, where n is a positive integer. Then the satellite F is cτn-
valued.

From Lemma 3.4 follows the corollary.

Corollary 3.5. Let F = CLF (F ) be a τ -closed totally ω-composition forma-
tion. Then the satellite F is cτ∞-valued.

Let {fi | i ∈ I} be a collection of composition satellites. Then by
⋂
i∈I fi, we

denote the composition satellite f such that f(a) =
⋂
i∈I fi(a) for all a ∈ P∪{0}

(see [11]).

Lemma 3.6. [11, Lemma 2] Let F =
⋂
i∈I Fi, where Fi = CLF (fi). Then

F = CLF (f), where f =
⋂
i∈I fi.

Let {fi | i ∈ I} be the collection of all composition cτ∞-valued satellites of
a formation F. Since the lattice cτ∞ is complete using Lemma 3.6, we conclude
that f =

⋂
i∈I fi is a composition cτ∞-valued satellite of F. The satellite f is

called minimal.

Let Θ be a complete lattice of formations. Then ΘformX is the intersection
of all Θ-formations containing a collection of groups X. Thus, cτ∞formX is the
intersection of all τ -closed totally composition formations containing a collec-
tion of groups X. The next lemma immediately follows from [11, Lemma 5] by
Corollary 3.3, and gives a description of the minimal cτ∞-valued satellite of a
formation cτ∞formX.

Lemma 3.7. Let X be a nonempty collection of groups, F = cτ∞formX, π =
π(Com(X)), and let f be the minimal cτ∞-valued composition satellite of F.
Then the following statements hold:

1) f(0) = cτ∞form(G/R(G) | G ∈ X);

2) f(p) = cτ∞form(G/Cp(G) | G ∈ X) for all p ∈ π;

3) f(p) = ∅ for all p ∈ P \ π;

4) if F = CLF (h) and the satellite h is cτ∞-valued, then for all p ∈ π we
have

f(p) = cτ∞form(G | G ∈ h(p) ∩ F and Op(G) = 1), and

f(0) = cτ∞form(G | G ∈ h(0) ∩ F and R(G) = 1).

By Lemma 3.7, it is easy to show the following assertion.

Corollary 3.8. Let f1 and f2 be the minimal composition cτ∞-valued satellites
of formations F1 and F2 respectively. Then F1 ⊆ F2 if and only if f1 ≤ f2.

If F = CLF (f) and f(a) ⊆ F for all a ∈ P ∪ {0}, then f is called an
integrated satellite of F.
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4. Inductance of the lattice cτω∞

Proof of Theorem. Let {Fi | i ∈ I} be a collection of τ -closed totally com-
position formations, and fi be an integrated cτ∞-valued composition satellite of
Fi. Let

F = CLF (f) = ∨τ∞(Fi | i ∈ I), and M = CLF (∨τ∞(fi | i ∈ I)).

We shall show that F = M proceeding by induction on i.

Step 1. Let i = 2, p ∈ P, and hj be the minimal cτ∞-valued composition
satellite of the formation Fj = CLF (fj), where j = 1, 2. Then by Corollary
3.5, we have

hj(p) ⊆ fj(p) ⊆ Nphj(p) = Fj(p) ∈ cτ∞,

where Fj is the canonical cτ∞-valued composition satellite of the formation Fj .
Let F = CLF (F ), where F is the canonical cτ∞-valued composition satellite of
the formation F. Then by Lemma 3.7, we have

h(p) = cτ∞form((F1 ∪ F2)(Cp)) = cτ∞form(F1(Cp) ∪ F2(Cp)) =

cτ∞form(h1(p) ∪ h2(p)) ⊆ f(p) ⊆

Npc
τ
∞form(h1(p) ∪ h2(p)) = Nph(p) = F (p).

Thus, we have h(p) ⊆ f(p) ⊆ F (p) for all p ∈ P; moreover, it holds h(0) ⊆
f(0) ⊆ F (0). Hence, h(a) ⊆ f(a) ⊆ F (a) for all a ∈ P∪{0} implies h ≤ f ≤ F .
Consequently, we have F1 ∨τ∞ F2 = CLF (f1 ∨τ∞ f2).

Step 2. Let i > 2, and the assertion is true for i = r−1 by induction. Then
F1 ∨τ∞ . . . ∨τ∞ Fr−1 = CLF (f1 ∨τ∞ ... ∨τ∞ fr−1). By Step 1, we have

F = cτ∞form((F1 ∨τ∞ ... ∨τ∞ Fr−1) ∪ Fr) = CLF (f),

where
f(a) = cτ∞form((f1(a) ∨τ∞ ... ∨τ∞ fr−1(a)) ∪ fr(a)) =

f1(a) ∨τ∞ ... ∨τ∞ fr(a) = (f1 ∨τ∞ ... ∨τ∞ fr)(a)

for each a ∈ P ∪ {0}. Therefore, we have f = f1 ∨τ∞ ... ∨τ∞ fr. This proves the
theorem. �X

Each complete sublattice of the inductive lattice is an inductive lattice.
Thus, we have the following result.

Corollary 4.1. Let θ be a complete sublattice of the lattice cτ∞. Then θ is
inductive.

If τ is trivial, we have the following result.

Corollary 4.2. The lattice of all totally composition formations is inductive.
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Corollary 4.3. The lattice of all solvable totally composition formations is
inductive.

By Lemma 3.6, we have the following corollary.

Corollary 4.4. Let ξ(x1, ..., xm) be a term of signature {∩,∨τ∞}, and let fi
be an integrated cτ∞-valued composition satellite of a formation Fi, where i =
1, ...,m. Then, we have ξ(F1, ...,Fm) = CLF (ξ(f1, ..., fm)).

5. Some applications

Let A be a group, and p be a prime. We use Zp oA to denote the regular wreath
product of groups Zp and A (see [2, p. 66]).

Lemma 5.1. Let Fi = cτ∞form(Zp o Ai), where p /∈ π(Ai) for i = 1, 2. Then
f(p) = f1(p) ∩ f2(p), where fi and f are the minimal cτ∞-valued composition
satellites of the formations Fi and F = F1 ∩ F2, respectively.

Proof. See proof of [15, Lemma 3.1]. �X

The following lemma is proved by direct calculation.

Lemma 5.2. Let fi be the minimal cτ∞-valued composition satellite of a forma-
tion Fi, where i ∈ I. Then ∨τ∞(fi | i ∈ I) is the minimal cτ∞-valued composition
satellite of the formation F = ∨τ∞(Fi | i ∈ I).

Proposition 5.3. Let Fi = cτ∞form(Zp oAi) for p /∈ π(Ai), where i = 1, . . . , m.
Let fi be the minimal cτ∞-valued composition satellite of Fi and f(p) =
ξ(f1, . . . , fm)(p), where ξ(x1, . . . , xm) is a term of signature {∩,∨τ∞}. Then f is
the minimal cτ∞-valued composition satellite of the formation F = ξ(F1, . . . ,Fm).

Proof. Let h = ξ(f1, . . . , fm). By Corollary 4.4, we have

ξ(F1, . . . ,Fm) = CLF (h).

We shall show that h(p) = f(p) by induction on the number r of occurrences
of the symbols in {∩,∨τ∞} into ξ.

The case r = 1 holds using Lemmas 5.1 and 5.2.

Let the term ξ have r > 1 occurrences of the symbols in {∩,∨τ∞}. Let ξ have
the form ξ(x1, . . . , xm) = ξ1(xi1 , . . . , xia)4ξ2(xj1 , . . . , xjb), where {xi1 , . . . , xia}
∪{xj1 , . . . , xjb} = {x1, . . . , xm}, and 4 ∈ {∩,∨τ∞}. We suppose that the asser-
tion is true for the terms ξ1 and ξ2. By induction, we have h1(p) =
ξ1(fi1 , . . . , fia)(p) and h2(p) = ξ2(fj1 , . . . , fjb)(p), where h1 and h2 are the
minimal cτ∞-valued composition satellites of the formations ξ1(Fi1 , . . . ,Fia) and
ξ2(Fj1 , . . . ,Fjb), respectively. Thus, we have

f(p) = h1(p)4h2(p) =
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ξ1(fi1(p), . . . , fia(p))4 ξ2(fj1(p), . . . , fjb(p)) =

ξ(f1(p), . . . , fm(p)) = ξ(f1, . . . , fm)(p) = h(p),

as claimed. �X
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