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A direct proof of a theorem of Jech and
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Abstract. By using an argument based on the structure of the locally compact
scattered spaces, we prove in a direct way the following result shown by Jech
and Shelah: there is a family {Bα : α < ω1} of subsets of ω1 such that the
following conditions are satisfied:

(a) maxBα = α,

(b) if α ∈ Bβ then Bα ⊆ Bβ ,

(c) if δ ≤ α and δ is a limit ordinal then Bα ∩ δ is not in the ideal
generated by the sets Bβ , β < α, and by the bounded subsets of δ,

(d) there is a partition {An : n ∈ ω} of ω1 such that for every α and
every n, Bα ∩An is finite.
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Resumen. Utilizando un argumento basado en la estructura de los espacios
localmente compactos dispersos, demostramos de una manera directa el si-
guiente resultado de Jech y Shelah: existe una familia {Bα : α < ω1} de
subconjuntos de ω1 que verifica las siguientes condiciones:

(a) maxBα = α,

(b) si α ∈ Bβ entonces Bα ⊆ Bβ ,

(c) si δ ≤ α y δ es un ordinal ĺımite, entonces Bα ∩ δ no pertenece al
ideal generado por los conjuntos Bβ , β < α, y por los subconjuntos
acotados de δ,

(d) existe una partición {An : n ∈ ω} de ω1 tal que para todo α y para
todo n, Bα ∩An es finito.

Palabras y frases clave. teoŕıa PCF, espacio localmente compacto disperso.
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1. Introduction

By Easton’s well-known theorem, we have that if V satisfies the Generalized
Continuum Hypothesis, then for every monotone function f : OR → OR such
that α < f(α) and ℵα < cf(ℵf(α)) for each α there is a cardinal-preserving

generic extension of V where 2ℵα = ℵf(α) for every ordinal α such that ℵα
is regular. So, any cardinal arithmetic behaviour satisfying some obvious re-
quirements can be realized as the behaviour of the power function at regular
cardinals. However, the freedom enjoyed by the power function on regular car-
dinals does not extend to singular cardinals. In fact, Shelah proved a series
of results getting cardinal bounds on the behaviour of the power function at
singular cardinals by studying reduced products of regular cardinals below the
concerned singular cardinal. This led to the so called PCF theory, a powerful
general tool which has been used to obtain important results in cardinal arith-
metic, and which also found interesting applications in algebra and topology
(see [1], [3] and [7]).

Recall that an infinite cardinal κ is a strong limit cardinal if 2λ < κ for
every cardinal λ < κ. Then, the following remarkable theorem was proved by
Shelah in [7].

Theorem 1.1. If ℵω is a strong limit cardinal, then 2ℵω < ℵω4
.

Although significant results have been obtained by Gitik, Shelah, Woodin,
Magidor and others, it is unknown whether the bound in Theorem 1.1 can be
improved to ℵω3 , ℵω2 or even to ℵω1 .

One of the key objects in PCF theory is the PCF operator, which is defined
as follows: if A is a set of regular cardinals, then

PCF(A) = {cf(ΠA/D) : D is an ultrafilter on A}.

In order to show Theorem 1.1, Shelah proved that, for A = {ℵn+1 : n < ω},
|PCF(A)| ≤ ω3. A major open problem in the theory of singular cardinals is
whether the set PCF(A) can be uncountable. If we could prove that PCF(A)
is countable, we would improve Shelah’s bound on 2ℵω to ℵω1

. With respect to
this problem, it was shown in [5, Theorem 2.1] that if PCF({ℵn+1 : n < ω}) is
uncountable, then a certain PCF algebra on ω1 exists. And it is easy to show
that this PCF algebra can be obtained directly from the structure on ω1 which
has the properties listed in the abstract. Then, the following theorem is the
main result of [5].

Theorem 1.2. There is a family {Bα : α < ω1} of subsets of ω1 such that the
following conditions are satisfied:

(a) For every α < ω1, maxBα = α.

(b) For all α, β < ω1, if α ∈ Bβ then Bα ⊆ Bβ.
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(c) If δ ≤ α < ω1 and δ is a limit ordinal then Bα ∩ δ is not in the ideal
generated by the sets Bβ , β < α, and by the bounded subsets of δ.

(d) There is a partition {An : n ∈ ω} of ω1 such that for every α < ω1 and
every n < ω, Bα ∩An is finite.

In [5], the existence of the family {Bα : α < ω1} in Theorem 1.2 was shown
to be consistent by means of a forcing argument, and then applying a previous
general method introduced in [8] it was proved that the existence of that family
is a theorem in ZFC.

A direct forcing-free proof of Theorem 1.2 was supplied by Komjáth in [6]
by using a pure combinatorial argument. Then, in this paper we will give an
alternative direct proof of Theorem 1.2, different from Komjáth’s argument and
based on the structure of the locally compact scattered spaces.

For every α < ω1, we put Iα = {ω ·α+n : n < ω}. Clearly, ω1 =
⋃
{Iα : α <

ω1}. We define the functions π : ω1 → ω1 and ρ : ω1 → ω as follows. Assume
that δ ∈ ω1. Then, if δ = ω ·α+ n for α < ω1 and n < ω, we put π(δ) = α and
ρ(δ) = n. We say that a partial order � on ω1 is admissible, if x ≺ y implies
π(x) < π(y).

In both direct proofs, the structure described in the statement of Theorem
1.2 is obtained from an admissible partial order on ω1. In the construction
carried out in [6], the required partial order ≤ is the transitive closure f∗ of a
function f : ω1 → [ω1]≤ω such that for every x ∈ ω1, f(x) ⊆

⋃
{Iα : α < π(x)}.

Then, Komjáth’s proof of Theorem 1.2 is obtained directly from the following
immediate consequence of [6, Theorem 1].

Theorem 1.3. There is a function f as above satisfying the following condi-
tions:

(a) If y ∈ f(x) then ρ(y) > ρ(x).

(b) If y, y′ ∈ f(x) with y 6= y′ then ρ(y) 6= ρ(y′).

(c) If β < ω1, x ∈ Iα for some β < α < ω1 and Z is a finite subset of⋃
{Iγ : β < γ < ω1} such that x 6∈ f∗(z) for every z ∈ Z, then there are

infinitely many y ∈ Iβ such that y ∈ f(x) and y 6∈ f∗(z) for every z ∈ Z.

In our direct proof of Theorem 1.2, we will construct an LCS poset on ω1,
which is a notion equivalent to the notion of an SBA ordering given in [4],
satisfying some specific properties. In our construction, the required partial
order on ω1 will be defined by transfinite induction without using an auxiliary
function f as above. The main difference between both direct constructions
is the verification of conditions (c) and (d) in the statement of Theorem 1.2.
In [6], the verification of these conditions is carried out by using properties
(a)− (c) in the statement of Theorem 1.3. More precisely, in Komjáth’s proof,
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condition (c) of Theorem 1.2 is obtained directly from condition (c) of Theorem
1.3. However, in our construction, condition (c) of Theorem 1.2 is obtained by
means of an elementary topological argument applied to the space associated
with the LCS poset we construct.

Also, in [6], condition (d) of Theorem 1.2 is verified by using properties (a)
and (b) of Theorem 1.3, which are not demanded in our construction. Moreover,
in the proof of Theorem 1.3, Komjáth makes use of the fact that his partial
order < on ω1 satisfies that x < y implies ρ(x) > ρ(y). However, this property
is not required in the definition of our partial order on ω1.

2. The direct proof of Theorem 1.2

Recall that a topological space X is scattered, if every non-empty subspace
of X has an isolated point. By an LCS space we mean a locally compact,
Hausdorff and scattered space. For an LCS space X and an ordinal α, the αth-
Cantor-Bendixson level of X is defined by Iα(X) = the set of isolated points of
X \

⋃
{Iβ(X) : β < α}. We define the height of X as ht(X) = the least ordinal

α such that Iα(X) = ∅.

The following notion, which will be used in our proof of Theorem 1.2, per-
mits us to construct in a direct way LCS spaces from partial orders.

Definition 2.1. Assume that T =
⋃
{Tα : α < η} for some non-zero ordinal η

where each Tα is a non-empty set and Tα∩Tβ = ∅ for α < β < η. Assume that
for every x ∈ T , bx is a subset of T such that the following conditions hold:

(1) If x ∈ Tγ , then bx ∩
⋃
{Tξ : γ ≤ ξ < η} = {x} and bx ∩ Tξ is infinite for

each ξ < γ.

(2) If x ∈ by then bx ⊆ by.

(3) If x, y ∈ T , there are finitely many elements z1, . . . , zn ∈ T such that
bx ∩ by = bz1 ∪ · · · ∪ bzn .

For x, y ∈ T , we put x � y iff x ∈ by. Clearly, � is a partial order on T . Then,
we will say that T = (T,�) is an LCS poset on T , and we will write bx(T ) = bx
for every x ∈ T .

Given an LCS poset T = (T,�) with T =
⋃
{Tα : α < η}, we can topologize

T by taking basic open sets to be of the form bx \ (bx1 ∪ · · · ∪ bxn) where
n < ω and x1, . . . , xn ≺ x. It can be easily checked that the resulting space
X = X(T ) is a locally compact, Hausdorff, scattered space such that ht(X) = η
and Iα(X) = Tα for every α < η (see [2] for a proof). Then, if Y is a subset
of T we will denote by Y the closure of Y in X. Note that for every α < η,
Tα =

⋃
{Tβ : α ≤ β < η}.
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Proof of Theorem 1.2. We construct an LCS poset T on ω1 such that the family
{bα(T ) : α < ω1} satisfies conditions (a)− (d). Recall that Iα = {ω ·α+n : n <
ω} for α < ω1. Then, we will have that ht((X(T )) = ω1 and Iα(X(T )) = Iα
for every countable α. We write Sα =

⋃
{Iβ : β ≤ α}, and we put T = ω1.

Now, for n < ω we write Cn = {n} ∪ {δ + n : δ is a countable limit ordinal}.
So, Cn is the n-th column of T .

Then, proceeding by transfinite induction on α < ω1 we construct for every
x ∈ Iα a subset bx of Sα satisfying the following conditions:

(1) bx ∩ Iα = {x} and bx ∩ Iβ is infinite for every β < α.

(2) If x ∈ by then bx ⊆ by.

(3) If x, y ∈ Sα, there are finitely many elements z1, . . . , zn ∈ Sα such that
bx ∩ by = bz1 ∪ · · · ∪ bzn .

(4) If z ∈ Iγ and γ ≤ β ≤ α, then {y ∈ Iβ : by ∩ bz 6= ∅} is finite.

(5) If m < ω and β ≤ α, then {y ∈ Iβ : by ∩ Cm 6= ∅} is finite.

(6) For every x ∈ Sα and every m < ω, bx ∩ Cm is finite.

We put bx = {x} for every x ∈ ω. Now, assume that 0 < α < ω1 and bx has
been defined for every x ∈

⋃
{Iβ : β < α}. We may assume that α is a limit

ordinal. Otherwise, the considerations are similar. We put Z =
⋃
{Iβ : β < α}.

Let {αn : n < ω} be a strictly increasing sequence of ordinals converging to α.
We construct an infinite subset U = {un : n < ω} of Z and an infinite subset
V of U such that the following conditions hold:

(i)
⋃
{bun : n < ω} = Z,

(ii) if un ∈ V then bun ∩
⋃
{bum : m < n} = ∅,

(iii) if un ∈ V then αn < π(un),

(iv) if m < n and un ∈ V then bun ∩ Cm = ∅.

Let {xm : m < ω} be an enumeration of Z. Assume that n ≥ 0 and we have
picked the elements u0, . . . , un−1. If n = 2k for some k ≥ 0, we define un as
the first element u in the enumeration {xm : m < ω} such that u 6∈

⋃
{bum :

m < n}. Now, suppose that n = 2k + 1 for some k ≥ 0. By conditions (4) and
(5), there is an element un ∈ Z with π(un) > max{αn, π(u0), . . . , π(un−1)}
such that bun ∩

⋃
{bum : m < n} = ∅ and bun ∩

⋃
{Cm : m < n} = ∅. Then,

we define U = {un : n < ω} and V = {vk : k < ω} where vk = u2k+1 for
k < ω. Clearly, conditions (i)-(iv) hold. Now, let yn = ω · α + n for n < ω.
Let {ak : k < ω} be a partition of ω into infinite subsets. Then, we define
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byk = {yk}∪
⋃
{bvn : n ∈ ak} for k < ω. We can verify that conditions (1)− (6)

are satisfied. For this, note that conditions (1) and (2) are obvious, conditions
(3) and (4) follow from conditions (i) and (ii), and conditions (5) and (6) follow
from condition (iv).

Now, if x, y ∈ ω1, we put x � y iff x ∈ by. It is obvious that (T,�) is an LCS
poset. Let B = {bx : x ∈ ω1}. Clearly, by conditions (1), (2) and (6), B satisfies
conditions (a), (b) and (d) in the statement of the theorem. Now, in order to
verify condition (c), assume that δ ≤ γ < ω1 and δ is a limit ordinal. Let δ0 < δ
and γ1, . . . , γn < γ. Since δ is a limit, we have that δ is the first element in
Iπ(δ). Hence, as δ0 < δ ≤ γ, we deduce that ν = π(δ0) < π(δ) ≤ π(γ). Thus,

since γ ∈ (Iν \ δ0), we infer that (bγ ∩ Iν) \ (δ0 ∪ bγ1 ∪ · · · ∪ bγn) is infinite. So
(bγ ∩ δ) \ (δ0 ∪ bγ1 ∪ · · · ∪ bγn) is infinite too, and hence condition (c) holds. �X

So, for x ∈ ω1, the set bx in our proof corresponds with the set f∗(x) in
Komjáth’s approach. A further difference between both direct proofs is that
our conditions (3), (4) and (5) are not employed in his construction. In fact,
we need condition (3) in order to carry out our topological argument and our
conditions (4) and (5) are needed in order to construct the required LCS poset
of uncountable height.

Acknowledgements.

I wish to express my gratitude to the anonymous referee for bringing Komjáth’s
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