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Resumen. En este trabajo se caracteriza la controlabilidad restringida en el
origen para una familia grande de Sistemas Lineales de Primer Orden con
funciones iniciales holomorfas, en un contexto más general de holomorficidad
dado por los números complejos eĺıpticos.
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1. Introduction

Let us consider the following linear first order systems

∂tu = a11∂xu+ a12∂yu+ a21∂xv + a22∂yv + c1u+ c2v + c3 (1)

∂tv = b11∂xu+ b12∂yu+ b21∂xv + b22∂yv + d1u+ d2v + d3 (2)
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with u(t, x, y) and v(t, x, y) real-valued functions, t the time and (x, y) running
in a bounded domain in the x, y-plane. It is supposed that the coefficients
depend at least continuously on t, x and y. By virtue of the Cauchy-Kowaleskaya
Theorem the initial value problem

u(0, x, y) = φ(x, y) (3)

v(0, x, y) = ψ(x, y) (4)

is solvable provided the coefficients of (1) and (2) and the initial functions
possess power-series representations. In [6] there are given conditions on the
coefficients of (1) and (2) under which each initial value problem (3) and (4)
is solvable by assuming that the initial functions φ and ψ satisfy the Cauchy-
Riemann conditions.Those results are generalized in [1], with the assumption
that the initial value functions are holomorphic in the sense of an algebra with
the structure polynomial X2+βX+α, where α and β are real numbers. In these
algebras complex numbers are written as z = x+iy where i2 = −βi−α and the
two real functions u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations if
∂xu−α∂yv = 0 and ∂yu+∂xv−β∂yv = 0. For details about the above referred
algebras see [1] and the references therein.

Let us also recall that a pair of differentiable operators L and G is said to
be associated if G(w) = 0 implies G(L(w)) = 0, that is if L sends null-solutions
of G again into null-solutions of G.

The results in [1] are as follows.

Lemma 1.1. Suppose α and β are constants satisfying αβ2 − 4α2 6= 0 and
A,B,E, F and G are continuosly differentiable functions with respect to z and
z. Then the operator L

Lw := A∂zw +B∂zw + C∂z̄w +D∂z̄w + Ew + Fw +G (5)

is associated to the Cauchy-Riemann operator in the complex algebra with struc-
ture polynomial X2 + βX + α if and only if B and F are identically equal to
zero and A, E and G are holomorphic.

It should be pointed out that the condition αβ2 − 4α2 6= 0 is true for the
elliptic case, and also for other cases that are not elliptic.

Then it is shown how systems (1) and (2) can be equivalently written and,
by using Lemma 1.1, it is obtained that 10 out of the 14 coefficients depend
on the choice of 3 arbitrary holomorphic functions (E, G and A), the other 4
coefficients are free and it is only imposed the condition that they are continuous
functions. This is summarized in the following

Lemma 1.2. Suppose the coefficients a11, a12, b11, b12 are arbitrarily chosen.
Then the coefficients that characterize the system (1) and (2) are given by: ci
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and di, i = 1, 2, 3, and are determined by the choice of 2 arbitrary holomorphic
functions (E and G). Then permissible coefficients are given by

a21 = −αA2 + a12, a22 = αA1 − αa11 − βa12,

b21 = A1 − βA2 + b12, b22 = αA2 − αb11 − βb12

where A1 + iA2 is an arbitrary holomorphic function.

Now, for Ω an open connected set in C and {fn}∞n=0 a sequence of holo-
morphic functions that converges to a limit function f (uniformly in every
compact subset of Ω), the Weierstrass approximation theorem in the elliptic
complex numbers is proven: it is shown that the limit function f is holomorphic
in Ω.

From this point on it is possible to solve the initial value problem (1)-
(4) in the more general context of holomorphy with respect to the structure
polynomial X2 +βX+α. It is needed to consider an exhaustion of the bounded
domain Ω by a family of subdomains Ωs, 0 < s < s0, in such a way that each
point x of Ω lies on the boundary ∂Ωs(x) of a uniquely determined domain
Ωs(x) of the exhaustion. Then s0 − s(x) is a measure of the distance of a point
x of Ω from the boundary Ωs(x). Let Bs denote the Banach space of functions

which are holomorphic in Ωs and continuous in Ωs. The Bs, 0 < s < s0 form a
scale of Banach spaces. Our given initial value problem, in its complex version,
can now be rewritten as an abstract operator equation in the scale Bs

∂tw(t, z) = Lw(t, z), w(0, z) = ρ(z), (6)

where w(t, z) = u(t, z) + iv(t, z), z = x + iy, t is the time variable, L was
introduced in Lemma 1.1 and ρ(z) = φ(z) + iψ(z) with φ, ψ given by (3) and
(4) respectively.

Theorem 1.3. The space of holomorphic functions is associated to the system
(1) and (2) if and only if the coefficients of the system are given by Lemma 2.
For such systems each initial value problem (3), (4) is solvable, where ρ = φ+iψ
is an arbitrary holomorphic function in z and the initial functions φ and ψ
satisfy the generalized Cauchy-Riemann system with respect to the structure
polynomial X2 + βX + α with 4α− β2 > 0. Moreover, the solution, written in
the form w(t, z) = u(t, z) + iv(t, z) is holomorphic in z for each t and it exists
in the time-interval 0 ≤ t ≤ h(s0−s) if h is sufficiently small and (x, y) belongs
to Ωs, where the subdomains Ωs form an exhaustion of Ω.

The former theorem was proven by applying a generalized complex ab-
stract Cauchy-Kovaleskaya Theorem (see [7]). This was possible in view of the
Weirstrass approximation theorem referred above, and the interior estimate
of first order for the complex derivative of a holomorphic function which is
obtained by using Cauchy’s integral formula. For details see [1].
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It is the goal of this note to characterize the null-controllability of the linear
first order systems with initial functions described in Theorem 1.3. The control
function n is constrained to lie in a non-empty separable, weakly compact
subset W of a suitable Banach space N . Bearing in mind this purpose, we have
rewritten the given initial value problem as an abstract operator equation.

Now, we will introduce the associated c0-semigroup and show that its ad-
joint is strongly continuous in (0,∞). All this will be done in the next section.

2. Controllable systems

In order to study the controllability it is necessary to consider non-homoge-
neous systems (see [4]). We need to suppose that L is a linear operator in Bs.
We have thus the problem

∂tw(t, z) = Lw(t, z) +K n(t, z)

w(0, z) = ρ(z),(7)

where Bs, t, z, w(t, z), L and ρ(z) are as in (6), K : N → Bs with N a Banach
space, is a bounded linear operator and n : [0,∞) × Ω → N is a strongly
measurable, esentially bounded function.

The existence and uniqueness of a solution for (6) means that there exists
a strongly continuous semigroup {T (t)}t≥0 in Bs whose infinitesimal generator
is L and thus the mild solution for the non-homogeneous system (7) can be
written as

w(t, z) = T (t)ρ(z) +

∫ t

0

T (t− s)K n(s, z) ds .

Assuming W a non empty separable, weakly compact subset of N we have

Wr = {n ∈ L∞N ([0, r]× Ω) : n ∈W a.e},

the set of admissible controls, while

Ar(ρ(z)) = {T (r)ρ(z) +

∫ r

0

T (r − s)K n(s, z) ds : n ∈Wr}

is the set of accesible points. The system (7) will be controllable if 0 ∈ Ar(ρ(z)).

We would like to recall that N is an arbitrary Banach space. This gives
considerable generality to our results. We also recall that a Banach space M is a
Grothendieck space if every weakly*-convergent sequence in M∗ is also weakly
convergent. Equivalently M is a Grothendieck space if every linear bounded
operator from M to any separable Banach space is weakly compact [5]. Among
Grothendieck spaces, we can list all reflexive Banach spaces and L∞(Ω,Ξ, µ)
where (Ω,Ξ, µ) is a positive measure space.

A bounded linear operator T : M → N , where M and N are Banach
spaces, factors through a Banach space S if there are bounded linear oper-
ators P : M → S and Q : S → N such that T = QP . It is proven in [3]

Volumen 52, Número 1, Año 2018



CONTROLLABILLITY OF SYSTEMS IN ELLIPTIC COMPLEX NUMBERS 63

that if M is a Banach space and {T (t)}t≥0 a C0-semigroup defined on M such
that for every a > 0 there exists a Grothendieck space Na such that T (a)
factors through Na, then {T ∗(t)}t≥0 is strongly continuous on (0,∞). Factor-
ing through Grothendieck spaces is, in general, not easy to verify, but among
semigroups satisfying those assumptions (and hence having adjoints which are
strongly continuous on (0,∞)) we mention weakly compact semigroups, i.e.,
semigroups such that T (t) is weakly compact for each t. This category includes
all compact semigroups (see also [3] for details).

Bárcenas and Diestel proved in [2] the following useful controllability cri-
terion: Let X and U be Banach spaces, let B : U → X be a bounded linear
operator, and A : X → X be the infinitesimal generator of a c0-semigroup
{S(t)}t≥0 on X whose dual semigroup is strongly continuous on (0,∞). Sup-
pose Ω is a non-empty separable weakly compact convex subset of U contain-
ing 0. Then for each T > 0, 0 ∈ AT (xo) if and only if for each x∗ ∈ X∗,

< x∗, S(T )x0 > +
∫ T

0
maxv∈Ω < x∗, S(t)Bv > dt ≥ 0.

Using that criterion we can characterize the controllability of the system
(7). In orden to do that we need to verify that the adjoint semigroup {T ∗(t)}t≥0

is strongly continuous in (0,∞). If L is a bounded linear operator in Bs, then

it is well known that T (t) = eLt =

∞∑
k=0

(Lt)k

k!
and it is uniformly continuous.

From this we deduce that {T ∗(t)}t≥0 is also uniformly continuous.

If L is not a bounded operator on Bs, then {T (t)}t≥0 is not uniformly
continuous and we cannot assure that {T ∗(t)}t≥0 is always strongly continuous
on (0,∞) (although for this case, we can also write T (t) = eLt for each t ≥ 0).
But assuming that the semigroup {T (t)}t≥0 satisfies that for every a > 0
there exists a Grothendieck space Na such that T (a) factors through Na (in
particular, if {T (t)}t≥0 is a weakly compact semigroup), we can use the above
referred result in [3] to obtain that the adjoint semigroup {T ∗(t)}t≥0 is strongly
continuous in (0,∞).

To sum up we have proved the following theorem:

Theorem 2.1. Supposse that the operator L given by (5) is a linear operator
in Bs. If L is bounded, then for each r > 0, 0 ∈ Ar(ρ(z)) (i.e., system (7) is
controllable) if and only if for each x∗ ∈ B∗s

< x∗, T (r)ρ(z) > +

∫ r

0

max
n∈W

< x∗, T (t)K n(t, z) > dt ≥ 0 .

If L is unbounded, then the same holds if we additionally suppose that {T (t)}t≥0

satisfies the following: for every a > 0 there exists a Grothendieck space Na such
that T (a) factors through Na (in particular, if {T (t)}t≥0 is a weakly compact
semigroup).
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Remark 2.2. Since ∂tw = Lw is the rewriting of the system (1) and (2),
the permissible coefficients of that system given by Lemma 1.2 depend on the
parameters α and β, and N and K are arbitrary, the characterization of the
controllability showed in Theorem 2.1 works for a large family of systems (7).
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Volumen 52, Número 1, Año 2018


