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Volumen 52(2018)1, páginas 33-40

Orthogonal Decomposition in

Omega-Weighted Classes of Functions

Subharmonic in the Half-Plane

Descomposición ortogonal de funciones subharmónicas en el
semiplano por medio de clases omega-pesadas
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Abstract. The paper gives a harmonic, ω-weighted, half-plane analog of W.
Wirtinger’s projection theorem and its (1 − r)α-weighted extension by M.
Djrbashian and also an orthogonal decomposition for some classes of functions
subharmonic in the half-plane.
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Resumen. El art́ıculo da un análogo armónico ω-pesado en el semiplano del
teorema de proyección de W. Wirtinger y su extensión (1−r)α-pesada estable-
cida por M. Djrbashian. También es hallada una descomposición ortogonal
para algunas clases de funciones subarmónicas en el semiplano.
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1. Introduction

The present paper gives a harmonic, ω-weighted, half-plane analog of the
Wirtinger projection theorem [8] (see also [7], p. 150) and its (1− r)α-weighted
extension by M. Djrbashian (see Theorem VII in [1]), which are for holomor-
phic in |z| < 1 functions with square integrable modules. These results are a
continuation of the results of [5] in the half-plane. Then, an orthogonal de-
composition is found for some classes of functions subharmonic in the upper
half-plane, which is similar to the result of [4] in the unit disc.
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34 ARMEN JERBASHIAN & DANIEL VARGAS

After a useful remark, we shall introduce the spaces of functions which we
consider.

Remark 1.1. It is well-known (see, eg. [6], Ch. VI) that the Hardy space hp

(1 ≤ p < +∞) of real, harmonic in the upper half-plane G+ := {z : Im z > 0}
functions, defined by the condition

‖u‖hp := sup
y>0

{∫ +∞

−∞
|u(x+ iy)|pdx

}1/p

< +∞,

is a Banach space, becoming a Hilbert space for p = 2. Since |u|p is subharmonic
in G+ for any function u harmonic in G+, the results of Ch. 7 in [2] on the
equivalent definition of the holomorphic Hardy spaces Hp in G+ have their
obvious analogs for hp. In particular, the space hp (1 ≤ p < +∞) coincides
with the set of all functions harmonic in G+ and such that

‖u‖php = lim
R→+∞

lim inf
y→+0

∫ R

−R
|u(x+ iy)|pdx < +∞

and, for sufficiently small values of ρ > 0,

lim inf
R→+∞

1

R

∫ π−β

β

∣∣u (Reiϑ)∣∣p(sin
π(ϑ− β)

π − 2β

) π+2β
π−2β

dϑ = 0, (1)

where β = arcsin(ρ/R). Note that due to Hölder’s inequality, if (1) is true for
some p > 1, then it is true also for p = 1.

Definition 1.2. Ω̃α (−1 < α < +∞) is the set of functions ω which are
continuous, strictly increasing in [0,+∞), continuously differentiable in (0,+∞)
and such that ω(0) = 0 and ω′(x) � xα, ∆ < x < +∞, for some ∆ > 0.

Definition 1.3. For any ω ∈ Ω̃α (−1 < α < +∞), hpω (0 < p < +∞) is the
set of the real, harmonic in the upper half-plane G+ functions for which (1) is
true along with

‖u‖p,ω :=

{∫∫
G+

|u(z)|pdµω(z)

}1/p

< +∞, (2)

where dµω(x+ iy) = dxdω(2y).

2. Some Properties of the Spaces hpω

First, we prove that the above introduced classes hpω are Banach spaces.

Proposition 2.1. hpω (1 ≤ p < +∞, ω ∈ Ω̃α, α > −1) is a Banach space with
the norm (2), which for p = 2 becomes a Hilbert space with the inner product

(u, v)ω :=
1

2π

∫∫
G+

u(z)v(z)dµω(z), u, v ∈ h2
ω.
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Proof. Let Lpω (1 ≤ p < +∞) be the Banach space of real functions, defined
solely by (2). Then, it suffices to prove that hpω is a closed subspace of Lpω for
any 1 ≤ p < +∞, i.e. if a sequence {un}∞1 ⊂ hpω converges to some u ∈ Lpω in
the norm of Lpω, then u ∈ hpω. To this end, observe that∫ 1/2

0

dω(2y)

∫ +∞

−∞
|un(x+ iy)− u(x+ iy)|pdx→ 0 as n→∞.

Hence, by Fatou’s lemma we have
∫ 1

0
g(t)dω(t) = 0 for

g(2y) := lim inf
n→∞

∫ +∞

−∞

∣∣un(x+ iy)− u(x+ iy)
∣∣pdx. (3)

As ω ∈ Ω̃α, there exists a sequence ηk ↓ 0 such that ω(ηk+1) < ω(ηk). In-
troducing the measure ν(E) =

∨
E ω (i.e. the variation of ω on the set E),

we conclude that ν([ηk+1, ηk]) > 0 for any k ≥ 1 and obviously g(t) = 0 in
[ηk+1, ηk] almost everywhere with respect to the measure ν. On the other hand,
u(x + it) ∈ Lp(−∞,+∞) for almost every t > 0 with respect to the measure
ν. Thus, there is a sequence yk ↓ 0 such that simultaneously g(2yk) = 0 and
u(x+ iyk) ∈ Lp(−∞,+∞). Now, we choose a subsequence of {un}∞1 , for which
the limit (3) is attained for y = y1. From this subsequence, we choose another
one, for which (3) is attained for y = y2, etc. Then, by a diagonal operation
we choose a subsequence for which we keep the same notation {un}∞1 , and by
which

g(2yk) = lim
n→∞

∫ +∞

−∞

∣∣un(x+ iyk)− u(x+ iyk)
∣∣pdx = 0 (4)

for all k ≥ 1. Then, in virtue of Remark 1.1, for any n ≥ 1 and ρ > 0 the
function un(z + iρ) belongs to hp. Note that in particular this is so for ρ = yk
(k = 1, 2, . . .). By (4), for any fixed k ≥ 1 the sequence {un(z + iyk)}∞n=1 is
fundamental in hp, and consequently un(z+ iyk)→ U(z+ iyk) ∈ hp as n→∞
in the norm of hp over G+. Hence, un uniformly tends to U inside G+, and
U ∈ hp in any half-plane G+

ρ . Thus, by the results of Ch. 7 in [2] we conclude
that (1) is true for U and, in addition, for any number A > 0∫∫

|x|<A
1
A
<y<A

∣∣U(z)− u(z)
∣∣pdµω(z) ≤ 2p−1

{∫∫
|x|<A
1
A
<y<A

∣∣U(z)− un(z)
∣∣pdµω(z)

+

∫∫
|x|<A
1
A
<y<A

∣∣u(z)− un(z)
∣∣pdµω(z)

}
→ 0 as n→∞.

The passage A→ +∞ gives ‖U − u‖Lpω,γ = 0. �X

Now, let us prove a theorem on an explicit form of the orthogonal projection
of the space L2

ω to its harmonic subspace h2
ω. Assuming that ω ∈ Ω̃α, α > −1,
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36 ARMEN JERBASHIAN & DANIEL VARGAS

we shall deal with the Cauchy-type kernel

Cω(z) :=

∫ +∞

0

eitz
dt

Iω(t)
, Iω(t) :=

∫ +∞

0

e−txdω(x),

which is a holomorphic function inG+ [3]. Note that by Lemma 3.1 of [3] for any

ω ∈ Ω̃α with α > −1 and any numbers ρ > 0 and a noninteger β ∈ ([α]− 1, α)
there exists a constant Mρ,β > 0 such that

|Cω(z)| ≤ Mρ,β

|z|2+β
, z ∈ G+

ρ := {z : Im z > ρ}. (5)

Under the same assumption, we use the Green type potentials constructed by
means of the elementary Blaschke type factor

bω(z, ζ) := exp

{∫ 2Im ζ

0

Cω(z − ζ + it)ω(t)dt

}
, Im z > Im ζ > 0

(see formula (23) in [5]), which is a holomorphic function in G+, where it has
a unique, simple zero at z = ζ.

Theorem 2.2. If ω ∈ Ω̃α (−1 < α < +∞), then the orthogonal projection of
L2
ω to h2

ω can be written in the form

Pωu(z) =
1

π

∫∫
G+

u(w)Re{Cω(z − w)}dµω(w), z ∈ G+. (6)

Proof. Let u ∈ L2
ω. Then, applying the estimate (5), where β = α − ε with a

small ε > 0, and Hölder’s inequality, one can be convinced that the integral of
(6) is absolutely and uniformly convergent inside G+, and hence it represents a
harmonic function there. Besides, using the estimate (5) and Hölder’s inequality
one can prove that for any fixed ρ > 0 and ε > 0 small enough there exists

a constant M ′ρ,ε > 0 depending only on ρ and ε, such that
∣∣Pωu(Reiϑ)

∣∣2 ≤
M ′ρ,εR

−(3+2α−2ε)
(
arcsin ρ

R < ϑ < π − arcsin ρ
R

)
for R > 0. Hence, Pωu satisfies

(1). Thus, it remains to show that Pω is a bounded operator which maps L2
ω

to h2
ω and is identical on h2

ω.

If u ∈ L2
ω, then for a fixed z = x+ iy ∈ G+ and ζ = ξ + iη

Pωu(z) = Re

{
1

π

∫ +∞

0

(
lim

R→+∞

∫ R

−R
u(ζ)dξ

∫ +∞

0

eit(z−ζ)
dt

Iω(t)

)
dω(2η)

}

= Re

{
1

π

∫ +∞

0

(
lim

R→+∞

∫ +∞

0

eitz
e−tη

Iω(t)
dt

∫ R

−R
e−tξu(ζ)dξ

)
dω(2η)

}

= Re

{
1√
π

∫ +∞

0

dω(2η)

∫ +∞

0

eitz
e−tη

Iω(t)
ûη(t)dt

}
, (7)

Volumen 52, Número 1, Año 2018
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where the limit ûη(t) = l.i.m.R→+∞
∫ R
−R e

−itξu(ξ + iη)dξ in the L2(−∞,+∞)-

norm is the Fourier transform of u(ξ + iη) ∈ L2(−∞,+∞) for almost every
η > 0. Note that the equalities in (7) are true, since by Plancherel’s theorem

1√
π

∫ +∞

0

e−tη

Iω(t)

∣∣∣∣∣ 1√
2π

∫ R

−R
e−itξu(ζ)dξ − ûη(t)

∣∣∣∣∣ dt
≤
[
Cω̃(2iη)

]1/2 ∥∥∥∥∥ 1√
π

∫ R

−R
e−itξu(ζ)dξ − ûη(t)

∥∥∥∥∥
L2(−∞,+∞)

→ 0

as R → +∞, where the function ω̃ is the Volterra square of ω (see Lemma 4
in [5]). From (7) we conclude that

Pωu(z) = Re

{
1√
π

∫ +∞

0

eitz
Φ(t)√
Iω(t)

dt

}
, z ∈ G+, (8)

where

Φ(t) :=
1√
Iω(t)

∫ +∞

0

e−tηûη(t)dω(2η). (9)

The change of the integration order transforming (7) to (8) is valid, since by
(5) for a fixed y > 0 and a small ε > 0 there is a constant M > 0 such that

1√
π

∫ +∞

0

dω(2η)

∫ +∞

0

e−t(y+η)

Iω(t)
|ûη(t)|dt

≤
√

2

∫ +∞

0

[
Cω̃(2i(y + η))

]1/2‖ûη‖L2(0,+∞)dω(2η)

≤M
√

2‖u‖L2
ω

(∫ +∞

0

dω(2η)

(y + η)3+2α−ε

)1/2

< +∞,

where ω̃ is the Volterra square of ω (see Lemma 4 in [5]). By an application of
Hölder’s inequality and Plancherel’s theorem, from (9) we get ‖Φ‖L2(0,+∞) ≤√

2‖u‖L2
ω

, while by the Paley-Wiener theorem (see eg. [6], pp. 130-131) from
(9) we obtain

‖Pωu‖2L2
ω
≤ 1

π

∫ +∞

0

dω(2y)

∫ +∞

0

e−2yt |Φ(t)|2

Iω(t)
dt = 2‖Φ‖2L2(0,+∞).

Thus, Pω is a bounded operator which maps L2
ω to h2

ω.

Now, let u ∈ h2
ω. Then obviously u(z + iη) ∈ h2 for any η > 0. Hence,

for any fixed η > 0 the function u(z + iη) is the real part of some function
f(z + iη) from the holomorphic Hardy space H2 in G+. Consequently, by the
Paley-Wiener Theorem

f(z + iη) =
1√
2π

∫ +∞

0

eitz f̂η(t)dt, z ∈ G+,
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where the limit by norm

f̂η(t) = l.i.m.
R→+∞

1√
2π

∫ R

−R
e−itξf(ξ + iη)dξ (10)

is the Fourier transform of f on the level iη, and

‖f(ξ + iη)‖2L2(−∞,+∞) = ‖f(z + iη)‖2H2 = ‖f̂η‖2L2(0,+∞).

Note that one can prove the independence of the function etη f̂η(t) of η > 0.
Further, for any η > 0 and ζ = ξ + iη

1

2π

∫ +∞

−∞
u(ξ + iη)Cω(z − ζ)dξ =

1√
2π

∫ +∞

0

ei(z+iη)tûη(t)
dt

tIω(t)

=
1

2
√

2π

∫ +∞

0

ei(z+iη)t
[
f̂η(t) + f̂η(t)

] dt

tIω(t)
.

From (10) and the Paley-Wiener theorem, it follows that for t > 0,

0 = f̂η(−t) = l.i.m.
R→+∞

1√
2π

∫ R

−R
e−itξf(ξ + iη)dξ = f̂η(t).

Consequently, for any z ∈ G+
η

1

π

∫ +∞

−∞
u(ξ + iη)Cω(z − ζ)dξ =

1√
2π

∫ +∞

0

ei(z+iη)tf̂η(t)
dt

tIω(t)

and hence,

Pωu(z) = Re

{
1√
2π

∫ +∞

0

eizt
dt

tIω(t)

∫ +∞

0

e−2tη{etη f̂η(t)}dω(2η)

}
= Re

{
1√
2π

∫ +∞

0

ei(z−iη)tf̂η(t)dt

}
= Re {f(z)} = u(z),

i.e. the operator Pω is an identity on h2
ω. �X

3. Orthogonal Decomposition

In virtue of Remark 2 and Theorem 2 in [5], if ω ∈ Ω̃α (α > −1) and ν is the
associated Riesz measure of a subharmonic in G+ function U ∈ L1

ω satisfying
(1) with p = 2, then∫∫

G+

(∫ 2Im ζ

0

ω(t)dt

)
dν(ζ) < +∞ and

∫∫
G+
ρ

Im ζ dν(ζ) < +∞
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for any ρ > 0, conditions which provide the convergence of the potential

Pω(z) =

∫∫
G+

log |bω(z, ζ)|dν(ζ)

in G+, and U is representable in the form

U(z) =

∫∫
G+

log |bω(z, ζ)|dν(ζ) +
1

π

∫∫
G+

U(w)
{

Re Cω(z − w)
}
dµω(w)

:=Gω(z) + uω(z), z ∈ G+. (11)

The next theorem gives an orthogonal decomposition for some ω-weighted
classes of functions subharmonic in G+.

Theorem 3.1. If ω ∈ Ω̃α with −1 < α < +∞, then:

(1) Both summands Gω and uω in the right-hand side of the representation
(11) of any function U ∈ L2

ω ∩ L1
ω satisfying (1) with p = 2 are of L2

ω.

(2) The operator Pω is an identity on h2
ω and it maps all Green type potentials

Gω ∈ L1
ω satisfying (1) with p = 2 to identical zero.

(3) Any harmonic function u ∈ h2
ω is orthogonal in L2

ω to any Green type
potential Gω ∈ L1

ω ∩ L2
ω satisfying (1) with p = 2.

Proof. Let U ∈ L1
ω∩L2

ω be a function which is subharmonic in G+ and satisfies
(1) with p = 2. Then, U is representable in the form (11), where u ∈ h2

ω by
Theorem 2.2. Hence, also Gω ∈ L2

ω and satisfies (1) with p = 2. Further, if
Gω ∈ L1

ω and satisfies (1) with p = 2, then applying the operator Pω to both
sides of the equality (11) written for Gω we get PωGω(z) ≡ 0, z ∈ G+. Since
Pω is the orthogonal projection of L2

ω to its harmonic subspace h2
ω, we conclude

that (
PωU,Gω

)
ω

=
(
Pωu,Gω

)
ω

=
(
P ∗ωu,Gω

)
ω

=
(
u, PωGω

)
ω

= 0.

At last, if u is a function of h2
ω and a Green type potential Gω ∈ L1 ∩ L2 and

satisfies (1) with p = 2, then by Theorem 2.2(
u,Gω

)
ω

=
(
Pωu,Gω

)
ω

=
(
P ∗ωu,Gω

)
ω

=
(
u, PωGω

)
ω

= 0.

�X
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40 ARMEN JERBASHIAN & DANIEL VARGAS

References

[1] M. Djrbashian, On the representability problem of analytic functions, Soob-
sch. Inst. Matem. i Mekh. Akad. Nauk Arm. SSR 2 (1948).

[2] A. Jerbashian, Functions of α-Bounded Type in the Half-Plane, Advances
in Complex Analysis and Applications, Springer, 2005.

[3] , On Apω,γ Spaces in the Half-Plane, in: Operator Theory:
Advances and Applications 158 (2005), 141–158, Birkhäuser Verlag,
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