Orthogonal Decomposition in Omega-Weighted Classes of Functions Subharmonic in the Half-Plane

Descomposición ortogonal de funciones subharmónicas en el semiplano por medio de clases omega-pesadas

Armen Jerbashian ${ }^{\boxtimes}$, Daniel Vargas
Universidad de Antioquia, Medellín, Colombia

Abstract

The paper gives a harmonic, ω-weighted, half-plane analog of W . Wirtinger's projection theorem and its $(1-r)^{\alpha}$-weighted extension by M. Djrbashian and also an orthogonal decomposition for some classes of functions subharmonic in the half-plane.

Key words and phrases. Subharmonic functions, orthogonal decomposition, potentials.

2010 Mathematics Subject Classification. 30H99, 31C05.
Resumen. El artículo da un análogo armónico ω-pesado en el semiplano del teorema de proyección de W . Wirtinger y su extensión $(1-r)^{\alpha}$-pesada establecida por M. Djrbashian. También es hallada una descomposición ortogonal para algunas clases de funciones subarmónicas en el semiplano.
Palabras y frases clave. Funciones subarmónicas, descomposición ortogonal, potenciales.

1. Introduction

The present paper gives a harmonic, ω-weighted, half-plane analog of the Wirtinger projection theorem [8] (see also [7], p. 150) and its $(1-r)^{\alpha}$-weighted extension by M. Djrbashian (see Theorem VII in [1]), which are for holomorphic in $|z|<1$ functions with square integrable modules. These results are a continuation of the results of [5] in the half-plane. Then, an orthogonal decomposition is found for some classes of functions subharmonic in the upper half-plane, which is similar to the result of [4] in the unit disc.

After a useful remark, we shall introduce the spaces of functions which we consider.

Remark 1.1. It is well-known (see, eg. [6], Ch. VI) that the Hardy space h^{p} $(1 \leq p<+\infty)$ of real, harmonic in the upper half-plane $G^{+}:=\{z: \operatorname{Im} z>0\}$ functions, defined by the condition

$$
\|u\|_{h^{p}}:=\sup _{y>0}\left\{\int_{-\infty}^{+\infty}|u(x+i y)|^{p} d x\right\}^{1 / p}<+\infty
$$

is a Banach space, becoming a Hilbert space for $p=2$. Since $|u|^{p}$ is subharmonic in G^{+}for any function u harmonic in G^{+}, the results of Ch .7 in [2] on the equivalent definition of the holomorphic Hardy spaces H^{p} in G^{+}have their obvious analogs for h^{p}. In particular, the space $h^{p}(1 \leq p<+\infty)$ coincides with the set of all functions harmonic in G^{+}and such that

$$
\|u\|_{h^{p}}^{p}=\lim _{R \rightarrow+\infty} \liminf _{y \rightarrow+0} \int_{-R}^{R}|u(x+i y)|^{p} d x<+\infty
$$

and, for sufficiently small values of $\rho>0$,

$$
\begin{equation*}
\liminf _{R \rightarrow+\infty} \frac{1}{R} \int_{\beta}^{\pi-\beta}\left|u\left(R e^{i \vartheta}\right)\right|^{p}\left(\sin \frac{\pi(\vartheta-\beta)}{\pi-2 \beta}\right)^{\frac{\pi+2 \beta}{\pi-2 \beta}} d \vartheta=0 \tag{1}
\end{equation*}
$$

where $\beta=\arcsin (\rho / R)$. Note that due to Hölder's inequality, if (1) is true for some $p>1$, then it is true also for $p=1$.
Definition 1.2. $\widetilde{\Omega}_{\alpha}(-1<\alpha<+\infty)$ is the set of functions ω which are continuous, strictly increasing in $[0,+\infty)$, continuously differentiable in $(0,+\infty)$ and such that $\omega(0)=0$ and $\omega^{\prime}(x) \asymp x^{\alpha}, \Delta<x<+\infty$, for some $\Delta>0$.
Definition 1.3. For any $\omega \in \widetilde{\Omega}_{\alpha}(-1<\alpha<+\infty), h_{\omega}^{p}(0<p<+\infty)$ is the set of the real, harmonic in the upper half-plane G^{+}functions for which (1) is true along with

$$
\begin{equation*}
\|u\|_{p, \omega}:=\left\{\iint_{G^{+}}|u(z)|^{p} d \mu_{\omega}(z)\right\}^{1 / p}<+\infty \tag{2}
\end{equation*}
$$

where $d \mu_{\omega}(x+i y)=d x d \omega(2 y)$.

2. Some Properties of the Spaces h_{ω}^{p}

First, we prove that the above introduced classes h_{ω}^{p} are Banach spaces.
Proposition 2.1. $h_{\omega}^{p}\left(1 \leq p<+\infty, \omega \in \widetilde{\Omega}_{\alpha}, \alpha>-1\right)$ is a Banach space with the norm (2), which for $p=2$ becomes a Hilbert space with the inner product

$$
(u, v)_{\omega}:=\frac{1}{2 \pi} \iint_{G^{+}} u(z) v(z) d \mu_{\omega}(z), \quad u, v \in h_{\omega}^{2}
$$

Proof. Let $L_{\omega}^{p}(1 \leq p<+\infty)$ be the Banach space of real functions, defined solely by (2). Then, it suffices to prove that h_{ω}^{p} is a closed subspace of L_{ω}^{p} for any $1 \leq p<+\infty$, i.e. if a sequence $\left\{u_{n}\right\}_{1}^{\infty} \subset h_{\omega}^{p}$ converges to some $u \in L_{\omega}^{p}$ in the norm of L_{ω}^{p}, then $u \in h_{\omega}^{p}$. To this end, observe that

$$
\int_{0}^{1 / 2} d \omega(2 y) \int_{-\infty}^{+\infty}\left|u_{n}(x+i y)-u(x+i y)\right|^{p} d x \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Hence, by Fatou's lemma we have $\int_{0}^{1} g(t) d \omega(t)=0$ for

$$
\begin{equation*}
g(2 y):=\liminf _{n \rightarrow \infty} \int_{-\infty}^{+\infty}\left|u_{n}(x+i y)-u(x+i y)\right|^{p} d x \tag{3}
\end{equation*}
$$

As $\omega \in \widetilde{\Omega}_{\alpha}$, there exists a sequence $\eta_{k} \downarrow 0$ such that $\omega\left(\eta_{k+1}\right)<\omega\left(\eta_{k}\right)$. Introducing the measure $\nu(E)=\bigvee_{E} \omega$ (i.e. the variation of ω on the set E), we conclude that $\nu\left(\left[\eta_{k+1}, \eta_{k}\right]\right)>0$ for any $k \geq 1$ and obviously $g(t)=0$ in $\left[\eta_{k+1}, \eta_{k}\right]$ almost everywhere with respect to the measure ν. On the other hand, $u(x+i t) \in L^{p}(-\infty,+\infty)$ for almost every $t>0$ with respect to the measure ν. Thus, there is a sequence $y_{k} \downarrow 0$ such that simultaneously $g\left(2 y_{k}\right)=0$ and $u\left(x+i y_{k}\right) \in L^{p}(-\infty,+\infty)$. Now, we choose a subsequence of $\left\{u_{n}\right\}_{1}^{\infty}$, for which the limit (3) is attained for $y=y_{1}$. From this subsequence, we choose another one, for which (3) is attained for $y=y_{2}$, etc. Then, by a diagonal operation we choose a subsequence for which we keep the same notation $\left\{u_{n}\right\}_{1}^{\infty}$, and by which

$$
\begin{equation*}
g\left(2 y_{k}\right)=\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty}\left|u_{n}\left(x+i y_{k}\right)-u\left(x+i y_{k}\right)\right|^{p} d x=0 \tag{4}
\end{equation*}
$$

for all $k \geq 1$. Then, in virtue of Remark 1.1, for any $n \geq 1$ and $\rho>0$ the function $u_{n}(z+i \rho)$ belongs to h^{p}. Note that in particular this is so for $\rho=y_{k}$ $(k=1,2, \ldots)$. By (4), for any fixed $k \geq 1$ the sequence $\left\{u_{n}\left(z+i y_{k}\right)\right\}_{n=1}^{\infty}$ is fundamental in h^{p}, and consequently $u_{n}\left(z+i y_{k}\right) \rightarrow U\left(z+i y_{k}\right) \in h^{p}$ as $n \rightarrow \infty$ in the norm of h^{p} over G^{+}. Hence, u_{n} uniformly tends to U inside G^{+}, and $U \in h^{p}$ in any half-plane G_{ρ}^{+}. Thus, by the results of Ch. 7 in [2] we conclude that (1) is true for U and, in addition, for any number $A>0$

$$
\begin{aligned}
& \iint_{\substack{\frac{1}{A}<y<A}}|U(z)-u(z)|^{p} d \mu_{\omega}(z) \leq 2^{p-1}\left\{\iint_{\substack{\frac{1}{A}<y<A<A}}\left|U(z)-u_{n}(z)\right|^{p} d \mu_{\omega}(z)\right. \\
&\left.+\iint_{\substack{\frac{1}{A}<y<A}}\left|u(z)-u_{n}(z)\right|^{p} d \mu_{\omega}(z)\right\} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

The passage $A \rightarrow+\infty$ gives $\|U-u\|_{L_{\omega, \gamma}^{p}}=0$.
Now, let us prove a theorem on an explicit form of the orthogonal projection of the space L_{ω}^{2} to its harmonic subspace h_{ω}^{2}. Assuming that $\omega \in \widetilde{\Omega}_{\alpha}, \alpha>-1$,
we shall deal with the Cauchy-type kernel

$$
C_{\omega}(z):=\int_{0}^{+\infty} e^{i t z} \frac{d t}{I_{\omega}(t)}, \quad I_{\omega}(t):=\int_{0}^{+\infty} e^{-t x} d \omega(x)
$$

which is a holomorphic function in G^{+}[3]. Note that by Lemma 3.1 of [3] for any $\omega \in \widetilde{\Omega}_{\alpha}$ with $\alpha>-1$ and any numbers $\rho>0$ and a noninteger $\beta \in([\alpha]-1, \alpha)$ there exists a constant $M_{\rho, \beta}>0$ such that

$$
\begin{equation*}
\left|C_{\omega}(z)\right| \leq \frac{M_{\rho, \beta}}{|z|^{2+\beta}}, \quad z \in G_{\rho}^{+}:=\{z: \operatorname{Im} z>\rho\} \tag{5}
\end{equation*}
$$

Under the same assumption, we use the Green type potentials constructed by means of the elementary Blaschke type factor

$$
b_{\omega}(z, \zeta):=\exp \left\{\int_{0}^{2 \operatorname{Im} \zeta} C_{\omega}(z-\zeta+i t) \omega(t) d t\right\}, \quad \operatorname{Im} z>\operatorname{Im} \zeta>0
$$

(see formula (23) in [5]), which is a holomorphic function in G^{+}, where it has a unique, simple zero at $z=\zeta$.
Theorem 2.2. If $\omega \in \widetilde{\Omega}_{\alpha}(-1<\alpha<+\infty)$, then the orthogonal projection of L_{ω}^{2} to h_{ω}^{2} can be written in the form

$$
\begin{equation*}
P_{\omega} u(z)=\frac{1}{\pi} \iint_{G^{+}} u(w) \operatorname{Re}\left\{C_{\omega}(z-\bar{w})\right\} d \mu_{\omega}(w), \quad z \in G^{+} \tag{6}
\end{equation*}
$$

Proof. Let $u \in L_{\omega}^{2}$. Then, applying the estimate (5), where $\beta=\alpha-\varepsilon$ with a small $\varepsilon>0$, and Hölder's inequality, one can be convinced that the integral of (6) is absolutely and uniformly convergent inside G^{+}, and hence it represents a harmonic function there. Besides, using the estimate (5) and Hölder's inequality one can prove that for any fixed $\rho>0$ and $\varepsilon>0$ small enough there exists a constant $M_{\rho, \varepsilon}^{\prime}>0$ depending only on ρ and ε, such that $\left|P_{\omega} u\left(R e^{i \vartheta}\right)\right|^{2} \leq$ $M_{\rho, \varepsilon}^{\prime} R^{-(3+2 \alpha-2 \varepsilon)}\left(\arcsin \frac{\rho}{R}<\vartheta<\pi-\arcsin \frac{\rho}{R}\right)$ for $R>0$. Hence, $P_{\omega} u$ satisfies (1). Thus, it remains to show that P_{ω} is a bounded operator which maps L_{ω}^{2} to h_{ω}^{2} and is identical on h_{ω}^{2}.

If $u \in L_{\omega}^{2}$, then for a fixed $z=x+i y \in G^{+}$and $\zeta=\xi+i \eta$

$$
\begin{align*}
P_{\omega} u(z) & =\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{+\infty}\left(\lim _{R \rightarrow+\infty} \int_{-R}^{R} u(\zeta) d \xi \int_{0}^{+\infty} e^{i t(z-\bar{\zeta})} \frac{d t}{I_{\omega}(t)}\right) d \omega(2 \eta)\right\} \\
& =\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{+\infty}\left(\lim _{R \rightarrow+\infty} \int_{0}^{+\infty} e^{i t z} \frac{e^{-t \eta}}{I_{\omega}(t)} d t \int_{-R}^{R} e^{-t \xi} u(\zeta) d \xi\right) d \omega(2 \eta)\right\} \\
& =\operatorname{Re}\left\{\frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} d \omega(2 \eta) \int_{0}^{+\infty} e^{i t z} \frac{e^{-t \eta}}{I_{\omega}(t)} \widehat{u_{\eta}}(t) d t\right\} \tag{7}
\end{align*}
$$

[^0]where the limit $\widehat{u_{\eta}}(t)=$ l.i.m. ${ }_{R \rightarrow+\infty} \int_{-R}^{R} e^{-i t \xi} u(\xi+i \eta) d \xi$ in the $L^{2}(-\infty,+\infty)-$ norm is the Fourier transform of $u(\xi+i \eta) \in L^{2}(-\infty,+\infty)$ for almost every $\eta>0$. Note that the equalities in (7) are true, since by Plancherel's theorem
\[

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} \frac{e^{-t \eta}}{I_{\omega}(t)}\left|\frac{1}{\sqrt{2 \pi}} \int_{-R}^{R} e^{-i t \xi} u(\zeta) d \xi-\widehat{u_{\eta}}(t)\right| d t \\
& \quad \leq\left[C_{\widetilde{\omega}}(2 i \eta)\right]^{1 / 2}\left\|\frac{1}{\sqrt{\pi}} \int_{-R}^{R} e^{-i t \xi} u(\zeta) d \xi-\widehat{u_{\eta}}(t)\right\|_{L^{2}(-\infty,+\infty)} \rightarrow 0
\end{aligned}
$$
\]

as $R \rightarrow+\infty$, where the function $\widetilde{\omega}$ is the Volterra square of ω (see Lemma 4 in [5]). From (7) we conclude that

$$
\begin{equation*}
P_{\omega} u(z)=\operatorname{Re}\left\{\frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} e^{i t z} \frac{\Phi(t)}{\sqrt{I_{\omega}(t)}} d t\right\}, \quad z \in G^{+} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(t):=\frac{1}{\sqrt{I_{\omega}(t)}} \int_{0}^{+\infty} e^{-t \eta} \widehat{u_{\eta}}(t) d \omega(2 \eta) \tag{9}
\end{equation*}
$$

The change of the integration order transforming (7) to (8) is valid, since by (5) for a fixed $y>0$ and a small $\varepsilon>0$ there is a constant $M>0$ such that

$$
\begin{aligned}
\frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} d \omega(2 \eta) & \int_{0}^{+\infty} \frac{e^{-t(y+\eta)}}{I_{\omega}(t)}\left|\widehat{u_{\eta}}(t)\right| d t \\
& \leq \sqrt{2} \int_{0}^{+\infty}\left[C_{\widetilde{\omega}}(2 i(y+\eta))\right]^{1 / 2}\left\|\widehat{u_{\eta}}\right\|_{L^{2}(0,+\infty)} d \omega(2 \eta) \\
& \leq M \sqrt{2}\|u\|_{L_{\omega}^{2}}\left(\int_{0}^{+\infty} \frac{d \omega(2 \eta)}{(y+\eta)^{3+2 \alpha-\varepsilon}}\right)^{1 / 2}<+\infty
\end{aligned}
$$

where $\widetilde{\omega}$ is the Volterra square of ω (see Lemma 4 in [5]). By an application of Hölder's inequality and Plancherel's theorem, from (9) we get $\|\Phi\|_{L^{2}(0,+\infty)} \leq$ $\sqrt{2}\|u\|_{L_{\omega}^{2}}$, while by the Paley-Wiener theorem (see eg. [6], pp. 130-131) from (9) we obtain

$$
\left\|P_{\omega} u\right\|_{L_{\omega}^{2}}^{2} \leq \frac{1}{\pi} \int_{0}^{+\infty} d \omega(2 y) \int_{0}^{+\infty} e^{-2 y t} \frac{|\Phi(t)|^{2}}{I_{\omega}(t)} d t=2\|\Phi\|_{L^{2}(0,+\infty)}^{2}
$$

Thus, P_{ω} is a bounded operator which maps L_{ω}^{2} to h_{ω}^{2}.
Now, let $u \in h_{\omega}^{2}$. Then obviously $u(z+i \eta) \in h^{2}$ for any $\eta>0$. Hence, for any fixed $\eta>0$ the function $u(z+i \eta)$ is the real part of some function $f(z+i \eta)$ from the holomorphic Hardy space H^{2} in G^{+}. Consequently, by the Paley-Wiener Theorem

$$
f(z+i \eta)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} e^{i t z} \widehat{f}_{\eta}(t) d t, \quad z \in G^{+}
$$

where the limit by norm

$$
\begin{equation*}
\widehat{f}_{\eta}(t)=\underset{R \rightarrow+\infty}{\operatorname{l.i.m.}} \frac{1}{\sqrt{2 \pi}} \int_{-R}^{R} e^{-i t \xi} f(\xi+i \eta) d \xi \tag{10}
\end{equation*}
$$

is the Fourier transform of f on the level $i \eta$, and

$$
\|f(\xi+i \eta)\|_{L^{2}(-\infty,+\infty)}^{2}=\|f(z+i \eta)\|_{H^{2}}^{2}=\left\|\widehat{f}_{\eta}\right\|_{L^{2}(0,+\infty)}^{2}
$$

Note that one can prove the independence of the function $e^{t \eta} \widehat{f}_{\eta}(t)$ of $\eta>0$. Further, for any $\eta>0$ and $\zeta=\xi+i \eta$

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} u(\xi+i \eta) C_{\omega}(z-\bar{\zeta}) d \xi & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} e^{i(z+i \eta) t} \widehat{u}_{\eta}(t) \frac{d t}{t I_{\omega}(t)} \\
& =\frac{1}{2 \sqrt{2 \pi}} \int_{0}^{+\infty} e^{i(z+i \eta) t}\left[\widehat{f}_{\eta}(t)+\widehat{\widehat{f}_{\eta}}(t)\right] \frac{d t}{t I_{\omega}(t)}
\end{aligned}
$$

From (10) and the Paley-Wiener theorem, it follows that for $t>0$,

$$
0=\overline{\widehat{f}_{\eta}(-t)}=\underset{R \rightarrow+\infty}{\text { l.i.m. }} \frac{1}{\sqrt{2 \pi}} \int_{-R}^{R} e^{-i t \xi} \overline{f(\xi+i \eta)} d \xi=\widehat{\bar{f}_{\eta}}(t)
$$

Consequently, for any $z \in G_{\eta}^{+}$

$$
\frac{1}{\pi} \int_{-\infty}^{+\infty} u(\xi+i \eta) C_{\omega}(z-\bar{\zeta}) d \xi=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} e^{i(z+i \eta) t} \widehat{f}_{\eta}(t) \frac{d t}{t I_{\omega}(t)}
$$

and hence,

$$
\begin{aligned}
P_{\omega} u(z) & =\operatorname{Re}\left\{\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} e^{i z t} \frac{d t}{t I_{\omega}(t)} \int_{0}^{+\infty} e^{-2 t \eta}\left\{e^{t \eta} \widehat{f}_{\eta}(t)\right\} d \omega(2 \eta)\right\} \\
& =\operatorname{Re}\left\{\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} e^{i(z-i \eta) t} \widehat{f}_{\eta}(t) d t\right\}=\operatorname{Re}\{f(z)\}=u(z)
\end{aligned}
$$

i.e. the operator P_{ω} is an identity on h_{ω}^{2}.

3. Orthogonal Decomposition

In virtue of Remark 2 and Theorem 2 in [5], if $\omega \in \widetilde{\Omega}_{\alpha}(\alpha>-1)$ and ν is the associated Riesz measure of a subharmonic in G^{+}function $U \in L_{\omega}^{1}$ satisfying (1) with $p=2$, then

$$
\iint_{G^{+}}\left(\int_{0}^{2 \operatorname{Im} \zeta} \omega(t) d t\right) d \nu(\zeta)<+\infty \quad \text { and } \quad \iint_{G_{\rho}^{+}} \operatorname{Im} \zeta d \nu(\zeta)<+\infty
$$

[^1]for any $\rho>0$, conditions which provide the convergence of the potential
$$
P_{\omega}(z)=\iint_{G^{+}} \log \left|b_{\omega}(z, \zeta)\right| d \nu(\zeta)
$$
in G^{+}, and U is representable in the form
\[

$$
\begin{align*}
U(z) & =\iint_{G^{+}} \log \left|b_{\omega}(z, \zeta)\right| d \nu(\zeta)+\frac{1}{\pi} \iint_{G^{+}} U(w)\left\{\operatorname{Re} C_{\omega}(z-\bar{w})\right\} d \mu_{\omega}(w) \\
& :=G_{\omega}(z)+u_{\omega}(z), \quad z \in G^{+} \tag{11}
\end{align*}
$$
\]

The next theorem gives an orthogonal decomposition for some ω-weighted classes of functions subharmonic in G^{+}.

Theorem 3.1. If $\omega \in \widetilde{\Omega}_{\alpha}$ with $-1<\alpha<+\infty$, then:
(1) Both summands G_{ω} and u_{ω} in the right-hand side of the representation (11) of any function $U \in L_{\omega}^{2} \cap L_{\omega}^{1}$ satisfying (1) with $p=2$ are of L_{ω}^{2}.
(2) The operator P_{ω} is an identity on h_{ω}^{2} and it maps all Green type potentials $G_{\omega} \in L_{\omega}^{1}$ satisfying (1) with $p=2$ to identical zero.
(3) Any harmonic function $u \in h_{\omega}^{2}$ is orthogonal in L_{ω}^{2} to any Green type potential $G_{\omega} \in L_{\omega}^{1} \cap L_{\omega}^{2}$ satisfying (1) with $p=2$.

Proof. Let $U \in L_{\omega}^{1} \cap L_{\omega}^{2}$ be a function which is subharmonic in G^{+}and satisfies (1) with $p=2$. Then, U is representable in the form (11), where $u \in h_{\omega}^{2}$ by Theorem 2.2. Hence, also $G_{\omega} \in L_{\omega}^{2}$ and satisfies (1) with $p=2$. Further, if $G_{\omega} \in L_{\omega}^{1}$ and satisfies (1) with $p=2$, then applying the operator P_{ω} to both sides of the equality (11) written for G_{ω} we get $P_{\omega} G_{\omega}(z) \equiv 0, z \in G^{+}$. Since P_{ω} is the orthogonal projection of L_{ω}^{2} to its harmonic subspace h_{ω}^{2}, we conclude that

$$
\left(P_{\omega} U, G_{\omega}\right)_{\omega}=\left(P_{\omega} u, G_{\omega}\right)_{\omega}=\left(P_{\omega}^{*} u, G_{\omega}\right)_{\omega}=\left(u, P_{\omega} G_{\omega}\right)_{\omega}=0
$$

At last, if u is a function of h_{ω}^{2} and a Green type potential $G_{\omega} \in L^{1} \cap L^{2}$ and satisfies (1) with $p=2$, then by Theorem 2.2

$$
\left(u, G_{\omega}\right)_{\omega}=\left(P_{\omega} u, G_{\omega}\right)_{\omega}=\left(P_{\omega}^{*} u, G_{\omega}\right)_{\omega}=\left(u, P_{\omega} G_{\omega}\right)_{\omega}=0
$$

References

[1] M. Djrbashian, On the representability problem of analytic functions, Soobsch. Inst. Matem. i Mekh. Akad. Nauk Arm. SSR 2 (1948).
[2] A. Jerbashian, Functions of α-Bounded Type in the Half-Plane, Advances in Complex Analysis and Applications, Springer, 2005.
[3] , On $A_{\omega, \gamma}^{p}$ Spaces in the Half-Plane, in: Operator Theory: Advances and Applications 158 (2005), 141-158, Birkhäuser Verlag, Basel/Switzerland.
[4] , Orthogonal decomposition of functions subharmonic in the unit disc, in: Operator Theory: Advances and Applications 190 (2009), 335340, Birkhäuser Verlag, Basel/Switzerland.
[5] A. Jerbashian and V. Jerbashian, Functions of ω-bounded type in the halfplane, Calculation Methods and Function Theory (CMFT) 7 (2007), no. 2, 205-238.
[6] P. Koosis, Introduction to H_{p} spaces, Cambridge University Press, 1998.
[7] J. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Coll. Publ. XX, Edwards Brothers, Inc., Ann Arbor, Michigan, 1956.
[8] W. Wirtinger, Über eine Minimumaufgabe im Gebiet der analytischen Functionen, Monatshefte für Math. und Phys. 39 (1932).
(Recibido en abril de 2017. Aceptado en diciembre de 2017)

> Instituto de Matemáticas
> Universidad de Antioquia
> Facultad de Ciencias Exactas y Naturales Calle 67 No. $53-108$ Medellín, Colombia
> e-mail: armen_jerbashian@yahoo.com e-mail: dafevar_-754@hotmail.com

[^2]
[^0]: Volumen 52, Número 1, Año 2018

[^1]: Volumen 52, Número 1, Año 2018

[^2]: Volumen 52, Número 1, Año 2018

