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Volumen 51(2017)1, páginas 103-117

A convergent iterative method for a

logistic chemotactic system

Un método iterativo convergente para un sistema loǵıstico
quimiotáctico

Jorge Mauricio Ruiz VeraB

Universidad Nacional de Colombia, Bogotá, Colombia

Abstract. In this paper we study a nonlinear system of differential equations
arising in chemotaxis. The system consists of a PDE that describes the evolu-
tion of a population and another which models the concentration of a chemical
substance. In particular, we prove the existence and uniqueness of nonnega-
tive solutions via an iterative method. First, we generate a Cauchy sequence
of approximate solutions from a linear modification of the original system.
Next, some uniform bounds on the solutions are used to find a subsequence
that converges weakly to the solution of the original system.
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Resumen. En este art́ıculo estudiamos un sistema no lineal de ecuaciones di-
ferenciales que aparecen en quimiotaxis. El sistema consiste de una EDP que
describe la evolución de una población y otra que modela la concentración
de una sustancia qúımica. En particular, probamos la existencia y unicidad
de soluciones no negativas v́ıa un método iterativo. Primero generamos una
sucesión de Cauchy de soluciones aproximadas a partir de una modificación
lineal del sistema original. Luego, algunas cotas uniformes de las soluciones son
usadas para encontrar una subsucesión débilmente convergente a la solución
del sistema original.

Palabras y frases clave. ecuaciónes de reacción-difusión, solución débil, conver-
gencia.
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1. Introduction

Chemotaxis systems have received considerable attention because they describe
several biological phenomena such as leukocyte movement, self-organization
during embryonic development, wound healing and cancer growth [8, 9]. These
are phenomena where a population of cells moves towards a chemical signal
emitted by a substance, or another population, called chemoattractant. Various
forms of the system and boundary condition have been studied (cf. [5, 3, 6, 12]).

Of special interest is the following Chemotaxis system:

∂tc−Dc4c =
sρ

β + ρ
− γc, in Ω× (0, T ), (1)

∂tρ−Dρ4ρ+ α∇ · (ρ∇c) = rρ(ρ∞ − ρ), in Ω× (0, T ), (2)

∂c

∂η
= 0,

∂ρ

∂η
= 0 on ∂Ω× (0, T ), (3)

c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), on Ω. (4)

where Ω ⊂ RN , (N = 1, 2, 3) is a bounded domain with smooth boundary ∂Ω,
∂/∂η denotes the derivative with respect to the outer normal of ∂Ω and T > 0
is a fixed time.

The above problem arises from the study of pattern formation on animal
coats, where pigment cells both respond to and produce their own chemoat-
tractant [11, 10, 7]. In the biological interpretation ρ = ρ(x, t) and c = c(x, t)
represent the pigment cell density and the chemoattractant concentration re-
spectively at position x and time t. The constants Dρ and Dc are the cells
and chemoattractant diffusion coefficient respectively, and α is the chemotaxis
coefficient. It is assumed that cell population grows logistically where rρ∞ is
the linear mitotic growth rate with r and ρ∞ both nonnegative constants. The
chemoattractant production by the cells is given by a simple Michaelis-Menten
kinetics and its consumption is linear. The constants s, β and γ are nonnegative.

Concerning to the well-posedness of the system (1)-(4) many advances have
been done in the recent years [13, 2] and [1]. Specially, in [1] is proven the
existence and uniqueness of classical solution for all positive values of α, ρ∞
and r. The proof uses semigroup techniques, parabolic Schauder estimates and
contraction arguments.

The aim of this paper is to get the local-in-time existence and uniqueness
of a weak solution to (1)-(4) in one, two and three dimensions with proper
assumptions on the initial data. Before stating our main results, we give the
definition of a weak solution.

Definition 1.1. A weak solution of (1) - (4) is a pair (c, ρ) of functions sat-
isfying the following conditions, c(x, t) ≥ 0 and ρ(x, t) ≥ 0, for a.e (x, t) ∈
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Ω× (0, T ),

c, ρ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω))

∂tc, ∂tρ ∈ L2(0, T ;L2(Ω))

and for all φ ∈ H1(Ω),∫
Ω

∂tc φ dx+

∫
Ω

Dc∇c∇φ dx+

∫
Ω

γc φ dx =

∫
Ω

( sρ

β + ρ

)
φ dx, (5)∫

Ω

∂tρ φ dx+

∫
Ω

Dρ∇ρ∇φ dx−
∫

Ω

α(ρ∇c)∇φ dx =

∫
Ω

rρ(ρ∞ − ρ)φ dx, (6)

a.e. in [0, T ].

The main result is the following existence and uniqueness theorem for weak
solutions.

Theorem 1.2. If c0, ρ0 ∈ H3(Ω) with 0 ≤ c0 and 0 ≤ ρ0 ≤ ρ∞ in Ω, then
there exists T > 0 such that the system (1) - (4) has a unique weak solu-
tion in the sense of Definition 1.1. Furthermore, c and ρ belong to the space
L2(0, T ;H4(Ω)) ∩ L∞(0, T ;H3(Ω)).

Our proof is based on generate a convergent sequence of approximate so-
lutions of the nonlinear system (1)-(4). To this aim, we perform a successive
substitution strategy, such that the nonlinear system (1)-(4) is replaced by a
sequence of linear partial differential equations.

We start taking as initial value of the iteration the weak solutions c0, ρ0 ∈
L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) of the homogeneous system∂tc

0 −Dc4c0 + γc0 = 0, in Ω× (0, T ),
∂c0

∂η
= 0, on ∂Ω× (0, T ), c0(x, 0) = c0(x), for x ∈ Ω.

(7)

∂tρ
0 −Dρ4ρ0 + α∇ · (ρ0∇c0) = 0 in Ω× (0, T )

∂ρ0

∂η
= 0 on ∂Ω× (0, T ), ρ0(x, 0) = ρ0(x) for x ∈ Ω.

(8)

In addition, for k ∈ N0 let ck+1, ρk+1 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) be
the weak solutions to the nonhomogeneous system
∂tc

k+1 −Dc4ck+1 + γck+1 =
sρk

β + ρk
, in Ω× (0, T ),

∂ck+1

∂η
= 0 on ∂Ω× (0, T ), ck+1(x, 0) = c0(x) for x ∈ Ω,

(9)
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∂tρ
k+1 −Dρ4ρk+1 + α∇ · (ρk+1∇ck+1) = rρk(ρ∞ − ρk), in Ω× (0, T ),

∂ρk+1

∂η
= 0, on ∂Ω× (0, T ), ρk+1(x, 0) = ρ0(x) for x ∈ Ω.

(10)
To prove theorem 1.2 we first prove existence and uniqueness of weak solutions
to the homogeneous problems (7) and (8) by applying the standard theory for
linear PDE. These solutions c0 and ρ0 are sufficient regular, that the standard
theory for linear PDE guarantee the existence and uniqueness of the succes-
sive iterates (ck, ρk) k = 1, 2, ... . Next, we show that the generated solutions
sequence is a bounded Cauchy sequence, and its limit is the solution of (1)-(4).

2. Detail of Proof

Lemma 2.1. (Properties of iterative Sequence).Under the assumptions of theo-
rem 1.2, there exists T > 0 such that:

(i) There exists a unique weak solution to the system (7)-(8) and (9)-(10) with
conditions (3) and (4) and for every k ∈ N0 it holds that

ck, ρk ∈ L2(0, T ;H4(Ω)) ∩ L∞(0, T ;H3(Ω)), (11)

∂tc
k, ∂tρ

k ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)). (12)

For adequate constants C(Ω, T ) the following estimates are satisfied

ess sup
t∈[0,T ]

[
‖∂tck‖H1(Ω) + ‖ck‖H3(Ω)

]
+ ‖ck‖L2(0,T ;H4(Ω)) + ‖∂tck‖L2(0,T ;H2(Ω))

≤ C(Ω, T )
[
‖c0‖H3Ω) + ‖f‖L2(0,T ;H2(Ω)) + ‖∂tf‖L2(0,T ;L2(Ω))

]
, (13)

ess sup
t∈[0,T ]

[
‖∂tρk‖H1(Ω) + ‖ρk‖H3(Ω)

]
+ ‖ρk‖L2(0,T ;H4(Ω)) + ‖∂tρk‖L2(0,T ;H2(Ω))

≤ C(Ω, T )
[
‖ρ0‖H3(Ω) + ‖g‖L2(0,T ;H2(Ω)) + ‖∂tg‖L2(0,T ;L2(Ω))

]
. (14)

(ii) The functions ρk, ck satisfy for all k ∈ N0, the following inequalities

0 ≤ ck(x, t), 0 ≤ ρk(x, t) ≤ ρ∞ for a.e x ∈ Ω, t ∈ (0, T ) (15)

Proof. The proof is by induction on k.

Verification for k=0: We prove, that the lemma holds for the system (7)-(8).
If we write c0(x, t) = u(x, t)e−γt, then

(∂tu− γu)e−γt = Dce
−γt4u− γue−γt

which simplifies to
∂tu = Dc4u.
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Hence, c0(x, t) equals some solution u(x, t) of the diffusion solution, multiplied
by an exponentially decay term. Since c0 ∈ H3(Ω) and the compatibility con-
ditions are fulfilled trivially, the regularity theory of linear parabolic equations
[4] implies that

c0 ∈ L2(0, T ;H4(Ω)) ∩ L∞(0, T ;H3(Ω)) (16)

c0t ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) (17)

and

ess sup
t∈[0,T ]

[
‖c0t‖H1(Ω) + ‖c0‖H3(Ω)

]
+ ‖c0‖L2(0,T ;H4(Ω))

+ ‖c0t‖L2(0,T ;H2(Ω)) ≤ C(Ω, T )‖c0‖H3(Ω).

(18)

That c0(x, t) ≥ 0 a.e in Ω× (0, T ) follows from the maximum principle for the
diffusion equation.

To prove that ρ0 satisfies the lemma, we start writing the equation (8) as
follows

∂ρ0

∂t
−Dρ4ρ0 + α∇c0 · ∇ρ0 + α 4c0 ρ0 = 0. (19)

Since c0 is known, equation (19) is linear. To show existence and uniqueness of
ρ0 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) it is sufficient to see that

(a) The coefficients α∇c0 and α 4c0 belong to L∞(ΩT ).

and

(b) There exist some µ > 0 and κ ≥ 0 such that for all 0 ≤ t ≤ T

µ‖ρ0‖2H1(Ω) ≤ B[ρ0, ρ0; t] + κ‖ρ0‖2L2(Ω). (20)

Where B[ρ, v, t] denotes the bilinear form

B[ρ, v; t] :=

∫
Ω

(
Dρ∇ρ0 ∇v + α∇c0 · ∇ρ0 v + α 4c0 ρ0 v

)
dx. (21)

for ρ, v ∈ H1(Ω), a.e. 0 ≤ t ≤ T .

Item (a) follows from the fact that c0 ∈ L2(0, T ;H4(Ω))∩L∞(0, T ;H3(Ω)) and
the Sobolev embedding of H2(Ω) in C(Ω̄) for Ω open subset of RN , N = 1, 2, 3.

In order to prove (b), first observe that by the uniformly elliptic property,
there exists a constant θ > 0 such that∫

Ω

Dρ∇ρ0∇ρ0 ≥ θ‖∇ρ0‖2L2(Ω).
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Furthermore, for all ε > 0,∫
Ω

(∇c0 · ∇ρ0)ρ0 dx ≥ −‖∇c0‖L∞(ΩT )‖∇ρ0‖L2(Ω)‖ρ‖L2(Ω)

≥ −1

2
‖∇c0‖L∞(Ω)

[
ε‖∇ρ0‖2L2(Ω) +

1

ε
‖ρ0‖2L2(Ω)

]
(22)

and ∫
Ω

4c0 (ρ0)2 dx ≥ −‖4c0‖L∞(ΩT )‖ρ0‖2L2(Ω).

Thus, for all ε ∈ (0, 2θ/‖∇c0‖L∞(ΩT )), the inequality (20) holds, with

κ = ‖4c0‖L∞(ΩT )+
1

2ε
‖∇c0‖L∞(ΩT ) and µ = θ− ε

2
‖∇c0‖L∞(ΩT ). (23)

Applying, the theory of linear parabolic equations in [4], we get the existence
and uniqueness of the weak solution ρ0. In addition, since the intial data ρ0 is
in H3(Ω), theorem 7.16 in [4] implies that ρ0 satisfies (11), (12) and (14).

The task is now to show that ρ0 ≥ 0. We test with (ρ0)− := min(ρ0, 0) the
variational formulation of (7), then

d

dt
(ρ0, (ρ0)−) +B[ρ0, (ρ0)−; t] = 0. (24)

After adding κ‖(ρ0)−‖2L2(Ω) to both sides of (24), and applying property (20),
we get

d

dt
‖(ρ0)−‖2L2(Ω) ≤ κ‖(ρ

0)−‖2L2(Ω). (25)

By Gronwall’s lemma, we can now deduce that

‖(ρ0)−(t)‖2L2(Ω) ≤ ‖(ρ
0)−(0)‖2L2(Ω) = 0 (26)

since (ρ0)−(0) = ρ0 ≥ 0 by assumption. Then (ρ0)−(t) = 0 almost everywhere
in Ω× (0, T ), and therefore ρ0 ≥ 0 almost everywhere in Ω× (0, T ).

To show the upper bound of ρ0, we use the same trick but test now with
(ρ0 − ρ∞)+ := max(ρ0 − ρ∞, 0). As ρ∞ is a constant we have ∂tρ∞ = ∇ρ∞ =
∆ρ∞ = 0 and therefore

d

dt
(ρ0, (ρ0 − ρ∞)+) +B[ρ0, (ρ0 − ρ∞)+; t] = 0

is equivalent to

1

2

d

dt
‖(ρ0 − ρ∞)+‖2L2(Ω) +B[(ρ0 − ρ∞)+, (ρ0 − ρ∞)+; t] = 0.
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Property (20) of B implies

d

dt
‖(ρ0 − ρ∞)+‖2L2(Ω) ≤ κ‖(ρ

0 − ρ∞)+‖2L2(Ω).

Now, we use Gronwall’s lemma and the fact that ρ0 ≤ ρ∞ to deduce

‖(ρ0 − ρ∞)+‖2L2(Ω) ≤ ‖(ρ
0(0)− ρ∞)+‖2L2(Ω) = 0.

Therefore (ρ0−ρ∞)+ = 0 almost everywhere in Ω×(0, T ), which yields ρ0 ≤ ρ∞
almost everywhere in Ω× (0, T ).

Induction hypothesis: Assume the lemma holds for k.

Induction step (k → k + 1): By induction hypothesis 0 ≤ ρk(x, t) ≤ ρ∞ for a.e
x ∈ Ω, t ∈ [0, T ], then it is easy to see that the right hand sides

f(ρk(x, t)) :=
sρk

β + ρk
and g(ρk(x, t)) := rρk(ρ∞ − ρk) (27)

of equations (9) and (10) belong to the space L2(0, T ;L2(Ω)). Indeed∫ T

0

‖f(ρk)‖2L2(Ω) dt =

∫ T

0

∥∥∥ sρk

(β + ρk)

∥∥∥2

L2(Ω)
dt (28)

=

∫ T

0

∫
Ω

( sρk

(β + ρk)

)2

dx dt (29)

≤
∫ T

0

∫
Ω

s2 dx dt (30)

≤ s2|Ω|T (31)

and ∫ T

0

‖g(ρk)‖2L2(Ω) dt =

∫ T

0

∥∥∥rρk(ρ∞ − ρk)
∥∥∥2

L2(Ω)
dt (32)

=

∫ T

0

∫
Ω

(rρk(ρ∞ − ρk))2dx dt (33)

≤
∫ T

0

∫
Ω

r2ρ4
∞

16
dx dt (34)

≤ r2ρ4
∞

16
|Ω|T. (35)

Now the linear theory yields the existence of a unique weak solution of
(9) and (10) with initial data (4) and boundary conditions (3). The solution
(ck+1, ρk+1)) satisfies

ck+1, ρk+1 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)).
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In order to see that ck+1 and ρk+1 satisfy the regularity properties (13) and
estimate (14), we apply theorem 7.1.6 in [4]. Then, it is sufficient to prove that
f(ρk) and g(ρk) belongs to the space L2(0, T ;H2(Ω)) and ∂tf(ρk), ∂tg(ρk) ∈
L2(0, T ;L2(Ω)). To this end, we observe that:

• The functions f(x) and g(x) in (27) are continuous differentiable functions
for all x ∈ R+.

• By induction hypothesis ck and ρk belong to H4(Ω) and the Sobolev
embedding H4(Ω) ⊂ C2(Ω̄), we have that ck and ρk are C2(Ω̄) functions.
Further, ρ∞ ≥ ρk ≥ 0 almost everywhere in Ω× (0, T ).

Hence f(ρk(x, t)) and g(ρk(x, t)) belong to H2(Ω) a.e. t ∈ [0, T ] and∫ T

0

‖f(ρk)‖2H2(Ω) dt <∞ and

∫ T

0

‖g(ρk)‖2H2(Ω) dt <∞

i.e., f(ρk(x, t)), g(ρk(x, t)) ∈ L2(0, T ;H2(Ω)).

In addition, ∂tf(ρk) ∈ L2(0, T ;L2(Ω)) since∫ T

0

‖∂tf(ρk)‖2L2(Ω) dt =

∫ T

0

∥∥∥ sβ

(β + ρk)2
∂tρ

k
∥∥∥2

L2(Ω)
dt (36)

=

∫ T

0

∫
Ω

( sβ

(β + ρk)2
∂tρ

k
)2

dx dt (37)

≤
∫ T

0

( s
β

)2
∫

Ω

(∂tρ
k)2dx dt (38)

=

∫ T

0

( s
β

)2

‖∂tρk‖2L2(Ω)dt (39)

=
( s
β

)2

‖∂tρk‖2L(0,T ;L2(Ω)) (40)

≤ C(Ω, T )‖ρ0‖2H3(Ω). (41)

We next show that ∂tg(ρk) belongs to L2(0, T ;L2(Ω)):∫ T

0

‖∂tg(ρk)‖2L2(Ω) dt =

∫ T

0

∥∥∥r(ρ∞ − 2ρk) ∂tρ
k
∥∥∥2

L2(Ω)
dt (42)

=

∫ T

0

∫
Ω

(
r(ρ∞ − 2ρk) ∂tρ

k
)2

dx dt (43)

(44)
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≤
∫ T

0

(rρ∞)2

∫
Ω

(∂tρ
k)2dx dt (45)

=

∫ T

0

(rρ∞)2‖∂tρk‖2L2(Ω)dt (46)

= (rρ∞)2‖∂tρk‖2L(0,T ;L2(Ω)) (47)

≤ C(Ω, T )‖ρ0‖2H3(Ω). (48)

We now turn to show that ck+1(x, t) ≥ 0. Consider the weak formulation
of (9) and test with (ck+1)− :=min(ck+1, 0), then∫

Ω

∂tc
k+1 (ck+1)− dx+

∫
Ω

Dc∇ck+1∇(ck+1)− dx+

∫
Ω

γck+1 (ck+1)− dx

=

∫
Ω

( sρk

β + ρk

)
(ck+1)− dx.

Hence

1

2

d

dt

∫
Ω

|(ck+1)−|2 dx+Dc

∫
Ω

|∇(ck+1)−|2 dx+ γ

∫
Ω

|(ck+1)−|2 dx

=

∫
Ω

( sρk

β + ρk

)
(ck+1)− dx.

which gives by integration in time

1

2

∫
Ω

|(ck+1)−(t)|2 dx+Dc

∫ t

0

∫
Ω

|∇(ck+1)−|2 dx ds+ γ

∫ t

0

∫
Ω

|(ck+1)−|2 dx ds

=

∫
Ω

∫ t

0

( sρk

β + ρk

)
(ck+1)− dx ds+

1

2

∫
Ω

|(ck+1)−(0)|2 dx.

As (ck+1)−(0) = (c0)− = 0 and ρk ≥ 0 by induction hypothesis, we deduce

1

2

∫
Ω

|(ck+1)−(t)|2 dx+Dc

∫ t

0

∫
Ω

|∇(ck+1)−|2 dx ds+ γ

∫ t

0

∫
Ω

|(ck+1)−|2 dx ds ≤ 0,

that is to say that (ck+1)− = 0 a.e in (0, T )×Ω and therefore ck+1 ≥ 0 a.e in
Ω× (0, T ).

Remark 2.2. If γ ≥ 1 then ck+1(x, t) ≤ S a.e in Ω× (0, T ).

It remains to show that 0 ≤ ρk+1 ≤ ρ∞. For the positivity of ρk+1, we use
the variational formulation of (10) and test with (ρk+1)− := min(ρk+1, 0), this
yields

d

dt
(ρk+1, (ρk+1)−) +B[ρk+1, (ρk+1)−; t] = (rρk(ρ∞ − ρk), (ρk+1)−). (49)
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By induction hypothesis 0 ≤ ρk ≤ ρ∞, then from (49) we get that

1

2

d

dt
‖(ρk+1)−‖2L2(Ω) +B[(ρk+1)−, (ρk+1)−; t] ≤ 0.

Adding to both sides κ‖(ρk+1)−‖2L2(Ω) with κ as in (23), we obtain

1

2

d

dt
‖(ρk+1)−‖2L2(Ω) ≤ κ‖(ρ

k+1)−‖2L2(Ω)

and applying Gronwall’s lemma, we can deduce that

1

2
‖(ρk+1(t))−‖2L2(Ω) ≤ ‖(ρ

k+1(0))−‖2L2(Ω)e
κt = 0

since ρk+1(0) = ρ0 ≥ 0 by assumption. This yields (ρk+1(t))− = 0 a.e in
Ω× (0, T ) and therefore ρk+1 ≥ 0 a.e in Ω× (0, T ).

Finally, we have to show that ρk+1 is bounded from above by ρ∞ a.e on
Ω× (0, T ). Testing the variational formulation of (10) with (ρk+1 − ρ∞)+, we
find by the rules of calculus Sobolev spaces that

1

2

d

dt
‖(ρk+1 − ρ∞)+‖2L2(Ω) +B[(ρk+1 − ρ∞)+, (ρk+1 − ρ∞)+; t]

= (rρk(ρ∞ − ρk), (ρk+1 − ρ∞)+).
(50)

After adding κ‖(ρk+1−ρ∞)+‖2L2(Ω) to both sides of (50), taking in account the

inequality (20) and that ρk is bounded, we have

1

2

d

dt
‖(ρk+1 − ρ∞)+‖2L2(Ω) ≤ κ‖(ρ

k+1 − ρ∞)+‖2L2(Ω) + (rρk(ρ∞ − ρk), (ρk+1 − ρ∞)+)

d

dt
‖(ρk+1 − ρ∞)+‖2L2(Ω) ≤ 2κ‖(ρk+1 − ρ∞)+‖2L2(Ω) + r2 ρ

4
∞

8
‖(ρk+1 − ρ∞)+‖2L2(Ω)

≤ (2κ+ r2 ρ
4
∞

8
)‖(ρk+1 − ρ∞)+‖2L2(Ω). (51)

Gronwall´s inequality and the fact that ρk+1(0) ≤ ρ∞ imply

‖(ρk+1(t)− ρ∞)+‖2L2(Ω) ≤ ‖(ρ
k+1(0)− ρ∞)+‖2L2(Ω)e

∫ t
0

2κ+r2 ρ
4
∞
8 ds = 0.

Thus ρk+1 ≤ ρ∞ a.e in Ω× (0, T ).

This completes the induction proof. �X

Proof. of Theorem 1.2

Existence: We show that the iterative sequence constructed above is a
Cauchy sequence, which will lead to the existence of the solution (c, ρ) as its
limit.
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Let k ∈ N be arbitrary. Since ck and ck+1 solve (9) with the same initial
data and ck, ck+1 ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω)), (by Lemma 2.1), then
theorem 7.1.5 in [4] implies

‖ck+1 − ck‖2L∞(0,T,H1(Ω)) + ‖ck+1 − ck‖2L2(0,T,H2(Ω))

≤ C(Ω, T )‖f(ρk)− f(ρk−1)‖2L2(0,T,L2(Ω))

= C(Ω, T )

∫ T

0

∥∥∥ sρk

β + ρk
− sρk−1

β + ρk−1

∥∥∥2

L2(Ω)
dt

= C(Ω, T )

∫ T

0

∥∥∥ sβ(ρk − ρk−1)

(β + ρk)(β + ρk−1)

∥∥∥2

L2(Ω)
dt

≤ C(Ω, T )
( s
β

)2
∫ T

0

‖ρk − ρk−1‖2L2(Ω)dt (52)

≤ C(Ω, T )
( s
β

)2

T‖ρk − ρk−1‖2L∞(0,T ;H1(Ω)) (53)

for 0 < T ≤ T1 with T1 = min{ 1
8 ,

β2

C(Ω,T )s2 }.

Similarly, due to (10) and theorem 7.1.5 in [4], we estimate

‖ρk+1 − ρk‖2L∞(0,T,H1(Ω))

≤ C(Ω, T ) ‖∇(ck+1 − ck)∇ρk + ∆(ck+1 − ck)ρk + g(ρk)− g(ρk−1)‖2L2(0,T,L2(Ω))

≤ 3C(Ω, T )

∫ T

0

{
‖∇(ck+1 − ck)∇ρk‖2L2(Ω) + ‖∆(ck+1 − ck)ρk‖2L2(Ω)

+ ‖g(ρk)− g(ρk−1)‖2L2(Ω)

}
dt

≤ 3C(Ω, T )

∫ T

0

‖∇(ck+1 − ck)∇ρk‖2L2(Ω)dt+ 3C(Ω, T )

∫ T

0

‖∆(ck+1 − ck)ρk‖2L2(Ω)dt

+ 3C(Ω, T )

∫ T

0

‖g(ρk)− g(ρk−1)‖2L2(Ω)dt

= I1 + I2 + I3. (54)

Now we estimate each of the three terms separately

As n ≤ 3, by the Sobolev embedding there exist C1 > 0 such that

‖w‖L4(Ω) ≤ C1‖w‖H1(Ω) (55)
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for all w ∈ H1(Ω). Then

I1 ≤ 3 C(Ω, T )

∫ T

0

∫
Ω

(∇(ck+1 − ck))2 (∇ρk)2dxdt (56)

≤ 3 C(Ω, T )

∫ T

0

(∫
Ω

(∇(ck+1 − ck))4dx
)1/2 (∫

Ω

(∇ρk)4dx
)1/2

dt (57)

≤ 3 C(Ω, T )

∫ T

0

‖∇(ck+1 − ck)‖2L4(Ω) ‖∇ρ
k‖2L4(Ω)dt

(55)

≤ 3 C(Ω, T )2C4
1

∫ T

0

‖∇(ck+1 − ck)‖2H1(Ω) ‖∇ρ
k‖2H1(Ω)dt

(14)

≤ 3 C(Ω, T )2 C4
1 ‖ρ0‖2H3(Ω)

∫ T

0

‖∇(ck+1 − ck)‖2H1(Ω) dt

≤ 3 C(Ω, T )2 C4
1 ‖ρ0‖2H3(Ω)

∫ T

0

‖ck+1 − ck‖2H2(Ω) dt

(53)

≤ 3 C(Ω, T )4 C4
1 ‖ρ0‖2H3(Ω)

s2

β2
T ‖ρk − ρk−1‖2L∞(0,T ;H1(Ω) (58)

for 0 < T ≤ T2 with T2 = min{T1,
β2

3C(Ω,T )4c41s
2‖ρ0‖2

H3(Ω)

}.

Further, for 0 < T ≤ T3 with T3 = min{T1,
β2

3C(Ω,T )2s2ρ2
∞
} we have

I2 ≤ 3 C(Ω, T )

∫ T

0

‖∆(ck+1 − ck)‖2L2(Ω)‖ρ
k‖2L∞(Ω)dt

≤ 3 C(Ω, T )ρ2
∞

∫ T

0

‖ck+1 − ck‖2H2(Ω)dt

(53)

≤ 3 C(Ω, T )2 ρ2
∞
s2

β2
T1 ‖ρk − ρk−1‖2L∞(0,T ;H1(Ω), (59)

and

I3 = 3 C(Ω, T )

∫ T

0

‖rρk(ρ∞ − ρk)− rρk−1(ρ∞ − ρk−1)‖2L2(Ω)dt

= 3 C(Ω, T )

∫ T

0

‖rρ∞(ρk − ρk−1)(1− 1

ρ∞
(ρk + ρk−1))‖2L2(Ω)dt

= 3 C(Ω, T )

∫ T

0

∫
Ω

|r2ρ2
∞(ρk − ρk−1)2(1− 1

ρ∞
(ρk + ρk−1))2|dx dt

(60)
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≤ 3 C(Ω, T )

∫ T

0

∫
Ω

|r2ρ2
∞(ρk − ρk−1)2(1 +

1

ρ2
∞

(ρk + ρk−1))2|dx dt

≤ 15 C(Ω, T )r2ρ2
∞

∫ T

0

∫
Ω

|(ρk − ρk−1)2|dx dt

≤ 15 C(Ω, T )r2ρ2
∞

∫ T

0

‖(ρk − ρk−1)‖2L2(Ω)dt

≤ 15 C(Ω, T )r2ρ2
∞

∫ T

0

‖(ρk − ρk−1)‖2H1(Ω)dt

≤ 15 C(Ω, T )r2ρ2
∞T ‖(ρk − ρk−1)‖2L∞(0,T ;H1(Ω)) (61)

for 0 < T ≤ T4 with T4 = min{T3,
1

15C(Ω,T )2r2ρ2
∞
}.

Altogether, (53), (58), (59) and (61) yield

‖ck+1−ck‖2L∞(0,T,H1(Ω))+‖ρ
k+1−ρk‖2L∞(0,T,H1(Ω)) ≤

1

2
‖ρk−ρk−1‖2L∞(0,T,H1(Ω))

(62)
whenever 0 < T ≤ T4. That is, for T := T4 the sequences {ck} and {ρk}
are Cauchy sequences in L∞(0, T ;H1(Ω)) and there are functions c and ρ in
L∞(0, T ;H1(Ω)) such that

ck → c and ρk → ρ strongly in L∞(0, T ;H1(Ω)).

Since L2(0, T ;H4(Ω)) and L2(0, T ;H2(Ω)) are Hilbert spaces, the uniform
bounds (13) and (14) imply that for subsequences ckl and ρkl

ckl ⇀ c; ρkl ⇀ ρ weakly in L2(0;T ;H4(Ω));

∂tc
kl ⇀ c; ∂tρ

kl ⇀ ρ weakly in L2(0, T ;H2(Ω)).

Using all these convergences in the weak formulation of (9), (10) and letting
l → ∞, we conclude that (c, ρ) is a weak solution to (1)-(4) and also satisfies
(11) -(15).

Uniqueness if (c1, ρ1) and (c2, ρ2) are two weak solutions of (1)-(4), they
satisfy (62). Then

‖c1 − c2‖2L∞(0,T,H1(Ω)) + ‖ρ1 − ρ2‖2L∞(0,T,H1(Ω)) ≤
1

2
‖ρ1 − ρ2‖2L∞(0,T,H1(Ω))

for T := T4. Therefore, both solutions coincide.

Hence, the proof of theorem 1.2 is complete. �X
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