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ABSTRACT. We prove that the real functions f and g, defined on a real interval [a, b],
satisfy

f

(
xy

tx+ (1− t)y

)
≤ tg (y) + (1− t)g (x) ,

for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a harmonically convex function
h : [a, b] → R such that f (x) ≤ h (x) ≤ g (x) for all x ∈ [a, b]. We also obtain an
approximate convexity result, namely we prove a stability result of Hyers-Ulam type
for harmonically convex functions.
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RESUMEN. Demostramos que las funciones reales f y g, definidas en un intervalo
[a, b], satisfacen

f

(
xy

tx+ (1− t)y

)
≤ tg (y) + (1− t)g (x)

para todo x, y ∈ [a, b] y t ∈ [0, 1] si y sólo si existe una función armónicamente
convexa h : [a, b] → R tal que f (x) ≤ h (x) ≤ g (x) para cada x ∈ [a, b]. También
obtenemos un resultado de aproximación convexa, es decir, se demuestra un resultado
de estabilidad del tipo de Hyers-Ulam para funciones armónicamente convexas.
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1. Introduction

Due to its important role in mathematical economics, engineering, management science,
and optimization theory, convexity of functions and sets has been studied intensively;
see [3, 5, 7, 9, 10, 11, 16, 18, 19] and the references therein. Consequently, the classical
concept of convex function has been extended and generalized in different directions.

Most important generalizations can be found in works that change the standard re-
quirements for a function to be convex, thereby introducing new notions such as being
quasi-convex (see [8]), pseudo-convex (see [1]), strongly convex [24], approximately
convex [4], midconvex (see [25]), h-convex [27] , etc.

In this article, we are dealing with a recent notion of generalized convexity, introduced
by I. ISCAM in [16], where he gave the following definition of harmonically convex
functions.

Definition 1 ([16]). Let I be an interval in R− {0}. A function f : I → R is said to be
harmonically convex on I if the inequality

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x), (1)

holds, for all x, y ∈ I and t ∈ [0, 1].

Hence, harmonically convex functions relate the harmonic mean of two points to the
arithmetic mean of the function values at the two points.

Proposition 1 ([16]). Let I ⊆ R\{0} be a real interval and f : I → R a function. Then:

• If I ⊆ (0,+∞) and f is convex and nondecreasing, then f is harmonically convex.

• If I ⊆ (0,+∞) and f is harmonically convex and nonincreasing, then f is convex.

• If I ⊆ (−∞, 0) and f is harmonically convex and nondecreasing, then f is convex.

• If I ⊆ (−∞, 0) and f is convex and nonincreasing, then f is harmonically convex.

For some recent results, investigations, and extensions of harmonically convex func-
tions interested readers are referred to [6, 14, 15, 16, 22, 23, 28].

In [6] we can find the following simple but important fact.

Theorem 1 ([6]). If [a, b] ⊂ I ⊆ (0,+∞) and we consider the function g :

[
1

b
,
1

a

]
→ R

defined by g(t) = f

(
1

t

)
, then f is harmonically convex on [a, b] if and only if g is convex

in the usual sense on
[
1

b
,
1

a

]
.
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It is easy to verify that this result is satisfied if we use the interval (0,+∞) rather than
the interval [a, b].

This theorem is very important, because it tells us that the graph of the function f
(
1

x

)
,

in the interval
[
1

b
,
1

a

]
, is located below the line segment y = ab

f(a)− f(b)
b− a

(
x− 1

a

)
.

Moreover, if a function f is harmonically convex then it satisfies the following inequal-
ities, for x1 ≤ x3 ≤ x2:

x2x3
f(x2)− f(x3)

x2 − x3
≤ x1x2

f(x2)− f(x1)
x2 − x1

≤ x1x3
f(x3)− f(x1)

x3 − x1
,

which could be considered as a harmonically perturbed convexity.

The following theorem on separation of functions can be found in the seminal papers
of BARON et.al. [2], where the authors proved the following sandwich theorem.

Theorem 2 ([2]). Two real functions f and g defined on a real interval I satisfy

f(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) (2)

for all x, y ∈ I and t ∈ [0, 1], if and only if there exists a convex function h : I → R such
that f ≤ h ≤ g.

2. Main results

In this paper we have two main results. The first one is a sandwich theorem for harmonically
convex functions, a result that is related to the theorem on separation by convex functions
presented in [2]. As a second contribution, we obtain an approximate convexity result,
namely, we prove a stability result of Hyers-Ulam type for harmonically convex functions.

Theorem 3. Let f, g be real functions defined on the interval (0,+∞). The following
conditions are equivalent:

(i) there exists a harmonically convex function h : (0,+∞) → R such that
f (x) ≤ h (x) ≤ g (x), for all x ∈ (0,+∞).

(ii) the following inequalities hold:

f

(
xy

tx+ (1− t)y

)
≤ tg (y) + (1− t)g (x) , (3)

for all x, y ∈ (0,+∞) and t ∈ [0, 1].

Proof. [(i)⇒(ii)] We assume that there is a harmonically convex function h : (0,+∞)→
R such that f (x) ≤ h (x) ≤ g (x), for all x ∈ (0,+∞).
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We consider the functions F,G,H : (0,+∞)→ R defined by

F (x) := f

(
1

x

)
, G(x) := g

(
1

x

)
and H(x) := h

(
1

x

)
.

Note that, by Theorem 1, H is a function that is convex on (0,+∞) and satisfies the

inequality F
(
1

x

)
≤ H

(
1

x

)
≤ G

(
1

x

)
for all x ∈ (0,+∞). Equivalently,

F (u) ≤ H (u) ≤ G (u) , for all u ∈ (0,+∞).

Then, by Theorem 2, the functions F and G defined on (0,+∞) satisfy

F (tu+ (1− t)v) ≤ tG(u) + (1− t)G(v), for allu, v ∈ (0,+∞), t ∈ [0, 1].

For x, y ∈ (0,+∞) and t ∈ [0, 1],

f

(
xy

tx+ (1− t)y

)
= F

(
t
1

y
+ (1− t) 1

x

)
≤ tG

(
1

y

)
+ (1− t)G

(
1

x

)
= tg (y) + (1− t)g (x) .

[(ii)⇒(i)] Conversely, if the inequalities (3) hold for all x, y ∈ (0,+∞) and t ∈ [0, 1],
we consider the functions

F (x) := f

(
1

x

)
and G(x) := g

(
1

x

)
.

For all x, y ∈ (0,+∞)

f

(
xy

tx+ (1− t)y

)
≤ tg (y) + (1− t)g (x)

F

(
t
1

y
+ (1− t) 1

x

)
≤ tG

(
1

y

)
+ (1− t)G

(
1

x

)
.

Equivalently,

F (tv + (1− t)u) ≤ tG (v) + (1− t)G (u) , for all u, v ∈ (0,+∞).

By Theorem 2, there is a convex function H : (0,+∞)→ R such that F ≤ H ≤ G.

Now, if x ∈ (0,+∞),
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F

(
1

x

)
≤ H

(
1

x

)
≤ G

(
1

x

)
f(x) ≤ h(x) ≤ g(x),

where h : (0,+∞)→ R, h(x) := H

(
1

x

)
. Note that the function h is convex, by virtue

of Theorem 1.

As a consequence of Theorem 3 we have the following.

Corollary 4. If f, g1, g2 are real functions defined on the interval (0,+∞) and satisfy the
inequality

f

(
xy

tx+ (1− t)y

)
≤ tg1 (y) + (1− t)g2 (x) (4)

for all x, y ∈ (0,+∞) and t ∈ [0, 1], then there exists a harmonically convex function
h : (0,+∞)→ R such that

f (x) ≤ h (x) ≤ max{g1, g2} (x) (5)

for all x ∈ (0,+∞).

Note that the reciprocal of this corollary does not hold. This can be verified easily

by making use of the functions h(x) = ln3 (x), f(x) = − 1

x
+ 1, g1(x) = 2 and

g2(x) =
5

9
x− 3. Note that these functions satisfy the inequality (5), the particular values

t =
1

2
, x = 2 and y = 3 do not satisfy the inequality (4).

Lemma 1. If f is a harmonically convex function, then the function ϕ = kf + ε is also
harmonically convex, for any constants ε and k ∈ R+.

Proof. In fact,

ϕ

(
xy

tx+ (1− t)y

)
= kf

(
xy

tx+ (1− t)y

)
+ ε

≤ k(tf(y) + (1− t)f(x)) + ε

= ktf(y) + tε+ (1− t)kf(x) + (1− t)ε
= t(kf(y) + ε) + (1− t)(kf(x) + ε)

= tϕ(y) + (1− t)ϕ(x).

The next theorem, Theorem 6, is the second main result of this work, and it is about
approximate convexity.
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The Hyers-Ulam kind of stability problems of functional equations was originated by
ULAM in 1940, when he proposed the following question [26]: Let f be a mapping from a
group G1 to a metric group G2 with metric d(·, ·) such that

d(f(xy), f(x)f(y)) ≤ ε, x, y ∈ G1.

Does there exist a group homomorphism h and δε > 0 such that d(f(x), h(x)) ≤ δε,
x ∈ G1?.

One of the first assertions to be obtained is the following result, essentially due to
HYERS [12], which gives an answer to ULAM’s question.

Theorem 5. Suppose that S is an additive semigroup, Y is a Banach space, ε ≥ 0, and
f : S → Y satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε, for all x, y ∈ S. (6)

Then there exists a unique function A : S → Y satisfying A(x+ y) = A(x) +A(y) and
for which ‖f(x)−A(x)‖ ≤ ε for all x ∈ S.

Since then, stability problems have been investigated in various directions for many
other functional equations [17].

The investigation of approximate convexity probably started with the paper by HYERS

and ULAM [13], who in 1952 introduced and investigated ε-convex functions: if D is a
convex subset of a real linear space X and ε is a nonnegative number, then a function
f : D → R is called ε-convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, x, y ∈ D, t ∈ [0, 1].

HYERS and ULAM [13] proved that any ε−convex function (where ε is a nonnegative
number) on a finite dimensional convex set can be approximated by a convex function.

As an immediate consequence of Theorem 3 we obtain the following stability result of
Hyers-Ulam type for harmonically convex functions (see [20, 21]).

Theorem 6. Let [a, b] ⊆ (0,+∞) be an interval and ε > 0. A function f : [a, b] → R
satisfies the inequality∣∣∣∣f ( xy

tx+ (1− t)y

)
− tf(y)− (1− t)f(x)

∣∣∣∣ ≤ ε, (7)

for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists an harmonically convex functions
ϕ : [a, b]→ R such that

|f(x)− ϕ(x)| ≤ ε

2
, x ∈ [a, b].
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Proof. Define the function g : [a, b]→ R by g(x) := f(x) + ε then Theorem 3 holds with
g = f + ε, and it follows that there exists a harmonically convex function h : [a, b]→ R
such that

f(x) ≤ h(x) ≤ f(x) + ε,

for x ∈ [a, b].

Putting ϕ : [a, b]→ R defined by ϕ(x) := h(x)− ε

2
, we obtain a harmonically convex

function such that

f(x)− ε

2
≤ h(x)− ε

2
≤ f(x) +

ε

2

− ε
2
≤ ϕ(x)− f(x) ≤ ε

2

|ϕ(x)− f(x)| ≤ ε

2
,

for all x ∈ [a, b].

We will now need the following setting: given T > 0 and f : (0,+∞)→ R, we define

the function f
T
: (0,+∞)→ R by f

T
(x) :=

1

T
f

(
1

T
x

)
.

The next theorem follows from the application of Theorem 3 concerning the solutions
of the inequality

f

(
xy

tx+ (T − t)y

)
≤ tf(y) + (T − t)f(x). (8)

Theorem 7. Let T be a positive real number. A function f : (0,+∞) → R satisfies (8)
for all x, y ∈ (0,+∞) and t ∈ [0, T ] if and only if exist a harmonically convex function
ϕ : I ⊆ (0,+∞)→ R such that

ϕ
T
≤ f ≤ ϕ. (9)

Proof. Assume that f : (0,+∞)→ R satisfies (8) for any x, y ∈ (0,+∞) and t ∈ [0, T ].
We can choose λ ∈ [0, 1] such that t = λT . Substituting λT for t in (8) we have

f

(
xy

λTx+ (T − λT )y

)
≤ T · λf(y) + (T − λT )f(x)

f

(
xy

T (λx+ (1− λ)y)

)
≤ T (λf(y) + (1− λ)f(x))

f
T

(
xy

λx+ (1− λ)y

)
≤ λf(y) + (1− λ)f(x), (10)

for all x, y ∈ (0,+∞) and λ ∈ [0, 1].
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By Theorem 3, there exists a harmonically convex function h : (0,+∞) → R such
that

f
T
≤ h ≤ f. (11)

Define now ϕ : (0,+∞)→ R by ϕ(x) = Th (Tx). Note that

ϕ

(
xy

tx+ (1− t)y

)
= Th

(
T · xy

tx+ (1− t)y

)
= Th

(
(Tx)(Ty)

t(Tx) + (1− t)(Ty)

)
≤ tTh(Ty) + (1− t)Th(Tx)
= tϕ(y) + (1− t)ϕ(x).

That is, ϕ is a harmonically convex function, and moreover

ϕ
T
(x) =

1

T
ϕ
( x
T

)
=

1

T
Th
(
T
x

T

)
= h(x)

≤ f(x) = T · 1
T
f

(
1

T
xT

)
= Tf

T
(Tx)

≤ Th(Tx) = ϕ(x).

Conversely, if there exists a harmonically convex function ϕ : I → R that satisfies the
inequality (9), we define now ϕ(x) = Th (Tx). Then,

h

(
xy

tx+ (1− t)y

)
=

1

T
ϕ

(
1

T
· xy

tx+ (1− t)y

)

=
1

T
ϕ

 x

T

y

T

t
x

T
+ (1− t) y

T


≤ 1

T

(
tϕ
( y
T

)
+ (1− t)ϕ

( x
T

))
=

1

T

(
tTh

(
T
y

T

)
+ (1− t)Th

(
T
x

T

))
= th (y) + (1− t)h (x) .

That is, h is a harmonically convex function. On the other hand, we have

fT (x) =
1

T
f

(
1

T
x

)
≤ 1

T
ϕ

(
1

T
x

)
=

1

T
· T · h (x)

= h (x) = h
(
T
x

T

)
=

1

T
ϕ
( x
T

)
= ϕT (x)

Then, by Theorem 3 we have that

f
T

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x),
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for all x, y ∈ (0,+∞) and t ∈ [0, 1]. But this means that, for all x, y ∈ (0,+∞) and
t ∈ [0, T ], we get (8).

Let I denote the real interval either (0,∞) or [a, b] ⊂ R − {0}, with a < b. Let
f : I → R be a function. Using Theorem 3, we describe also solutions of the inequality

f

 1

t
1

x
+ (T − t) 1

y
+ (1− T ) 1

z0

 ≤ tf(x) + (T − t)f(y) + (1− T )f(z0). (12)

Fix a real interval I and a point z0 ∈ I . For T ∈ (0, 1) put

I∗T :=

{
x ∈ I : T · xz0

z0 − (1− T )x
∈ I
}
.

Given a real function ϕ with the domain containing I∗
T

, we define ϕ∗
T
: I → R by

ϕ∗T (x) =
1

T

[
ϕ

(
xz0

Tz0 + (1− T )x

)
− (1− T )ϕ(z0)

]
.

Note that

ϕ∗
T
(z0) =

1

T

[
ϕ

(
z20

Tz0 + (1− T )z0

)
− (1− T )ϕ(z0)

]
=

1

T
[ϕ(z0)− ϕ(z0) + Tϕ(z0)] = ϕ(z0).

Lemma 2. If h is a harmonically convex function, then the function g : I∗T → R defined

by g(x) := h

(
T · z0x

z0 − (1− T )x

)
is harmonically convex.

Proof. Let x, y ∈ I∗T and t ∈ [0, 1], then

g

(
xy

ty + (1− t)x

)
= h

 T · z0 ·
xy

ty + (1− t)x
z0 − (1− T ) xy

ty + (1− t)x


= h

(
Tz0xy

z0(ty + (1− t)x)− (1− T )xy

)
= h

(
Tz0xy

tyz0 − t(1− T )xy + (1− t)xz0 − (1− t)(1− T )xy

)
= h

(
T 2z20xy

Tz0{ty(z0 − (1− T )x) + (1− t)x(z0 − (1− T )y)}

)

= h


T 2z20xy

(z0 − (1− T )y)(z0 − (1− T )x)
Ttz0y(z0 − (1− T )x) + (1− t)Tz0x(z0 − (1− T )y)

(z0 − (1− T )y)(z0 − (1− T )x)


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= h


Tz0y

z0 − (1− T )y ·
Tz0x

z0 − (1− T )x

t
Tz0y

z0 − (1− T )y + (1− t) Tz0x

z0 − (1− T )x


≤ th

(
Tz0x

z0 − (1− T )x

)
+ (1− t)h

(
Tz0y

z0 − (1− T )y

)
= tg(x) + (1− t)g(y).

Lemma 3. If f satisfies the inequality

f∗
T

(
xy

λy + (1− λ)x

)
≤ λf(x) + (1− λ)f(y),

for all x, y ∈ I and λ ∈ [0, 1], then f satisfies (12) for all x, y ∈ I and λ ∈ [0, T ].

Proof. Let x, y ∈ I and t ∈ [0, 1], we obtain

f
∗
T

(
xy

ty + (1− t)x

)
≤ tf(x) + (1− t)f(y)

1

T
·

f


xy

ty + (1− t)x
z0

Tz0 + (1− T )
xy

ty + (1− t)x

− (1− T )f(z0)

 ≤ tf(x) + (1− t)f(y)

f

 1

T

[
t
1

x
+ (1− t)

1

y

]
+ (1− T )

1

z0

 ≤ T [tf(x) + (1− t)f(y)] + (1− T )f(z0)

f

 1

Tt
1

x
+ (T − Tt)

1

y
+ (1− T )

1

z0

 ≤ Ttf(x) + (T − Tt)f(y) + (1− T )f(z0)

Thus,

f

 1

λ
1

x
+ (T − λ) 1

y
+ (1− T ) 1

z0

 ≤ λf(x) + (T − λ)f(y) + (1− T )f(z0)

for all x, y ∈ I and λ ∈ [0, T ].

Theorem 8. Let T ∈ (0, 1). A function f : I → R satisfies (12) for all x, y ∈ I and
t ∈ [0, T ] if only if there exists a harmonically convex function ϕ : I∗T → R such that

ϕ∗
T
(x) ≤ f(x), for x ∈ I and f(x) ≤ ϕ(x), for x ∈ I∗

T
. (13)

Proof. Assume that f satisfies (12) for any x, y ∈ I and t ∈ [0, T ]. We can choose
λ ∈ [0, 1] such that t = λT . Putting λT in place of t in (12) we get
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1

T

f


xy

λy + (1− λ)xz0

Tz0 + (1− T ) xy

λy + (1− λ)x

− (1− T )f(z0)

 ≤ λf(x) + (1− λ)f(y).

Thus,

f∗
T

(
xy

λy + (1− λ)x

)
≤ λf(x) + (1− λ)f(y), (14)

for all x, y ∈ I and λ ∈ [0, 1].

Applying Theorem 3, we obtain a harmonically convex function h : I → R such that

f∗
T
(x) ≤ h(x) ≤ f(x) (15)

for all x ∈ I. Since f∗
T
(z0) = f(z0),we have h(z0) = f(z0). Define ϕ : I∗

T
→ R by

ϕ(x) := T · h
(
T · z0x

z0 − (1− T )x

)
+ (1− T )f(z0). (16)

By lemmas 1 and 2, we get that ϕ is a harmonically convex function. In addition, we
will have that ϕ(z0) = f(z0) and

ϕ
∗
T
(x) =

1

T

[
ϕ

(
xz0

Tz0 + (1− T )x

)
− (1− T )ϕ(z0)

]

=
1

T

Th
T · z0

xz0

Tz0 + (1− T )x

z0 − (1− T )
xz0

Tz0 + (1− T )x

+ (1− T )f(z0)− (1− T )ϕ(z0)



= h

T ·
xz20

Tz0 + (1− T )x

Tz20 + (1− T )xz0 − (1− T )xz0

Tz0 + (1− T )x


= h(x) ≤ f(x), x ∈ I.

On the other hand, for all x ∈ I∗
T

, we have

ϕ(x) = Th

(
T ·

z0x

z0 − (1− T )x

)
+ (1− T )f(z0)

≥ Tf
∗
T

(
T ·

z0x

z0 − (1− T )x

)
+ (1− T )f(z0)

= T

 1

T

f
 T ·

z0x

z0 − (1− T )x
z0

Tz0 + (1− T )T ·
z0x

z0 − (1− T )x

− (1− T )f(z0)


+ (1− T )f(z0)

= f


Tz20x

z0 − (1− T )x

Tz20 − T (1− T )xz0 + (1− T )Tz0x

z0 − (1− T )x

 = f(x).

Conversely, if (13) holds with a harmonically convex function ϕ : I∗
T
→ R then

f(z0) = ϕ(z0), and (16) defines a harmonically convex function h : I → R which
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satisfies

h(x) =
1

T

[
ϕ

(
xz0

Tz0 + (1− T )x

)
− (1− T )f(z0)

]
. (17)

Thus, for any x ∈ I ,

f∗
T
(x) =

1

T

[
f

(
xz0

Tz0 + (1− T )x

)
− (1− T )f(z0)

]
≤ 1

T

[
ϕ

(
xz0

Tz0 + (1− T )x

)
− (1− T )f(z0)

]
= h(x)

=
1

T

[
ϕ

(
xz0

Tz0 + (1− T )x

)
− (1− T )ϕ(z0)

]
= ϕ∗

T (x) ≤ f(x).

By Theorem 3 we obtain (14) for all x, y ∈ I and t ∈ [0, 1]. By Lemma 3, f satisfies (12)
for all x, y ∈ I and t ∈ [0, T ].

3. Comments

In this paper we have two main results: a sandwich theorem for harmonically convex
function and an approximate convexity result, namely, we proved a stability result of Hyers-
Ulam type for harmonically convex functions. We expect that the ideas and techniques
used in this paper may inspire interested readers to explore some new applications of these
functions in various fields of pure and applied sciences.
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