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Abstract. A number of important results in quantum information theory
can be connected quite elegantly to the representation theory of the symmet-
ric group through a quantum analogue of the classical information-theoretic
“method of types” that arises naturally from the Schur-Weyl duality. We will
give a brief introduction to this connection and briefly discuss some of the re-
sults that follow from it, such as quantum source compression rates, entangle-
ment concentration rates, quantum entropy inequalities, and the admissisble
spectra of partial density matrices from pure, multipartite entangled states.
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Resumen. Un gran número de resultados importantes en la teoŕıa de la in-
formación cuántica se pueden conectar con la teoŕıa de la representación del
grupo simétrico, a través de un análogo cuántico del llamado método de tipos
que emerge de manera natural de la dualidad de Schur-Weyl. En este art́ıculo
daremos una breve introducción a esta conexión y discutiremos algunos re-
sultados que emergen de la misma, como son las tasas de compresión de a
fuente cuántica, tasas de concentración de enredamiento, desigualdadades de
la entroṕıa cuántica, y condiciones sobre los espectros admisibles de matrices
parciales de densidad provenientes de un estado cuántico puro multipartito.

Palabras y frases clave. Teoŕıa de la representación, Teoŕıa de la información
cuántica, dualidad de Schur-Weyl, Teorema de Shannon cuántico, Concen-
tración de enredamiento.
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1. Introduction

Many classical information-theoretic quantities, such as the Shannon entropy,
the Kullback-Lieblier entropy, or the mutual information, are asymptotic rates
with a combinatorial origin, usually the size of certain sets of permutationally-
equivalent sequences with some given constraints. Thus, there is a close rela-
tionship between information theory and the symmetric (or permutation) group
Sn. In recent years, it has become increasingly clear that the symmetric group
also plays a fundamental role in quantum information theory (QIT), particu-
larly in asymptotic rate problems involving n copies of some quantum resource.
Such problems include source compression [15], spectrum estimation [1, 17], and
entanglement concentration [14], to name a few. Moreover, a number of unex-
pected connections between quantum information and combinatorics, as well
and other areas as diverse as geometric complexity theory, have been gradually
emerging from applying the representation theory of the symmetric group to
quantum information problems. Among these are the unexpected connection
between the Kronecker coefficients and the admissible local spectra of reduced
density matrices [4]

Here, I would like to give a very brief introduction to some of the basic
results that establish the link between quantum information and the repre-
sentation theory of the symmetric group, and to briefly mention a few of the
interesting consequences that have emerged from this connection, which have
to do with the Kronecker coefficients and multipartite entanglement. The pre-
sentation will be rather informal, aiming more at conveying key ideas and
developments; rigorous derivations can be found in the references provided.

2. Rate Exponents and Types

Most relevant quantities in information theory are defined operationally with
respect to so-called extended resources; that is, the repeated (and generally in-
dependent) use of an information-thoretic resource. The quantities are usually
rate exponents characterizing an asymptotic behavior of numbers of combina-
torial origin associated with these extended resources, numbers that generally
grow exponentially with the extension parameter n (i.e., the number of rep-
etitions). For instance, given a certain channel Q, the extended channel Q×n

refers to a composite channel made of n independent copies of Q, and the
channel capacity of Q is defined operationally in terms of how many perfectly
distinguishable messages can be transmitted through the extended channel, in
the asymptotic limit n→∞. To say that the channel Q has a channel capacity
C is to say that the maximum number of perfectly distinguishable messages
that can be transmitted with the extended channel Q×n grows like ∼ enC as
n → ∞. Note that in practice, it is customary to characterize the growth in
base 2 (e.g., as ∼ 2nC), not e, but for our purposes it will be more convenient
to work with e; however, in most cases, rate exponents involve a logarithm, so

Volumen 50, Número 2, Año 2016



QUANTUM INFORMATION AND THE SYMMETRIC GROUP 189

enr can also be interpreted as 2nr if the logarithm in r is interpreted as being
in base 2 (in which case we say the rate r is given in “bits”).

To make terminology more precise, let f(x, y, n) be a real positive function
of n, which may be implicit, and two sets of real parameters: an extensive
set x = (x1, x2, . . . xp), where the xi scale with n, and an intensive set y =
(y1, y2, . . . yq), where the yi scale independently of n. Consider the sequence of

scaled values x
(n)
i ≡ nx̄i (or if f is only defined for integer xi, x

(n)
i ≡ dnx̄ie),

where x̄i is real, and let x̄ = (x̄1, x̄2, . . . x̄p). If the limit

rf (x̄, y) = lim
n→∞

1

n
log f(x(n), y, n) (1)

exists and is finite, we say that f exhibits large deviation behavior (or is expo-
nential in n) with rate function (or Cramér function) rf (x̄, y) (see e.g. [30]).
For simplicity, we shall henceforth use the notation

f(x, y, n) ∼ enr(x̄,y) , (2)

to indicate hat f has large deviation behavior with rate function rf (x̄, y).

The asymptotic behavior of multinomial coefficients is the origin of many
information-theoretic rates, such as Shannon’s source-encoding rate. Consider
sequences of length n, ~x = (x1x2, . . . xn), where xi ∈ Zd = {1, 2, , . . . , d −
1, d ≡ 0}. The weight or type of the sequence is a frequency distribution w =
{w1, w2, . . . wd}, where wx gives the number of times that x ∈ Zd appears in
the sequence. The set of all sequences of a given type w is known as the type
class of w, and all sequences in a given type class can be obtained from each
other by a permutation; in other words, type classes are equivalence classes
under the action of the symmetric group. The number of sequences in the type
classs of w is then the multinomial coefficient(

n

w

)
≡ n!∏

x∈Zd wi!
. (3)

Asymptotically, the multinomial coefficient shows large deviation behavior(
n

w

)
∼ enH(w) , (4)

where the rate function H(w) is the Shannon entropy [7]

H(w) = −
∑
x∈Zd

wx logwx (5)

of the reduced type, or relative frequency distribution, w = w/n defined by the
type w.
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It will be useful to discuss another function with large deviation behavior:
the multinomial probability distribution for generalized Bernoulli trials. If the
above sequences are obtained from n i.i.d. samples from the sampling distribu-
tion p = {p1, p1, . . . pd}, the multinomial distribution gives the probability of
obtaining a sequence in the type class w; in other words, a sequence with the
empirical distribution of symbols w:

P (w) =

(
n

w

) ∏
x∈Zd

pwxi =

(
n

w

)
e
n
∑
x∈Zd

log px . (6)

The multinomial thus has large deviation behavior P (w) ∼ e−nD(w||p) where
(minus) the rate function is the so-called relative (or Kullback-Leibler) entropy
[22]

D(w||p) =
∑
x∈Zd

wi log
wx
px

. (7)

Though not strictly a distance due to its lack of symmetry, the relative entropy
is nevertheless a useful means of quantifying proximity between distributions.
It is a convex function of both w and p, attaining its minimum value of zero
when w = p; that is, when the empirical and sampling distributions coincide.
Close to this point, it can be expanded as

D(w||p) ' 1

2

∑
i∈Zd

(wi − pi)2

pi
, (8)

accounting for the asymptotic normality of empirical distributions around the
sampling distribution in the large n limit, with O(1/

√
n) fluctuations. Given

an information source emitting symbols x ∈ Zd, with probabilities p(x), then
as n→∞, the empirical frequency distribution wx of an i.i.d sequence ~x from
the source will almost surely coincide with the sampling distribution p(x). We
can then talk of typical sequences as being those for which w ' p in some sense
to be defined. This notion of typicality underlies almost all important results
in Information Theory, for instance Shannon’s Source compression Theorem.

3. Source compression and the method of types

Shannon’s Source compression theorem [29] provides the canonical application
of the so-called method of types [8], which broadly speaking is the method
by which information-theoretic rates are connected to the size of the most
probable type class in the given context. Strictly speaking, Shannon’s Source
compression theorem states that for any given δ, ε > 0, there exists a sufficiently
large no such that for n > no, the smallest set Sδ of sequences with probability
P (Sδ) > 1− δ has a size |Sδ| satisfying [22]∣∣∣∣ 1n log |Sδ| −H(p)

∣∣∣∣ < ε. (9)
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However, the key insight underlying the theorem is that with probability ap-
proaching unity as n → ∞, an emitted sequence will belong to a typical set
T of sequences (with type w ' p). Since the number of sequences of type w
shows large deviation behavior with rate exponent H(w), the number of typical
sequences satisfies

|T | ∼ enH(p) . (10)

Interpreted in base-2, this expression means that the sequences in the typical
set T can be labeled with a binary word of ' nH(p) bits, which amounts to
H(p) bits per emitted character; thus, transmitting the binary code of a typical
sequence affords a compression ratio of H(p)/log2 d with respect to a naive
binary encoding of all sequences of length n (of which there are dn = 2n log2 d

of them).

Most proofs of Shannon’s theorem therefore rely on some characterization
of a typical set consistent with w ' p and then establishing bounds on the
probability and size of the set; these can then be used as bounds for the smallest
possible set to which the theorem ultimately refers. By far the most efficient
route is the one employed in the so-called Asymptotic Equipartition Theorem
(AEP)[7], in which an typical set Tε is defined as the set of sequences ~x such
that ∣∣∣∣ 1n log

1

P (~x)
−H(p)

∣∣∣∣ < ε , (11)

a property that captures the fact that a sequence with w ' p will occur
with probability P (~x) '

∏
x p(x)np(x) = e−nH(p). With this definition, it is

easy to bound the size of the set and its probability, resulting in the bounds∣∣ 1
n log |Tε| −H(p)

∣∣ < ε+O(1/n), with 1−P (Tε) = O(1/n). A definition of the
typical set that is more faithful to the essence of the method of types is what
is known as strong typicality [8], in which the typical set Tε is defined as the set
of sequences such that their reduced type w satisfy

|w − p| < ε , (12)

in Euclidean distance. Counting and calculating the probability of this set is
technically more difficult, but the results are nevertheless consistent with those
obtained from AEP.

4. Some Quantum Analogs

As an illustration of the method of types, the Source Compression Theorem
shows how a classical information-theoretic rate (e.g., the Shannon entropy
H(p)) is the rate exponent of the size (e.g., the multinomial coefficient) of the
most probable type class (w = p) in a given context (i.i.d. sequences from the
sampling distribution p). What we would like to show in this review is how
there is a quantum analog of the classical method of types, which follows quite
naturally from the representation theory of the symmetric group. With the
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192 ALONSO BOTERO

quantum method of types (QMT)[13], we should then be able to show how
certain quantum Information-theoretic rates can be related, in the context of
extended quantum resources, to the rate of exponent of the dimension of a
typical subspace that transforms irreducibly under the action of the symmetric
group, in analogy with type classes in the classical method of types. Before
jumping into technicalities, it may prove useful to have in mind some concrete
examples to later understand from the perspective of the QMT. Two well-
know quantum information rates are the Quantum Source Compression rate,
the analog of the Classical Source compression rate, and the Entanglement
Concentration rate.

4.1. Quantum Source Compression

The setting for Quantum Source compression is a quantum source, a device that
outputs some unspecified quantum system with Hilbert-spaceH of dimension d,
in one of several possible, generally non-orthogonal, quantum states |ψx〉 ∈ H,
with probability px. In an extended setting, the source produces n copies of the
quantum system in a tensor product state |Ψ(~x)〉 = |ψx1〉|ψx2〉 . . . |ψxn〉 with
probabilty P (~x) =

∏
i p(xi). The extended source can then be characetrized by

the mixed quantum state ρ⊗n = ρ⊗ ρ . . .⊗ ρ (n-times), where ρ is the density
matrix of the source

ρ =
∑
x

px|ψx〉〈ψx| . (13)

The idea of compression is to find a Hilbert space V of dimension enR, that
is hopefully smaller than the extended Hilbert space H⊗n (that is, with R <
log d) in which the quantum information in ρ⊗n can be stored faithfully. More
precisely, we seek encoding and decoding completely positive maps E and D,
from the linear operators on H⊗n through linear operators on V,

L(H⊗n)
E−→ L(V )

D−→ L(H⊗n) , (14)

such that D(E(ρ⊗n)) is close to ρ⊗n (for instance in the trace-distance sense
‖D(E(ρ⊗n))− ρ⊗n‖1 < ε) [25]. Schumacher’s source compression theorem [28]
states that for sufficiently large n, all rates above the von Neumann entropy of
ρ,

S(ρ) = −Tr(ρ log ρ) (15)

are achievable with trace-distance of at most ε.

4.2. Entanglement Concentration

Closely related to Quantum Source Compression is Entanglement Concentra-
tion. Here, the idea is to take n copies of a certain entangled (but not maximally
entangled) bipartite state |ψ 〉AB shared between two parties A and B that is
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entangled and concentrate the entanglement into a certain number of maxi-
mally entangled states |Γ 〉AB between two Hilbert spaces, each of dimension d,
shared by parties A and B, assuming the protocol uses only local resources and,
possibly, classical communication between the parties. As shown by Popescu
and Rohrlich [26], asymptotically, an optimal protocol is achievable for the
reversible interconversion

|ψ 〉⊗nAB ↔ |Γ 〉
⊗m
AB , m =

nE(ψ)

log d
, (16)

where E(ψ) is the so-called entanglement entropy, which is also the von Neu-
mann entropy of the reduced desnity matrices ρA and ρB (they are equal for
pure states),

E(ψ) = S(ρA) = S(ρB). (17)

where

ρA = TrB( |ψ 〉 〈ψ| ), ρB = TrA( |ψ 〉 〈ψ| ). (18)

In short, the idea behind these optimal rates is that the relevant quantum
information in |ψ 〉⊗nAB can be projected on a maximally entangled state between

Hilbert spaces of dimension enE(ψ), which in turn can be broken up into nE(ψ)
log d

maximally entangled states between spaces of dimension d.

5. Partitions and the Representation Theory of Sn and GL(d)

Quantum states of a d-level system are represented by vectors |φ 〉 ∈ H, where
H = Cd. The Hilbert space H is therefore the carrier space for the defining
representation of the general linear group GL(d,C), the group of invertible
d × d complex valued matrices. Irreducible representations of GL(d,C) arise
naturally when considering the description of a composite system made up of
n copies of the d- level system, the quantum states of which are represented as
vectors |Φ 〉 ∈ H⊗n, in the product space H⊗n = Cd⊗Cd⊗ . . .⊗Cd (n times).
The product space is then a carrier space for a reducible representation of G,
under the action

R(g) |Φ 〉 = g⊗n |Φ 〉 , (19)

with the same element g acting on each Hilbert space.

Similarly, the product space H⊗n = Cd ⊗ Cd ⊗ . . . ⊗ Cd (n times) is also
the carrier space for a reducible representation of the symmetric group Sn of
permutations of n elements. To define this action, note that the product space
H⊗n inherits from its construction a natural product basis built from some
standard basis |1 〉, |2 〉 . . . |d 〉 of the single-copy Hilbert space H. We refer
to this basis as the computational basis in analogy with the case d = 2. The
elements of this basis are labelled by sequences s ∈ (Zd)n where

|s 〉 = |s1 〉 |s2 〉 . . . |sn 〉 . (20)
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194 ALONSO BOTERO

The action of the permutation group on H⊗n is then best summarized by in
terms of its action on the computational basis, namely

U(π) |s 〉 = |πs 〉 , (21)

where πs is the corresponding permutation of the elements of the sequence s
as defined earlier.

The reducible actions of GL(d,C) and Sn, as defined above can be seen to
commute. Moreover, the operator algebras generated by the elements of the
respective representations in H⊗n are each other’s commutant; thus, if A is an
operator acting on H⊗n with the property A = U(π)AU†(π), the A can be
expressed as a linear combination of the group elements g⊗n for g ∈ GL(d,C);
similarly, any GL(d,C)-invariant operator B (under the above action), can
be written as a linear combination of the operators U(π), for π ∈ Sn. This
mutual commutancy relation between the group algebras is known as the Schur-
Weyl duality [13, 23]. A straightforward consequence of this duality is a tight
coordination in the breakup of the tensor space H⊗n into irreducible sectors
under GL(d,C) and Sn; in particular, irreducible representations (IRRs) of
both groups are labeled by partitions λ of n, and denoting by Vλ and [λ] the
carrier spaces for the GL(d,C) and Sn IRRs labeled by λ, the decomposition
of H⊗n is such that the multiplicity space for the IRR [λ] of Sn is precisely the
the IRR space Vλ of GL(d,C), and vice versa. Formally, one has

H⊗n =
⊕
λ`dn

Vλ ⊗ [λ] , (22)

where λ `d n means that λ is a partition of at most d rows.

Let us then discuss some important aspects of the relationship between
the IRRs of the symmetric group and the general linear group and partitions,
including the dimensions of the IRRs, which are given by the size of certain sets
of Young tableaux [10], which are closely tied to the graphical representation
of partitions. A partition λ is a weakly decreasing sequence of nonnegative
integers, λi, also known as parts:

λ = (λ1λ2 . . .) , λ1 ≥ λ2 ≥ λ3 . . . , λi ≥ 0 , (23)

and where |λ| =
∑
i λi is known as the size of the partition. Partitions are

conventionally represented by Young frames, which are diagrams of the form

,
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with |λ| boxes, and where the parts are represented by the rows in descending
order, so that λ1 gives the number of boxes in the first (uppermost) row, λ2 the
number of boxes in the second row, etc; it is understood that all parts beyond
the last row are zero. A partition of n, denoted as λ ` n, is a partition in which
|λ| = n. We also use the notation λ `d n when λ is a partition of n with at
most d rows.

A Young tableaux is a filling of the boxes in a Young frame with num-
bers according to certain prescriptions. The irreducible representations of the
symmetric group Sn and the general linear group GL(d,C) are respectively
connected to two types of such fillings, the so -called standard Young tableaux
(SYT) and the semi-standard Young tableaux (SSYT). We begin with the def-
inition of the latter:

Tensors that transform irreducibly under GL(d,C) satisfy certain symmetry
conditions encoded in the partition λ that labels the corresponding irreducible
representation, henceforth denoted as Vλ. Specifically, each box in a Young
frame λ is understood to stand for one of the indices of the tensor, and the
tensor is understood to be antisymmetric under permutation of indices that
are common to a given column and symmetric under permutation of indices
that are common to a given row[11]. Each independent component of such a
tensor is labeled by a possible semi-standard Young tableau (SSYT) t of shape
λ, which is a filling of the Young frame λ with the integers 1, 2, . . . , d and
satisfying the condition that the numbers are non-decreasing along the rows
and strictly increasing along columns.

The dimension of Vλ, is then the set of all SSYT of shape λ filled with
numbers ∈ {1, 2, , . . . , d}, and is given by the formula

dim(Vλ) =

∏
1≤i<j≤d(λi − λj − i+ j)

1!2! . . . (d− 1)!
. (24)

which is a straightforward consequence of the Weyl character formula [12] for
highest-weight representations. For fixed d and λ̄i, this number asymptotically
scales polynomially with n, typically as ∼ nd(d−1)/2. In fact, it satisfies the
bound[4]

dim(Vλ) ≤ (n+ 1)d(d−1)/2 . (25)

In the case of the symmetric group, we follow the notation of [16] and denote by
[λ] the irreducible representation corresponding to the partition λ. The basis
vectors of [λ] are in correspondence with the independent ways in which the
indices of the tensor can be made to satisfy the symmetry rules of the GL
irreducible tensor of symmetry class λ. A basis vector is hence encoded in a
standard Young tableau (SYT) τ of shape λ, which is a filling of the Young
frame λ with the integers from 1 to n = |λ|, and satisfying the condition that
the numbers are strictly increasing along rows and along columns. Thus, for
the shape λ = (3, 2), the follwing are all possible SYT:
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4 5

1 2 3

3 5

1 2 4

3 4

1 2 5

2 5

1 3 4

2 4

1 3 5

.

The dimension of the Sn irreducible representation [λ], henceforth denoted by
fλ, is given by the so-called hook length formula of Frame, Robinson and Thrall
[9]:

fλ ≡ dim([λ]) =
n!∏
i,j hi,j

, (26)

where the product runs over all boxes (i, j) in the frame, where i and j are
row and column coordinates respectively, and hi,j is the so-called hook length
of the frame (i, j); namely, hi,j is one more than the number of boxes to the
right or below the box (i, j). As opposed to GL irreducible representations, the
dimensions of the Sn irreducible representations grow exponentially with n. To
see this, we use the following bounds [4]:

n!

ν1!ν2! . . . νd!
≤ fλ ≤

n!

λ1!λ2! . . . λd!
, νi = λi − l(λ)− i, (27)

where l(λ) is the number of rows in λ. Using Stirling’s formula an taking the
limit n → ∞ with d and the ratios λi

n fixed, it is seen that the rate exponent

is given by the Shannon entropy H(λ̄) of the so called reduced partition λ:

fλ ∼ enH(λ̄) , λ =

(
λ1

n
,
λ2

n
, . . .

λd
n

)
. (28)

Given the Schur-Weyl decomposition (22), an orthonormal basis forH⊗n adapted
to this decomposition will comprise basis elements |λ, t, τ 〉 (or when written
in product form, |t 〉λ |τ 〉λ), which are naturally labeled by three objects: the
partition λ `d n, an Semi-standard Young Tableau t, and a Standard Young
Tableau, τ . While the labelling scheme (t, τ) can be applied to any basis that
one may choose for Uλ ⊗ Vλ, it is especially adapted to canonical choices of
basis in which the tableaux t and τ have a combinatorial meaning relative to
the computational basis, such as the so-called Gelfand-Tsetlin basis for Vλ(see
e.g., [21]), and the Young-Yamanouchi basis for Sn [6].

In this decomposition, a permutation π ∈ Sn is represented by

U(π) ≡
⊕
λadn

1Vλ ⊗ Sλ(π), (29)

where Sλ(π) is the IRR matrix for π in the representation [λ]. Similarly, for
the action of GL(d), the n-fold tensor operator g⊗n is represented by

g⊗n =
⊕
λadn

Dλ(g)⊗ 1[λ], (30)
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where Dλ(g) is the corresponding Vλ representation matrix. The GL(d) charac-
ters will be important in what follows. For a given g ∈ GL(d), let γ = spec(g);
then

Tr(Dλ(g)) = sλ(γ1, γ2, . . . γd), (31)

where sλ(x1, x2, . . .) are the Schur polynomials, which can be defined in terms
of a sum over semi-standard Young Tableaux of shape λ:

sλ(x1, x2, . . .) =
∑

t∈SSY T (λ)

x
w1(t)
1 x

w2(t)
2 . . . , (32)

where wi(t) denotes the weight of the integer i in the tableau t.

6. The Keyl-Werner Theorem and Quantum Source Compression

The previous section introduced the main ingredients that are necessary to es-
tablish a connection between quantum information rates and large-deviation
behavior of the dimensions of irreducible representations of Sn, following an
analogy with the classical method of types. It is then time to flesh out this
connection. Our first step will be to establish the quantum concept that is
analogous to the classical concept of “type” (as in sequence type). In the quan-
tum case, this will be played by the reduced partition λ = λ/n associated with
a given irreducible sector. As in the classical case, the reduced partition is a
distribution normalized to unity, although the meaning of the individual parts
λi = λi/n may seem to be rather abstract at first. The Keyl-Werner theo-
rem provides the necessary typicality connection with properties of a quantum
source in the asymptotic regime; namely, in the same way that classically, typ-
ical sequences are those with reduced weights w close to the probability p dis-
tribution of the source, quantum-mechanically, the typical reduced partitions
are those that are close to the spectrum of the density matrix ρ describing the
quantum source, when the eigenvalues are arranged in non-decreasing order.

To see this, let us consider the product ρ⊗n of a density matrix ρ acting on
H. According to (30), we can write this as

ρ⊗n =
∑
λadn

Dλ(ρ)⊗ 1[λ]. (33)

Thus, in a measurement of projectors onto the different λ sectors, the proba-
bility of obtaining the result λ is

P (λ) = Tr(Dλ(ρ))Tr(1[λ]) = sλ(r1, r2, . . . rd)fλ , (34)

where r1, r2, . . . rd are the eigenvalues of ρ. Now, assume that the eigenvalues
have been arranged in non-increasing order, so that r1 ≥ r2 ≥ . . . ≥ rd. Then,
using the definition (32), the Schur polynomial can be bounded by

rλ1
1 rλ2

2 . . . rλdd ≤ sλ(r1, r2, . . . rd) ≤ dim(Vλ)rλ1
1 rλ2

2 . . . rλdd . (35)
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Using the bounds (25) and (27), it is then straightforward to show that P (λ)
satisfies a large deviation behavior that is similar to that of the multinomial
distribution in the classical case; namely,

P (λ) ∼ e−nD(λ||r↓), (36)

where r↓ is the spectrum of ρ ordered non-increasingly. Thus, typical diagrams
are those such that

λ ' r↓, (37)

with o(n−1/2) statistical fluctuations. The Keyl-Werner theorem[17] is a state-
ment of the convergence of (λ) to r↓; it states that for all continuous functions
g on the probability simplex,

lim
n→∞

∑
λ`n

g(λ)P (λ) = g(r↓), (38)

uniformly.

The connection with the quantum source compression rate is now straight-
forward. Defining a typical subspace by the projection operator Π(Tε) = ⊕λ̄∈TεΠλ,
where Tε is the set of typical partitions such that |λ̄− r↓| < ε, then, using the
arguments from the classical method of types, we should have that for any
ε > 0, the “typical sector” Π(Tε)ρ

⊗nΠ(Tε) should account fo the quantum
information in ρ⊗n:

lim
n→∞

‖ρ⊗n −Π(Tε)ρ
⊗nΠ(Tε)‖1 = 1 (39)

and that the size of this typical sector should scale exponentially with a rate
exponent that is given by that of the dimension of the typical λ-subspace. Since
dim(Vλ) scales polynomially in n, this rate exponent is that of the IRR [λ],
which is the Shannon entropy. Evaluating this at the typical reduced partition
λ = r↓, the size of the typical subspace should then scale asymptoically as

Tr(Π(Tε)) ∼ en(S(ρ)+cε), (40)

where c is some positive constant independent of N and ε. Thus, the quantum
information in ρ⊗n can be faithfully transmitted using a smaller Hilbert space
than H⊗n, the dimension of which has an asymptotic rate of S(ρ), the quantum
source compression rate.

7. Entanglement Concentration

As suggested earlier, the Entanglement Concentration protocol is closely related
to Quantum Source compression. In this case, the extended quantum resources
is the n-fold tensor product |ψ 〉⊗n of an entangled bipartite state |ψ 〉 ∈ HA⊗
HB . Without loss of generality, we can assume that the Hilbert spaces HA
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and HB have the same dimension d. Therefore, HA⊗n ⊗ HB⊗n admits the
Schur-Weyl decomposition

HA⊗n ⊗HB⊗n =
⊕

λ,µ`dn

Vλ ⊗ Vµ ⊗ [λ]⊗ [µ] . (41)

However, since the state |ψ 〉⊗n is a product of the same state, it is invariant
under the simultaneous action of the permutation group on HA⊗n and HB⊗n,
i.e.,

UA(π)⊗ UB(φ) |ψ 〉⊗n = |ψ 〉⊗n . (42)

This means that |ψ 〉⊗n can only be supported on the (λ, µ) subspaces of (41)
such that there exists an Sn invariant subspace in [λ] ⊗ [µ]. In fact, the only
possibility for this to happen is that λ = µ, and in the tensor product [λ] ⊗
[λ], the invariant subspaces are one-dimensional, with the invariant normalized
vector given by[24]

|Γλ 〉 = f
−1/2
λ

∑
τ∈SY T (λ)

|τ 〉λ |τ 〉λ , (43)

a maximally entangled state. Hence, we can write

|ψ 〉⊗n =
∑
λ

√
P (λ) |Rλ(ψ) 〉 |Γλ 〉 (44)

where |Rλ(ψ) 〉 is a normalized vector in Vλ ⊗ Vλ, the coefficients of which
depend on ψ, and P (λ) turns out to be the same probability of equation (34),
with r↓ equal to the spectrum of the partial density matrices ρA and ρB of the
state |ψ 〉 〈ψ| . This follows from the fact that the partial density matrices of
|ψ 〉⊗n are ρA

⊗n and ρB
⊗n. Next, we imagine that a projective measurement

of λ is performed on any side. Then the state collapses to a state within a given
λ-sector:

|ψ 〉⊗n → |Rλ(ψ) 〉 |Γλ 〉 . (45)

Given that the resulting state is in product form, we can then concentrate only
on the maximally-entangled state |Γλ 〉, which has an entanglement entropy
E(Γλ) = log fλ ' nH(λ). Moreover, from the Keyl-Werner theorem, we know
that as n→∞, the λ-measurement will almos surely yield the value of λ such
that λ = r↓. Hence, as n → ∞, we obtain a maximally entangled state with
entanglement entropy, per copy, given by

lim
n→∞

1

n
E(Γλ) = S(ρA); (46)

in other words, the entanglement entropy E(ψ) of the state |ψ 〉.
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8. Tripartite Entanglement and Kronecker Coefficients

The extension of the previous results to the tripartite case, brings out a deeper
connection between the representation theory of Sn and quantum information.
In this case we consider the n-fold tensor product |ψ 〉⊗n of an entangled state
|ψ 〉 shared between parties A, B and C. As in the bipartite case, the extended
Hilbert space decomposes into local GL(d) and Sn irreducible subspaces as

HA⊗n ⊗HB⊗n ⊗Hc⊗n =
⊕

λ,µ,ν`dn

Vλ ⊗ Vµ ⊗ Vν ⊗ [λ]⊗ [µ]⊗ [ν] , (47)

and due to permutation symmetry, |ψ 〉⊗n is only supported on the subspaces
labeled by triplets (λ, µ, ν) for which the tensor product [λ]⊗ [µ]⊗ [ν] admits
an invariant subspace. The dimension of these invariant subspaces is given by
the so-called Kronecker coefficients gλµν

gλµν = dim([λ]⊗ [µ]⊗ [ν])Sn =
1

n!

∑
π∈Sn

χλ(π)χµ(π)χν(π), (48)

where χλ(π) are the Sn-characters. The Kronecker coefficients can also be in-
terpreted as the multiplicity of the Sn IRR [ν] in the Clebsch-Gordan expansion
of the tensor product [λ]⊗ [ν], i.e.,

[λ]⊗ [µ] =
∑
ν`n

gλµν [ν]. (49)

So far, no general combinatorial formula for the Kronecker coefficients exists,
and moroever, it is known that their computation is of ]P complexity[2].

A decomposition of |ψ 〉⊗n analogous to that of (44)

|ψ 〉⊗n =
∑

(λ,µ,ν):gλµν>0

√
P (λµν)

gλµν∑
i=1

|Rλµν ; i 〉 |Kλµν ; i 〉 , (50)

where the vectors |Kλµν ; i 〉 span the invariant subspace ([λ]⊗ [µ]⊗ [ν])Sn , the
vectors |Rλµν ; i 〉 ∈ Vλ ⊗ Vµ ⊗ Vν are relative vectors to the |Kλµν ; i 〉, and
P (λ, µ, ν) is the joint probability of obtaining the triplet (λ, µ, ν) in a joint
measurement of Young subspaces.

As of now, no closed-form expression is known for the joint probability
P (λ, µ, ν). Nonetheless, the marginal probability distributions P (λ) =

∑
µ,ν P (λ, µ, ν),

etc., are those given by equation (34), in terms of the spectra rA, rB and rC of
partial density matrices

ρA = trBC(ρABC), ρB = trAC(ρABC), ρC = trAB(ρABC), (51)
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Figure 1. Closure of the Kron(2) polytope, which is equivalent to the polytope of
admissible marginal spectral triplets for three-qubit pure states. The coor-
dinates (λ2, µ2, ν2) are the second parts of the reduced partitions (λ, µ, ν).

which henceforth we will assume are give in non-decreasing order. This means
that for large n, the joint distribution should become sharply peaked about the
reduced triplet (λ, µ, ν) that corresponds to the spectral triplet (rA, rB , rC);
explicitly,

lim
n→∞

(λ, µ, ν) = (rA, rB , rC) (52)

almost surely [3]. This result suggests that there is a close relationship be-
tween sets of admissible marginal spectra of tripartite entangled states and the
Kronecker coeffients. In fact, let Kron(d) be the set of all reduced, Kronecker-
compatible partitions of at most d-rows:

Kron(d) =

{
1

n
(λ, µ, ν)

∣∣∣∣n ∈ N, gλ,µ,ν > 0

}
. (53)

Then, as shown by Christandl et al [3], the set of admissible spectral triplets
(rA, rB , rB) is the closure of Kron(d). Figure 1 shows the spectral polytope
obtained from Kron(2), which can be computed from known closed-form for-
mulas for the Kronecker coefficients for two-row partitions [27]. This somewhat
unexpected result complements several other recent and interconnected results
connecting the spectral properties of (density) matrices with linearization coef-
ficients of polynomial group IRRs, such as the complete characterization of the
so-called Horn inequalities for the sum of three matrices [19], and the complete
solution to the one-body n-representability problem [18].
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Perhaps one of the most elegant consequences of the connection between
Kronecker coefficients, spectral properties of entangled states, and the Keyl-
Werner theorem described earlier is a remarkably simple proof of the entropy
subadditivity inequality for the marginal density matrices[4], i.e., :

S(ρC) ≤ S(ρA) + S(ρB), & cyc. perm., (54)

which is a straightforward consequence of the IRR dimension inequality for
compatible triplets

dim([λ])dim([µ]) ≥ dim([ν]), & cyc. perm., (55)

and which, through purification, implies the subadditivity of the von Neumann
entropy:

S(ρAB) ≤ S(ρA) + S(ρB). (56)

It is worth noting that more recently, a closely-related representation-theoretic
proof of the celebrated strong subadditivity inequality [20]

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC), (57)

has also been obtained in terms of the asymptotic behavior of the so-called
recoupling coefficients [5].

9. Conclusion

I would like to thank the organizers for inviting me to present this very brief
introduction to some of the most important developments in the connection be-
tween quantum information theory and the representation theory of symmetric
group. I hope I have been able to convey some the excitement surrounding the
currently very active field, which promises to yield new and surprising results
connecting several diverse areas.
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Bogotá, Colombia

e-mail: abotero@uniandes.edu.co

Revista Colombiana de Matemáticas


