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On the energy of symmetric matrices

and Coulson’s integral formula

Sobre la enerǵıa de matrices simétricas y la fórmula integral de
Coulson
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Abstract. We define the outer energy of a real symmetric matrix M as

Eout (M) =

n∑
i=1

∣∣λi − λ (M)
∣∣

for the eigenvalues λ1, . . . , λn of M and their arithmetic mean λ(M). We
discuss the properties of the outer energy in contrast to the inner energy

defined as Einn(M) =
n∑

i=1

|λi|. We prove that Einn is the maximum among the

energy functions e : S(n) → R and Eout among functions f
(
M − λ(M)1n

)
,

where f is an energy function. We prove a variant of the Coulson integral
formula for the outer energy.
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Resumen. Definimos la enerǵıa exterior de una matriz simétrica real M como

Eout (M) =

n∑
i=1

∣∣λi − λ (M)
∣∣

donde λ1, . . . , λn son los autovalores de M y λ(M) es su media aritmética.
Discutimos las propiedades de la enerǵıa exterior en contraste con la enerǵıa
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interior definida como Einn(M) =
n∑

i=1

|λi|. Demostramos que Einn es máxima

entre todas las funciones de enerǵıa e : S(n) → R y Eout entre todas las
funciones f

(
M − λ(M)1n

)
, donde f es una función de enerǵıa. Demostramos

una variante de la fórmula integral de Coulson para la enerǵıa exterior.

Palabras y frases clave. Enerǵıa π-electrón total, Enerǵıa de una matriz simétrica,
Cotas para la enerǵıa, Fórmula integral de Coulson.

1. Introduction

Research on energy of a graph goes back to the work of Erich Hückel on the
approximate solution of the Schrödinger equation of certain organic molecules.
Generalizing from facts observed in this molecular theory, Gutman introduced
in [7] the definition of the energy of a graph G as

E(G) =

n∑
i=1

|λi|

where n is the number of vertices and λ1, . . . , λn are the eigenvalues of the
adjacency matrix A(G) = (aij), defined as aij = 1 if there is an edge between i
and j and 0 otherwise. Details on the development of the mathematical concept
and its associated chemistry applications can be seen in the recent book [14].

We denote by ϕG(x) (or simply ϕ(x) when no confusion arises) the charac-
teristic polynomial of the graph G defined as

ϕ(x) = det (x1n −A(G))

which is a monic polynomial of degree n whose roots are the eigenvalues
λ1, . . . , λn of the adjacency matrix A(G). In the theory of graph energy a
prominent role is played by the Coulson integral formula

E(G) =
1

π

∞∫
−∞

(
n− ixϕ′(ix)

ϕ(ix)
dx

)

where ϕ′(x) =
(
d
dx

)
ϕ(x) is the first derivative of ϕ(x). A derivation of the

integral formula as well as several of its chemical applications can be seen in
[14] (see also [10]).

In 2006 Gutman and Zhou [11] introduced a new energy based on the Lapla-
cian matrix of a graph G, defined as L = D − A, where D = diag (d1, . . . , dn)
is the diagonal matrix of vertex degrees and A is the adjacency matrix of G.

Note that if µ1, . . . , µn are the eigenvalues of L then
n∑
i=1

|µi| = 2m, where m is

the number of edges of G, and thus is trivial. With the intention to conceive
a graph-energy-like quantity that preserves the main features of the original
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graph energy, Gutman and Zhou defined the Laplacian energy of a graph G

with n vertices and m edges as LE (G) =
n∑
i=1

∣∣µi − 2m
n

∣∣.
Later Consonni and Todeschini [6] used the expression E (M) =

n∑
i=1

∣∣ξi − ξ∣∣,
where ξ1, . . . , ξn are the eigenvalues of a molecular matrix and ξ is their arith-
metic mean, for designing quantitative structure-property relations for a variety
of physical-chemical properties of a number of classes of organic compounds.
Note that in the case of the Laplacian matrix L, the arithmetic mean of its
eigenvalues is precisely 2m

n , so the Laplacian energy of a graph is a particular
case of this expression.

After this a large number of energies appeared in the mathematical and
mathematico-chemical literature, which were based on the eigenvalues of ma-
trices associated to the graph. For example, the signless Laplacian energy
([1],[26]), the normalized Laplacian energy [5], the distance energy ([13],[25]),
also generalizations to digraphs ([18],[19],[20],[21],[22],[23],[24]) and ([2],[3],[4]),
among others. Motivated by the analogous forms of various graph energies,
Gutman [8] proposed an ultimate extension of the graph-energy concept as

EX =

n∑
i=1

|xi − x|

for numbers x1, . . . , xn and x their arithmetic mean value. For more details on
energies of graphs and digraphs we refer to ([9],[15],[17]).

In this paper we refer to the energy conceived by Consonni and Todeschini
as to the outer energy of a real symmetric matrix M as

Eout (M) =

n∑
i=1

∣∣λi − λ (M)
∣∣

for the eigenvalues λ1, . . . , λn of M and their arithmetic mean λ (M). In this
paper we discuss the properties of this “energy” in contrast to the inner energy
defined as

Einn (M) =

n∑
i=1

|λi|

Observe that these quantities coincide in case tr(M) = 0, as happens for the
adjacency matrix of a graph.

Let S(n) be the space of real symmetric n× n-matrices. For M ∈ S(n) we
denote by M (j) ∈ S(n− 1) the matrix o btained from M by deleting the j-th

row and column, and M
(j)
0 ∈ S(n) is the matrix formed from M by replacing

the j-th row and column by zeroes.

We shall say that fn : S(n) −→ R is an energy function if it satisfies the
following conditions for every n ≥ 1 :
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(E0) fn is non-negative, unitarily invariant and f1(1) = 1;

(E1) if M,N ∈ S(n) then fn (M +N) ≤ fn(M) + fn(N) and for r any scalar
we have fn(rM) = |r| fn(M);

(E2) if M ∈ S(n) has a j-th row and column of zeroes then fn(M) =
fn−1

(
M (j)

)
, for all n ≥ 2.

Theorem 1.1. The inner energy Einn : S(n) −→ R is the maximal function
among the energy functions fn : S(n) −→ R.

We say that fn : S(n) −→ R is an affine-energy function if fn(M) =
en
(
M − λ(M)1n

)
for an energy function en and the linear function 1

n tr = λ :
S(n) −→ R.

Theorem 1.2. The outer energy Eout : S(n) −→ R is the maximal function
among the affine-energy functions fn : S(n) −→ R.

We denote ϕM (x) (or simply ϕ(x) when no confusion arises) the charac-
teristic polynomial of the real symmetric n × n-matrix M defined as ϕ(x) =
det (x1n −M). This a a monic polynomial of degree n whose roots are the
eigenvalues λ1, . . . , λn of M . Let λ be the arithmetic mean of the λi. We con-
sider the associated affine polynomial

ψ (x) = ϕ
(
x− λ

)
whose roots are of the form λ− λi. We prove the following variant of Coulson
integral formula:

Theorem 1.3. Let M be a real symmetric n× n-matrix. The following holds:

Eout(M) =
1

π

∞∫
−∞

(
n− ixψ′(ix)

ψ(ix)
dx

)
.

We mention some applications of this formula.

2. The (outer) energy of a matrix

(1) Examples:

(a) For 1 ≤ k ≤ n, define pk : S(n) −→ R by pk(M) =
k∑
i=1

|λi|, where

the eigenvalues of M are ordered as |λ1(M)| ≥ |λ2(M)| ≥ · · · ≥
|λn(M)|. pk is an energy function for each 1 ≤ k ≤ n. In particular,
Einn : S(n) −→ R is an energy function.
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(b) For M = (mij) ∈ S(n) define fn(M) =

(
1
n

n∑
i=1

|mij |2
) 1

2

. Then fn is

an energy function.

(2) Let λn, . . . , λs+1 ≤ λ ≤ λs, . . . , λ1 be the eigenvalues of a matrix M . We
assume that the arithmetic mean λ ≥ 0. Observe that Einn(M) ≥ nλ ≥ 0
and(

1 +
n− s
n

) s∑
i=1

λi ≥ Einn(M) =

s∑
i=1

λi +

n∑
j=s+1

|λj | ≥
s∑
i=1

λi − (n− s)λ

Moreover

Eout(M) =

n∑
i=1

∣∣λi − λ∣∣ =

s∑
j=1

λj+(n−2s)λ−
n∑

i=s+1

λi =

s∑
j=1

λj−
n∑

i=s+1

λi+ni(M)λ

where i(M) = 1− 2s
n < 1 is the balance index of the matrix M .

Proposition 2.1. Let M = (aij) be a matrix with eigenvalues λi with λn, . . .,
λs+1 ≤ λ ≤ λs, . . . , λ1, where 0 ≤ λ is the mean value of the λi. Then

(a) 0 ≤ i(M) < 1;

(b) 1
2Eout(M) =

s∑
j=1

(
λj − λ

)
=

n∑
j=s+1

(
λ− λj

)
.

If moreover all λi ≥ 0 then

(c) 2Einn(M)− Eout(M) = 2s(M)λ > 0.

Proof. For (a), observe that s > n
2 implies

0 ≤
s∑
j=1

λj−sλ =

s∑
j=1

(
λj − λ

)
=

n∑
j=s+1

(
λ− λj

)
= λ+(n− sj)λ−

n∑
j=s+1

λj < λ−
n∑

j=s+1

λj

and

nλ < (s+ 1)λ ≤ nλ

a contradiction showing that s ≤ n
2 and i(M) ≥ 0.

For (b), observe that the inequality

sλ+

n∑
i=s+1

λi ≤
s∑
i=1

λi +

n∑
j=s+1

λj = nλ ≤
s∑
j=1

λj + (n− s)λ
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written as a + A ≤ B + b has the property that the sum of the first and last
terms, a and b, respectively, equals the sum of the second and third terms, A
and B, respectively. That is, a+ b = A+B. Therefore,

0 ≤ b−A = B − a =

s∑
j=1

(
λj − λ

)
=

n∑
j=s+1

(
λ− λj

)
=

1

2
Eout(M)

since

s∑
i=1

λi −
n∑

j=s+1

λj + (n− 2s)λ = Eout(M) =
∑
i∈G

∣∣λi − λ∣∣ ≥ 0

This shows (b).

For (c), asume that 0 ≤ λn, . . . , λs+1 ≤ λ ≤ λs, . . . , λ1 such that

Einn(M) =

s∑
i=1

λi +

n∑
j=s+1

λj = nλ ≥ 0

Then

Einn(M)− Eout(M) =

n∑
i=s+1

λi − (n− 2s)λ = −1

2
Eout(M) + s(M)λ.

�X

Proposition 2.2. Let M = (aij) be a matrix with eigenvalues λi with λn, . . .,
λs+1 ≤ λ ≤ λs, . . . , λ1, where 0 ≤ λ is the mean value of the λi. Then the
following assertions are equivalent:

(a) Einn (M) = Eout (M);

(b) tr (M) = 0;

(c) λ = 0.

Proof. Only that (a) implies (b) is not clear. Assume that Einn(M) = Eout (M)
and let

λn ≤ · · · ≤ λt+1 ≤ 0 ≤ λt ≤ · · · ≤ λs+1 ≤ λ ≤ λs, . . . , λ1

Then

s∑
i=1

λi−
n∑

j=s+1

λj+(n−2s)λ =
∑
i

∣∣λi − λ∣∣ = Eout(M) = Einn(M) =

t∑
i=1

λi−
n∑

j=t+1

λj
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Hence

(1− i(M))

n∑
i=1

λi = (n− 2s)λ = 2

t∑
i=s+1

λi ≤ 2 (t− s)λ.

�X

(3) Proof of Theorem 1.1: First, observe that Einn is an energy function (see
Examples). We show our result by induction, being the case n = 1 trivial.
Let fn : S(n) −→ R be an energy function and M ∈ S(n). Find a diagonal
matrix D = diag (λ1, . . . , λn) equivalent to M , then

fn(M) = fn(D) = fn

 1

n− 1

n∑
j=1

D
(j)
0

 ≤ 1

n− 1

n∑
j=1

fn

(
D

(j)
0

)

=
1

n− 1

n∑
j=1

fn−1

(
D(j)

)
≤ 1

n− 1

n∑
j=1

Einn(n− 1)
(
D(j)

)
=

1

n− 1

n∑
j=1

∑
j 6=i

|λi| = Einn(M).

(4) Let σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) be the singular values of M and
σ(M) the arithmetic mean, that is, σj(M) are the square roots of the
eigenvalues of MM>.

Observe that the symmetric matrix N = M−λ(M)1n has singular values∣∣λi(M)− λ(M)
∣∣. Therefore

Eout(M) =

n∑
i=1

∣∣λi(M)− λ(M)
∣∣ =

n∑
i=1

σi(N).

In other words, Eout(M) is equal to Nikiforov’s energy of N = M −
λ(M)1n (see [16]). It follows from [12, Corollary 3.4.4] that Eout satisfies
(E1).

Proposition 2.3. Let M ∈ S(n) be a real symmetric matrix. Then Eout(M) =
0 if and only if M = a1n for some scalar a.

Proof. Let λ1, . . . , λn be the eigenvalues of M . Observe that Eout(M) = 0
implies that the mean value λ = λi for all i and therefore M = λ1n. �X

(5) Proof of Theorem 1.2: Note that Einn
(
M − λ(M)1n

)
=

n∑
i=1

∣∣λi − λ(M)
∣∣ =

Eout(M) so Eout is a affine energy function. To check maximality, let fn :
S(n) −→ R be any affine-energy function and M ∈ S(n). Then fn(M) =
en
(
M − λ(M)1n

)
for any energy function en and so by Theorem 1.1

fn(M) = en
(
M − λ(M)1n

)
≤ Enn

(
M − λ(M)1n

)
= Eout(M).
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3. Some special classes of matrices

(1) Inverse matrices

Let M be a real symmetric n × n-matrix. Denote by ϕM (x) the charac-
teristic polynomial of degree n whose roots are the eigenvalues λ1, . . . , λn
of M . Let λ be the arithmetic mean of the λi. Suppose M is invertible,
then all λi 6= 0 and λ−1

1 , . . . , λ−1
n are the eigenvalues of M−1 with mean

value

λ−1 =
1

n

n∑
i=1

λ−1
i = H (λ1, . . . , λn)

−1

where H (λ1, . . . , λn) is the harmonic mean of the eigenvalues. The har-
monic-arithmetic means inequality states that

1 ≤ H (λ1, . . . , λn)
−1
λ = λ−1λ.

More precise information may be obtained as the following result shows:

Proposition 3.1. Let M be a non-singular real symmetric n×n-matrix. Then

(a) s(M) + s
(
M−1

)
≤ n;

(b) λ−1 = λ
−1

;

(c) Eout
(
M−1

)
= 1

λ
2Eout(M).

Proof. Write µi = λ−1
i and µ = λ−1. Then λ ≤ λi implies µi ≤ λ

−1 ≤ µ.
Therefore

s(M) ≤ n− s
(
M−1

)
which yields (a). Calculate

Eout
(
M−1

)
= 2

n∑
i=s(M−1)+1

(µ− µi) = 2

s(M)∑
i=1

(
λi − λ
λiλ

)
≤ 2

λ
2

s(M)∑
i=1

(
λi − λ

)
=

1

λ
2Eout(M)

Moreover,

Eout (M) ≤ 1

µ2Eout
(
M−1

)
≤ 1

µ2λ
2Eout (M) ≤ Eout (M)

which yields equalities (b) and (c). �X

(2) Exponential matrices

Let M be a matrix with eigenvalues

λn ≤ · · · ≤ λt+1 ≤ 0 < λt ≤ · · · ≤ λs+1 < λ ≤ λs ≤ · · · ≤ λ1
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and whose arithmetic mean is λ ≥ 0. We consider the exponential matrix
eM with eigenvalues

0 < eλn ≤ · · · ≤ eλt+1 ≤ eλt ≤ · · · ≤ eλ1

and whose arithmetic mean λ
(
eM
)
> 0 satisfies eλt+1 ≤ λ

(
eM
)
≤ eeλt .

Proposition 3.2. With the notation above we have:

(a) eλ ≤ λ
(
eM
)
, with equality if and only if λn = · · · = λ1;

(b) s
(
eM
)
≤ s(M) and i(M) ≤ i

(
eM
)
;

(c) Eout
(
eM
)
≥ 2 (n− t).

Proof. Observe that the arithmetic mean-geometric mean inequality yields

eλ =

(
n∏
i=1

eλi

) 1
n

≤ 1

n

n∑
i=1

eλi = λ
(
eM
)

That is inequality (a). For (b), observe that

λn ≤ · · · ≤ λm+1 < 0 ≤ λm ≤ · · · ≤ λs+1 < λ ≤ λs ≤ · · ·λt+1 < lnλ
(
eM
)
≤ λt ≤ · · · ≤ λ1

and t = s
(
eM
)
≤ s(M) = s ≤ m.

For (c), consider

Eout
(
eM
)

=

t∑
i=1

(
eλi − λ

(
eM
))

+

n∑
i=t+1

(
λ
(
eM
)
− eλi

)
≥ 1

2
Eout

(
eM
)

+

s∑
i=t+1

(
λ
(
eM
)
− eλi

)
+

n∑
i=s+1

(
eλ − eλi

)
Hence

1

2
Eout

(
eM
)
≥

s∑
i=t+1

(
λ
(
eM
)
− eλi

)
+

m∑
i=s+1

(
eλ−λi

)
+

n∑
i=m+1

(
eλ − eλi

)
the last inequality due to the fact that, for each t + 1 ≤ i ≤ m, we have
λ− λi = ci ≥ 0 and λi ≥ 0. Then for k ≥ 1,

λ
k − λki = (λi + ci)

k − λki ≥ cki

Therefore eλ − eλi ≥ e(λ−λi) and
m∑

i=s+1

e(λ−λi) ≥ (m− s).
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Moreover,

s∑
i=t+1

(
λ
(
eM
)
− eλi

)
≥

s∑
i=t+1

(
eλt+1 − eλt

)
≥ (s− t)

and
n∑

i=m+1

(
eλ − eλi

)
≥ (n−m)

In conclusion
Eout

(
eM
)
≥ 2 (n− t)

�X

A simple example will illustrate the last statement. Consider the matrix

M =

(
0 1

1 0

)
with eigenvalues λ1 = 1 and λ2 = −1. Then Eout (M) = 2. Moreover, m = t =
s = 1.

The eigenvalues of eM are e and e−1 with mean µ = e+e−1

2 and

Eout
(
eM
)

= e− e−1 ≈ 2.35

while the estimated lower bound is 2.

4. On Coulson-like formulas

(1) Let M be a real symmetric n × n-matrix. Denote by ϕM (x) (or simply
ϕ (x) when no confusion arises) the characteristic polynomial defined as

ϕ (x) = det (x1n −M) .

This is a monic polynomial of degree n whose roots are the eigenvalues
λ1, . . . , λn of M . Let λ be the arithmetic mean of the λi. We consider the
associated affine polynomial

ψ (x) = ϕ
(
x− λ

)
,

whose roots are of the form λ− λi.
Let ψ (x) = bnx

n− bn−1x
n−1 + · · ·+ (−1)

n−1
b1x+ (−1)

n
b0 and consider

for 1 ≤ k ≤ n,

sk =

n∑
i=1

(
λ− λi

)k
These coefficients satisfy:
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(i) bn = 1;

(ii) b1 = 0 = s1;

(iii) Newton’s identities hold, namely:

s2 = b1 s1 − 2b2,

s3 = b2 s1 − b1 s2 + 3b3,

s4 = b3 s1 − b2 s2 + b1 s3 − 4b4,

etc . . .

(2) Proof of Theorem 1.3: Let λj = λj (M) be the eigenvalues of M . Define

f (z) =
zϕ′

(
z − λ

)
ϕ
(
z − λ

) =
zψ′ (z)

ψ (z)

Since
ψ′ (z)

ψ (z)
=

n∑
j=1

1

z − λ+ λj

then
zψ′ (z)

ψ (z)
= n−

n∑
j=1

λj − λ
z − λ+ λj

Take any closed contour Γ containing in its interior exactly those λj−λ ≥
0. The well-known Cauchy formula in complex calculus yields

1

2πi

∮
Γ

(f(z)− n) dz =
∑
λ<λj

(
λj − λ

)
=

1

2
Eout

the last equality due to Proposition 2.1. Observe that the actual form of
the contour Γ is unimportant. Therefore we can inflate it as indicated in
[7] to obtain

1

π

∞∫
−∞

(
n− ixψ′ (ix)

ψ (ix)

)
dx =

1

πi

∮
Γ

(f(z)− n) dz = Eout

as desired.

(3) Following [7], we establish some direct consequences of the Coulson-like
result just proved.

Corollary 4.1. Let M be a real symmetric n× n-matrix. Denote by ϕ (x) its
characteristic polynomial and ψ (x) = ϕ

(
x− λ

)
the associated affine polyno-

mial. Then

Eout (M) =
1

π

∞∫
−∞

(
n− x d

dx
lnψ (ix)

)
dx
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Corollary 4.2. Let M1,M2 be two real symmetric n× n-matrices. Denote by
ψk (x) = ϕk

(
x− λk

)
the associated afffine polynomials, k = 1, 2. Then

Eout (M1)− Eout (M2) =
1

π

∞∫
−∞

ln
ψ1 (ix)

ψ2 (ix)
dx.

Applying the ordinary Coulson integral formula and Theorem 1.3, we get:

Corollary 4.3. Let M be a real symmetric n× n-matrix. Denote by ϕ (x) its
characteristic polynomial and ψ (x) = ϕ

(
x− λ

)
the associated affine polyno-

mial. Then

Eout (M)− Einn (M) =
1

π

∞∫
−∞

ln
ψ (ix)

ϕ (ix)
dx.
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