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Resumen. En este art́ıculo, se obtienen algunas nuevas desigualdades del tipo
Jensen y Hermite - Hadamard para funciones h-convexas sobre conjuntos frac-
tales. Los resultados probados en este art́ıculo pueden estimular futuras in-
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1. Introduction

Fractals have been known for about more than a century and have been ob-
served in different branches of science. But it is only recently (approximately in
the last forthy years) that they have become a subject of mathematical study.
The pioneer of the theory of fractals was Benoit Mandelbrot. His book Fractals:
Form, Chance and Dimension first appeared in 1977, and a second, enlarged,
edition was published in 1982. Since that time, serious articles, surveys, popu-
lar papers, and books about fractals have appeared by the dozen. Mandelbrot
in [17] defined a fractal set is one whose Hausdorff dimension exceeds strictly
its topological dimension. Also, Yang in [30] established the numerical α−sets,
where α is the dimension of the considered fractal. For more details about
fractal sets see for instance [6, 7, 8, 30] and references therein.

It is well known that modern analysis directly or indirectly involves the ap-
plications of convexity. Due to its applications and significant importance, the
concept of convexity has been extended and generalized in several directions.
The concept of convexity and its variant forms have played a fundamental role
in the development of various fields. Convex functions are powerful tools for
proving a large class of inequalities. They provide an elegant and unified treat-
ment of the most important classical inequalities. A significant generalization of
convex functions is that of h-convex functions introduced by Sanja Varošanec
in [28]. There are many results associated with convex functions in the area of
inequalities, two of those are: the Jensen inequality and the Hermite-Hadamard
inequality, which occur widely in the mathematical literature. In this paper,
we will establish some new integral inequalities of Hermite-Hadamard type for
h-convex functions.

The following definition is well known in the literature as convex function:
a function f : I ⊂ R→ R is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].
The convexity of functions and their generalized forms play an important role in
many fields such as Economic Science, Biology, Optimization. In recent years,
several extensions, refinements, and generalizations have been considered for
classical convexity [2, 5, 4, 16, 18, 19, 20, 26, 28].

The classical Jensen inequality is contained in the following theorem.

Theorem 1.1 (See [11]). Let f : I ⊂ R → R be a convex function over I.
Then for every xi ∈ I, ti ∈ [0, 1], i = 1, 2, . . . , n, and

∑n
i=1 ti = 1, we have

f

(
n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi). (1)

Volumen 50, Número 2, Año 2016



HERMITE - HADAMARD AND JENSEN INEQUALITIES FOR H−CONVEX FUNCTIONS145

Jensen’s inequality is sometimes called the king of inequalities since it
implies the whole series of other classical inequalities (e.g. those by Hölder,
Minkowski, Beckenbach-Dresher and Young, the arithmetic-geometric mean
inequality etc.). Jensen’s inequality for convex functions is probably one of the
most important inequalities which is extensively used in almost all areas of
mathematics, especially in mathematical analysis and statistics. For a compre-
hensive inspection of the classical and recent results related to the inequality
(1) the reader is referred to [20, 25, 27, 29].

One of the goals of this article is to establish a Jensen-type inequality for
generalized h-convex functions.

It is well-known that one of the most fundamental and interesting inequali-
ties for classical convex functions is that associated with the name of Hermite-
Hadamard inequality which provides a lower and an upper estimations for the
integral average of any convex functions defined on a compact interval, involv-
ing the midpoint and the endpoints of the domain. More precisely:

Theorem 1.2 (See [10]). Let f be a convex function over [a, b], a < b. If f is
integrable over [a, b], then

f

(
a+ b

2

)
≤ 1

(b− a)

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (2)

The above inequality (2) was firstly discovered by Hermite in 1881 in the
journal Mathesis (see Mitrinović and Lac̆ković [19]). But, this beautiful result
was nowhere mentioned in the mathematical literature and was not widely
known as Hermite’s result (see Klaričić et al. [1]). For more recent results which
generalize, improve, and extend the classical Hermite-Hadamard inequality (2),
see for instance [15, 24, 25], and references therein. The Hermite-Hadamard
inequality has several applications in nonlinear analysis and the geometry of
Banach spaces, see [12, 23].

In the present paper,we are concerned with an analogous of Theorem 2 for
h-convex functions on fractal set. Let us recall two important definitions of
generalized convex functions.

Definition 1.3 (See [9]). We shall say that a function f : I ⊂ R → R is a
Godunova-Levin function or f ∈ Q(I) if f is non negative and for each x, y ∈ I
and t ∈ (0, 1) we have

f(tx+ (1− t)y) ≤ f(x)

t
+
f(y)

1− t
.

Definition 1.4 (See [3]). Let s ∈ (0, 1]. A function f : (0,∞] → (0,∞] is
called a s− convex function (in the second sense), or f ∈ K2

s if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

for each x, y ∈ (0,∞] and t ∈ [0, 1].
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It is clear that,for s = 1, s−convexity reduces to ordinary convexity of
functions defined on (0,∞].

In the year 1999, Dragomir [5] proved a variant of the Hermite-Hadamard
inequality (2), for s-convex functions in the second sense.

Theorem 1.5 (See [5]). Let f : (0,∞]→ (0,∞] a s− convex function in the
second sense,with s ∈ (0, 1], and a, b ∈ (0,∞], a < b. If f ∈ L1([a, b]), then we
have

2s−1f

(
a+ b

2

)
≤ 1

(b− a)

∫ b

a

f(x)dx ≤ f(a) + f(b)

s+ 1
.

In the year 2007, Varos̆anec, [28], defined the following so-called h-convex
function:

Definition 1.6. Let h : J → R be a non-negative,non-identically zero function,
defined on an interval J ⊂ R, with (0, 1) ⊂ J . We shall say that a function
f : I → R, defined on an interval I ⊂ R, is h-convex if f is non negative and
this inequality holds

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)

for all t ∈ (0, 1) and x, y ∈ I.

When h(t) = t, this definition coincides with the ordinary convex function.
If h(t) = ts with 0 < s ≤ 1, the coincidence is with the s−convex functions,
and if h(t) = 1/t this coincides with the Godunova-Levin type of generalized
convex function.

For other recent results and properties of the class of h-convex functions see
[2, 16, 13, 14, 22].

In this article motivated and inspired by the ongoing research in the field [13,
14, 21, 22],we establish new Hermite-Hadamard and Jensen type inequalities
for h-convex functions on fractal sets.

The article is organized as follows: In section 2 we state the operations with
real line numbers on fractal sets and we recall some definitions and preliminary
facts of fractional calculus theory which will be used in this paper, also we
introduce the definition of h-convexity on fractal sets. In secction 3,we establish
the main results of the article: the generalized Jense‘s inequality and generalized
Hermite-Hadamard‘s inequalty for generalized h-convex functions. In section 4
we give some applications/examples to illustrate.

2. Preliminaries and Basic Results

Recently, the theory of Yang’s fractional set of elements sets was introduced as
follows:

For 0 < α ≤ 1 we have the following α−type sets.
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• Zα = {0α,±1α,±2α, ...,±nα, ...}

• Qα = {(a/b)α : aα ∈ Zα, bα ∈ Zα, bα 6= 0α}

• Iα = {mα 6= (a/b)
α

: aα ∈ Zα, bα ∈ Zα, bα 6= 0α}

• Rα = Qα ∪ Iα

For aα, bα, cα ∈ Rα the following properties hold:

a. aα + bα ∈ Rα y aαbα ∈ Rα

b. aα + bα = bα + aα = (a+ b)
α

= (b+ a)
α

c. aα + (bα + cα) = (aα + bα) + cα

d. aαbα = bαaα = (ab)
α

= (ba)
α

e. aα (bαcα) = (aαbα) cα

f. aα + 0α = 0α + aα = aα y aα1α = 1αaα = aα

If aα− bα is non negative we say aα is greater than or equal to bα , or bα is less
than or equal to aα, and we write aα ≥ bα or bα ≤ aα, respectively. If there is
not possibility that aα = bα then we write aα > bα o bα < aα.

Next we recall some definitions and some facts of fractional calculus theory
on Rα which will be used in this paper.

Definition 2.1. Let f : R→ Rα be a mapping. We say that f is local fractional
continuous at x0 ∈ R, if for all ε > 0 exists δ > 0 such that

|x− x0| < δ =⇒ |f (x)− f (x0) | < εα

If f is local fractional continuous in each point of an interval (a, b), we say that
f is local fractional continuous in (a, b) and we write f ∈ Cα (a, b).

Definition 2.2. The local fractional derivative of f of order α at x = x0 is
defined by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α (f(x)− f(x0))

(x− x0)
α

where ∆ (f(x)− f(x0)) ∼= Γ (α+ 1) (f(x)− f(x0)) .

Definition 2.3. Let f ∈ Cα[a, b]. Then the local fractional integral of order α
of f is defined by

aI
(α)
b f =

1

Γ (1 + α)

∫ b

a

f (x) (dx)
α

=
1

Γ (1 + α)
lim

∆t→0

N∑
i=1

f (ti) (∆ti)
α
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where ∆ti = ti+1− ti, ∆t = max{∆t1, . . . ,∆tN}, and [ti, ti+1], i = 1, 2, . . . , N ,
with a = t0 < t1 < · · · < tN−1 = b, is a partition of [a, b].

If for each x ∈ [a, b] there exists aI
(α)
b f, then we write f ∈ I(α)

x [a, b].

Here, it follows

aI
(α)
b f = 0 if a = b

and

bI
(α)
a f = −aI(α)

b f if a < b.

Also we have the property of change of variables.

Lemma 2.4. If g ∈ Cα [a, b] and f ∈ Cα [g(a), g(b)] then

g(a)I
(α)
g(b)f =

1

Γ (1 + α)

∫ g(b)

g(a)

f (x) (dx)
α

=
1

Γ (1 + α)

∫ b

a

f (g(t)) g′(t) (dt)
α

=a I
(α)
b ((f ◦ g) g′) .

In [22], Mo and Sui considered the following denfition of generalized con-
vexity on fractal set.

Definition 2.5. Let f : I → Rα , with 0 < α ≤ 1. For any x1 6= x2 in I and
t ∈ [0, 1], we say that f is generalized convex function on I if

f(tx1 + (1− t)x2) ≤ tαf(x1) + (1− t)αf(x2)

holds.

In [21], the definition of s−convex functions on fractal sets was established
as follows:

Definition 2.6. A function f : R+ → Rα is said to be a generalized s−convex
(0 < s < 1) in the second sense, if

f(t1x1 + t2x2) ≤ tsα1 f(x1) + tsα2 f(x2)

for all x1, x2 ∈ R+ and all t1, t2 > 0 with t1 + t2 = 1.

With this, they obtain the following results.

Theorem 2.7. Let f : I → Rα be a generalized convex function. Then for each
xi ∈ [a, b] and ti ∈ [0, 1] with i = 1, 2, . . . , n we have

f

(
n∑
i=1

tixi

)
≤

n∑
i=1

tαi f(xi).
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Theorem 2.8. Let f ∈ I(α)
x [a, b] be a generalized convex function on [a, b] with

a < b. Then

f

(
a+ b

2

)
≤ Γ(1 + α)

(b− a)α

∫ b

a

f(x)(dx)α ≤ f(a) + f(b)

2α
.

Next we give our definition of generalized h -convex functions on fractal set.

Definition 2.9. Let h : J → Rα be a non-negative function and h 6≡ 0, defined
over an interval J ⊂ R and such that (0, 1) ⊂ J . We say that f : I → Rα,
defined over an interval I ⊂ R, is h-convex if f is non negative and we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) (3)

for all t ∈ (0, 1) and x, y ∈ I.

We can see that if h(t) ≥ tα, like h(t) = tkα, where 0 < k ≤ 1 then any
non-negative and convex function f : I → Rα is h-convex on Rα.

In [21] we can find another example of such functions.

Example 2.10. Let 0 < s < 1, h : (0, 1) → Rα defined by h(t) = tsα, (t ∈
(0, 1)) and aα, bα, cα ∈ Rα. For x ∈ R+, define

f(x) =

{
aα, si x = 0

bαxsα + cα, si x > 0

3. Main Results

In this section, we establish our main results.

Theorem 3.1. Let t1, . . . , tn be positive real numbers. If h : J → Rα is a non-
negative function, h 6≡ 0, supermultiplicative defined over an interval J ⊂ R
and such that (0, 1) ⊂ J , and let f : I → Rα be a function defined over an
interval I ⊂ R, h−convex, and x1, . . . , xn ∈ I, then

f

(
1

Tn

n∑
i=1

tixi

)
≤

n∑
i=1

h

(
ti
Tn

)
f (xi) (4)

where Tn =
∑n
i=1 ti.

Proof. The proof is by induction. If n = 2, the desired inequality is obtained
from the definition of h-convex function (3) with t = t1

T2
, (1− t) = t2

T2
, x = x1

and y = x2.

Assume that for n− 1, where n is any positive integer, the inequality (4) is
also true.
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Then, we see that

f

(
1

Tn

n∑
i=1

tixi

)
= f

(
tn
Tn
xn +

1

Tn

n−1∑
i=1

tixi

)

= f

(
tn
Tn
xn +

Tn−1

Tn

n−1∑
i=1

ti
Tn−1

xi

)
.

Using the definition (2.9) in the right-hand side of the previous inequality, we
have

f

(
1

Tn

n∑
i=1

tixi

)
≤ h

(
tn
Tn

)
f (xn) + h

(
Tn−1

Tn

)
f

(
n−1∑
i=1

ti
Tn−1

xi

)
.

Now, as we have assumed that (4) holds for n− 1 we obtain

f

(
1

Tn

n∑
i=1

tixi

)
≤ h

(
tn
Tn

)
f (xn) + h

(
Tn−1

Tn

) n−1∑
i=1

h

(
ti

Tn−1

)
f (xi)

= h

(
tn
Tn

)
f (xn) +

n−1∑
i=1

h

(
Tn−1

Tn

)
h

(
ti

Tn−1

)
f (xi) .

Further, since h is a supermultiplicative function, we can see

h

(
Tn−1

Tn

)
h

(
ti

Tn−1

)
≤ h

(
Tn−1

Tn

ti
Tn−1

)
= h

(
ti
Tn

)
,

using this fact we obtain

f

(
1

Tn

n∑
i=1

tixi

)
≤ h

(
tn
Tn

)
f (xn) +

n−1∑
i=1

h

(
ti
Tn

)
f (xi) =

n∑
i=1

h

(
ti
Tn

)
f (xi) .

The above inequality holds by the result for n=2 and the induction hypothesis.
�X

Remark 3.2. If h(t) = tα we have

f

(
1

Tn

n∑
i=1

tixi

)
≤

n∑
i=1

(
ti
Tn

)α
f (xi)

and if we put λi = (ti/Tn) , (i = 1, ..n) then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λαi f (xi)
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and this coincides with the result demonstrated by Mo and Sui in [22] about
generalized convex function over fractal set. In the same way if h(t) = tsα, (0 <
s < 1), we have

f

(
1

Tn

n∑
i=1

tixi

)
≤

n∑
i=1

(
ti
Tn

)sα
f (xi)

and if λi = (ti/Tn) , (i = 1, ..n) then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λsαi f (xi)

corresponding to generalized s−convex functions over fractal sets.

The next result involves an integral inequality of Hermite-Hadamard type.

Theorem 3.3. Let h : J → Rα be a non-negative integrable function, h 6≡ 0,
defined over an interval J ⊂ R and such that (0, 1) ⊂ J and f : I → Rα be an
h− convex, non-negative and integrable function, a, b ∈ I with a < b. Then

1

(1− (−1)α)h(1/2)Γ (1 + α)
f(
a+ b

2
) ≤ 1

(b− a)α
aI

(α)
b f (5)

≤ (f (b)− (−1)αf (a)) 0I
(α)
1 h.

Proof. Note that

ta+ (1− t) b+ (1− t) a+ tb = ta+ b− tb+ a− ta+ tb = a+ b

for all t ∈ [0, 1]. And as f is an h-convex function, we have

f

(
a+ b

2

)
≤ h (1/2) f (ta+ (1− t) b) + h (1/2) f ((1− t) a+ tb)

= h (1/2) (f (ta+ (1− t) b) + f ((1− t) a+ tb)) .

Thus, integrating both sides, we get∫ 1

0

f

(
a+ b

2

)
(dt)

α

≤ h (1/2)

∫ 1

0

f (ta+ (1− t) b) (dt)
α

+h (1/2)

∫ 1

0

f ((1− t) a+ tb) (dt)
α
.

Now, we note that∫ 1

0

f (ta+ (1− t) b) (dt)
α

=
−(−1)α

(b− a)α

∫ b

a

f(x) (dx)
α
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and ∫ 1

0

f ((1− t) a+ tb) (dt)
α

=
1

(b− a)α

∫ b

a

f(x) (dx)
α

and with this we have∫ 1

0

f

(
a+ b

2

)
(dt)

α ≤ h (1/2)

(b− a)α
(1− (−1)α)

∫ b

a

f(x) (dx)
α

from which it follows that

1α

(1− (−1)α)h (1/2) Γ (1 + α)
f

(
a+ b

2

)
≤ 1

(b− a)
α aI

(α)
b f

which corresponds to the left inequality in (3.3).

We know that for any x ∈ [a, b] there exists t ∈ [0, 1] such that x = ta +
(1− t) b. With this fact and the h-convexity of f , we can write∫ b

a

f (x) (dx)
α

= (b− a)α
∫ 1

0

f ((1− t) a+ tb) (dt)
α

≤ (b− a)α
∫ 1

0

(h (1− t) f (a) + h (t) f (b)) (dt)
α

= (b− a)α
(
f (a)

∫ 1

0

h (1− t) (dt)
α

+ f (b)

∫ 1

0

h (t) (dt)
α

)
= (b− a)α

(
−f (a) (−1)

α
∫ 1

0

h (t) (dt)
α

+ f (b)

∫ 1

0

h (t) (dt)
α

)
= (b− a)α (−(−1)αf (a) + f (b))

∫ 1

0

h (t) (dt)
α

an so we obtain

1

(b− a)
α aI

(α)
b f ≤ (−(−1)αf (a) + f (b))0 I

(α)
1 h

which corresponds to the right-hand side of (3.3), and we can conclude

1

(1− (−1)α)h(1/2)Γ (1 + α)
f(
a+ b

2
) ≤ 1

(b− a)α
aI

(α)
b f

≤ (f (b)− (−1)αf (a))0 I
(α)
1 h.

This complete the proof. �X

Remark 3.4. Observe that if h(t) = t and α = 1 then, Γ(1 + α) = Γ(2) = 1,
h(1/2) = 1/2,

0I
(α)
1 h =

1

Γ (1 + α)

∫ 1

0

h (t) (dt)
α

=
1

2
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and

aI
(α)
b f =

∫ b

a

f(x)dx

consequently we get (2) from (3.3).

Remark 3.5. If h(t) = ts with s ∈ (0, 1] y α = 1, then Γ(1 + α) = Γ(2) = 1 y
h(1/2) = 1/2s we get

0I
(α)
1 h =

1

Γ (1 + α)

∫ 1

0

h (t) (dt)
α

=
1

s+ 1

and

aI
(α)
b f =

∫ b

a

f(x)dx

therefore

2s−1f(
a+ b

2
) ≤ 1

(b− a)

∫ b

a

f(x)dx ≤ f (b) + f (a)

s+ 1

and it corresponds to the result obtained in [5] for s−convex functions in the
second sense.

Theorem 3.6. Let h1, h2 : J → Rα be two non-negative functions and h1, h2 6≡
0, defined over an interval J ⊂ R and such that (0, 1) ⊂ J, moreover h1 ∈
I

(α)
x [0, 1], h2 ∈ I(α)

x [0, 1] and (h1h2) ∈ I(α)
x [0, 1]. Let f be an h1−convex func-

tion, and g an h2− convex function, both non-negative on Rα , a, b ∈ I, a < b

and such that (fg) ∈ I(α)
x [a, b] . Then

− (−1)
α

(b− a)α
aI

(α)
b (fg) ≤M(a, b)0I

(α)
1 (h1h2) +N(a, b)0I

(α)
1 (h1h2(1− t)) (6)

where

M(a, b) = f(a)g(a) + (−1)αf(b)g(b) and N(a, b) = f(a)g(b) + (−1)αf(b)g(a).

Proof. Since f is a h1−convexfunction, and g is a h2−convexfunction, and
for each x ∈ [a, b] exists t ∈ [0, 1] such that x = ta+ (1− t)b, we have

f(ta+ (1− t)b) ≤ h1(t)f(a) + h1(1− t)f(b)

and
g(ta+ (1− t)b) ≤ h2(t)g(a) + h2(1− t)g(b).

Further, since f and g are non-negative, then

f(ta+ (1− t)b)g(ta+ (1− t)b)

≤ (h1(t)f(a) + h1(1− t)f(b))(h2(t)g(a) + h2(1− t)g(b))
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= h1(t)h2(t)f(a)g(a) + h1(t)h2(1− t)f(a)g(b)

+h1(1− t)h2(t)f(b)g(a) + h1(1− t)h2(1− t)f(b)g(b)

integrating over [0, 1] both sides of the inequality, we obtain∫ 1

0

f(ta+ (1− t)b)g(ta+ (1− t)b)(dt)α

≤ f(a)g(a)

∫ 1

0

h1(t)h2(t)(dt)α

+ f(a)g(b)

∫ 1

0

h1(t)h2(1− t)(dt)α

+ f(b)g(a)

∫ 1

0

h1(1− t)h2(t)(dt)α

+ f(b)g(b)

∫ 1

0

h1(1− t)h2(1− t)(dt)α

= (f(a)g(a)− (−1)αf(b)g(b))

∫ 1

0

h1(t)h2(t)(dt)α

+ (f(a)g(b)− (−1)αf(b)g(a))

∫ 1

0

h1(t)h2(1− t)(dt)α.

From the proof of the previous Theorem we have∫ 1

0

f (ta+ (1− t) b) (dt)
α

=
−(−1)α

(b− a)α

∫ b

a

f(x) (dx)
α
.

Then

−(−1)α

(b− a)α

∫ b

a

f(x)g(x) (dx)
α ≤M(a, b)0I

(α)
1 (h1h2) +N(a, b)0I

(α)
1 (h1h2(1− ·))

where
M(a, b) = f(a)g(a) + (−1)αf(b)g(b)

and
N(a, b) = f(a)g(b) + (−1)αf(b)g(a).

�X

Theorem 3.7. Let h1, h2 : J → Rα be two non negative functions and h1, h2 6≡
0 , defined over an interval J ⊂ R and such that (0, 1) ⊂ J , and (h1h2) ∈
I

(α)
x [0, 1] Let f an h1−convex function, and g an h2− convex function, both

non-negative over Rα , a, b ∈ I, a < b such that (fg) ∈ I(α)
x [a, b]. Then

(1)α

(1 + (−1)α)h1(1/2)h2(1/2)
f

(
a+ b

2

)
g

(
a+ b

2

)
− Γ(1 + α)

(b− a)α
aI

(α)
b (fg)
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≤M(a, b)Γ(1 + α)0I
(α)
1 (h1h2(1− ·)) +N(a, b)Γ(1 + α)0I

(α)
1 (h1h2)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Let a, b ∈ I with a < b. Then we can write

a+ b

2
=
ta+ (1− t)b

2
+

(1− t)a+ tb

2

for all t ∈ [0, 1]. In consequence,

f

(
a+ b

2

)
g

(
a+ b

2

)
= f

(
ta+ (1− t)b

2
+

(1− t)a+ tb

2

)
×

g

(
ta+ (1− t)b

2
+

(1− t)a+ tb

2

)
.

Since f is h1 − convex and g is h2 − convex, we have

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1(1/2)[f (ta+ (1− t)b) + f ((1− t)a+ tb)]

× h2(1/2)[g (ta+ (1− t)b) + g ((1− t)a+ tb)].

Using distributive property we get

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1(1/2)h2(1/2)[f (ta+ (1− t)b) g (ta+ (1− t)b)

+ f (ta+ (1− t)b) g ((1− t)a+ tb)

+ f ((1− t)a+ tb) g (ta+ (1− t)b)
+ f ((1− t)a+ tb) g ((1− t)a+ tb)].

Forming groups with the terms we have

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1(1/2)h2(1/2)[f (ta+ (1− t)b) g (ta+ (1− t)b) (7)

+f ((1− t)a+ tb) g ((1− t)a+ tb)]+

h1(1/2)h2(1/2)[f (ta+ (1− t)b) g ((1− t)a+ tb)

+f ((1− t)a+ tb) g (ta+ (1− t)b)].
Again, using the h1 − convexity and h2 − convexity of f and g respectively,
and distributing the products in the second term of the sum in the previous
inequality, we can observe

f (ta+ (1− t)b)g ((1− t)a+ tb) + f ((1− t)a+ tb) g (ta+ (1− t)b)
≤ h1(t)f(a)h2(1− t)g(a) + h1(t)f(a)h2(t)g(b)

+ h1(1− t)f(b)h2(1− t)g(a) + h1(1− t)f(b)h2(t)g(b)

+ h1(1− t)f(a)h2(t)g(a) + h1(1− t)f(a)h2(1− t)g(b)

+ h1(t)f(b)h2(t)g(a) + h1(t)f(b)h2(1− t)g(b).
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Now, we grouped the terms conveniently

f (ta+ (1− t)b)g ((1− t)a+ tb) + f ((1− t)a+ tb) g (ta+ (1− t)b)
= {h1(t)h2(1− t) + h1(1− t)h2(t)}M(a, b)

+ {h1(t)h2(t) + h1(1− t)h2(1− t)}N(a, b)

where

M(a, b) = f(a)g(a) + f(b)g(b)

and

N(a, b) = f(a)g(b) + f(b)g(a).

In consequence, the inequality (7) takes the form

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1(1/2)h2(1/2)[f (ta+ (1− t)b) g (ta+ (1− t)b) (8)

+f ((1− t)a+ tb) g ((1− t)a+ tb)]

+h1(1/2)h2(1/2) ([h1(t)h2(1− t) + h1(1− t)h2(t)]M(a, b)

+ [h1(t)h2(t) + h1(1− t)h2(1− t)]N(a, b)) .

Observe the following integrals∫ 1

0

f

(
a+ b

2

)
g

(
a+ b

2

)
(dt)α = (1)αf

(
a+ b

2

)
g

(
a+ b

2

)
,

∫ 1

0

h1(1− t)h2(1− t)(dt)α = −(−1)α
∫ 1

0

h1(t)h2(t)(dt)α,

∫ 1

0

h1(1− t)h2(t)(dt)α = −(−1)α
∫ 1

0

h1(t)h2(1− t)(dt)α

and making the substitution x = at+ (1− t)b we get∫ 1

0

(f (ta+ (1− t)b) g (ta+ (1− t)b))(dt)α =
− (−1)

α

(b− a)α

∫ b

a

f(x)g(x)(dx)α

and with the substitution x = (1− t)a+ tb we have∫ 1

0

(f ((1− t)a+ tb) g ((1− t)a+ tb))(dt)α =
1

(b− a)α

∫ b

a

f(x)g(x)(dx)α.
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So, with this changes and integrating both sides of the inequality (8) over [0, 1]
we obtain

(1)αf

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1(1/2)h2(1/2) (1− (−1)

α
)

1

(b− a)α

∫ 1

0

f(x)g(x)(dx)α

+ h1(1/2)h2(1/2){M(a, b) (1− (−1)
α

)

∫ 1

0

h1(t)h2(1− t)(dt)α

+N(a, b) (1− (−1)
α

)

∫ 1

0

h1(t)h2(t)(dt)α}

and follows

(1)α

(1 + (−1)α)h1(1/2)h2(1/2)
f

(
a+ b

2

)
g

(
a+ b

2

)
− 1

(b− a)α

∫ b

a

f(x)g(x)(dx)α

≤M(a, b)

∫ 1

0

(h1(t)h2(1− t))(dt)α +N(a, b)

∫ 1

0

(h1(t)h2(t))(dt)α.

Using the fractional integral definition, this inequality can be written as

(1)α

(1− (−1)α)h1(1/2)h2(1/2)
f

(
a+ b

2

)
g

(
a+ b

2

)
−Γ(1 + α)

(b− a)α
aI

(α)
b (fg)

≤M(a, b)Γ(1 + α)0I
(α)
1 (h1h2(1− ·)) +N(a, b)Γ(1 + α)0I

(α)
1 (h1h2)

and this is the desired result. �X

Remark 3.8. Clearly, if h1(t) = h2(t) = t and α = 1 we obtain

2f

(
a+ b

2

)
g

(
a+ b

2

)
− 1

2(b− a)

∫ b

a

f(x)g(x)dx ≤ 1

6
M(a, b) +

1

3
N(a, b)

which is the Theorem 1 given by Pachpatte in [24].

Remark 3.9. For s−convex functions in second sense also we get a result
showed by Kircmaci et al. in [15]. Making h1(t) = t,h2(t) = ts with α = 1 and
s ∈ (0, 1] we obtain

22sf

(
a+ b

2

)
g

(
a+ b

2

)
− 1

(b− a)

∫ b

a

f(x)g(x)dx ≤ M(a, b)

(s+ 1)(s+ 2)
+
N(a, b)

s+ 2
.
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4. Examples

Example 4.1. Let a > 0, b > 0, x ∈ (0.∞) and a3α+b3α ≤ 2α. Then a+b ≤ 2.

Proof. Let f(x) = x3α for x ∈ (0,∞) . It is easy to see that f is an h-convex
function for h(λ) = λα, for any [a, b] ⊂ (0,∞) . Indeed

(ta+ (1− t)b)3α
= t3αa3α + (1− t)3α

b3α

≤ tαa3α + (1− t)α b3α.

Then

f

(
a+ b

2

)
≤ h(1/2)f(a) + h(1/2)f(b)

in consequence (
a+ b

2

)3α

=
a3α + b3α

23α
≤ a3α + b3α

2α

= h(1/2)a3α + h(1/2)b3α

= h(1/2)(a3α + b3α)

≤ 1

2α
2α = 1α

it follows that (
a+ b

2

)3

≤ 1

hence (
a+ b

2

)
≤ 1

therefore, a+ b ≤ 2. �X

Example 4.2. Let 0 < α ≤ 1, −1 < a, b < ∞,with a < b, t ∈ [0, 1] and
f(x) = Ln(x+ 1) and h(t) = (t+ 1)2α then f is h-convex. Indeed,

(Ln(a+ 1))
α ≤ Ln(ta+ (1− t)b+ 1) ≤ (Ln(b+ 1))

α

it follows that

Ln(ta+ (1− t)b+ 1) ≤ (Ln(a+ 1))
α

+ (Ln(b+ 1))
α

and therefore

Ln(ta+ (1− t)b+ 1) ≤ (t+ 1)2α (Ln(a+ 1))
α

+ (2− t)α (Ln(b+ 1))
α

since for t ∈ (0, 1) we have (t+ 1)2 ≥ 1 y (2− t)2 ≥ 1.
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Now, note that in the Hermite Hadamard inequality (3.3)

1

(1− (−1)α)h(1/2)Γ (1 + α)
f(
a+ b

2
) ≤ 1

(b− a)α
aI

(α)
b f

≤ (f (b)− (−1)αf (a)) 0I
(α)
1 h

with α = 1 we get

1

2
(

3
2

)2Ln(a+ b+ 1

2

)

≤ 1

(b− a)

∫ b

a

Ln(x+ 1)dx ≤ (Ln(a+ 1) + Ln(b+ 1))

∫ 1

0

(t+ 1)2dt

therefore we obtain the estimates

2

9
Ln

(
a+ b+ 1

2

)
≤ 1

(b− a)

∫ b

a

Ln(x+ 1)dx ≤ 7

3
Ln [(a+ 1)(b+ 1)] .
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Escuela Superior politécnica del Litoral (ESPOL)

Campus, “Gustavo Galindo”

Km 30.5 V́ıa perimetral,

Guayaquil, Ecuador

e-mail: mjvivas@espol.edu.ec

Departamento de Matemáticas
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