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1. Introduction

The main goal of this expository article is to present a refinement, not often found in
the literature, of the Lebesgue decomposition of a signed measure. For the sake of
completeness, we begin with a collection of preliminary definitions and results, including
many comments, examples and counterexamples. We continue with a section dedicated
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specifically to the Lebesgue decomposition of a signed measure, where we also present a
short account of its historical development. Next comes the centerpiece of our exposition,
a refinement of the Lebesgue decomposition of a signed measure, which we prove in
detail. Much can be said about the properties intervening in the formulation of this
refinement. Although we will not say it all, we use the next section to follow up on some
of it, including as well a brief historical commentary. In the last section, which can be
viewed as an appendix, we revisit the notion of singularity for signed measures. Our
purpose is twofold. First, we explain its connection with the notion of orthogonality in
an inner product space. In this way, we justify the notation, ν1 ⊥ ν2, commonly used to
indicate that two signed measures, ν1 and ν2, are mutually singular. Second, we show how
a special class of singular signed measures, introduced in the previous section, serves to
better illustrate what is in the complement of those finite signed measures having a density
with respect to a fixed measure. The article ends with a list of references.

The inspiration for this article has been Professor TERENCE TAO’S blog, specifically
his notes on measure theory [20].

2. Preliminary definitions and results

We begin by summarizing some of the definitions and results we need from measure theory.
Other results will be stated at the appropriate time. Our purpose is to build a cohesive
overview leading to the Lebesgue decomposition of a signed measure. As such, we will
not emphasize proofs, but rather give precise references for them, specially for the proofs
of the “big theorems”. We will strive to state the results in their more general form relevant
to our purpose. Unless otherwise noted, the material included in this section is mostly
taken from [19].

Definition 1. A family Σ of subsets of a non-empty setX is called a σ-algebra if it satisfies
the following three properties:

1. The empty set ∅ belongs to Σ.

2. If E ∈ Σ, then the complement X\E also belongs to Σ.

3. If {Ej}j≥1 ⊆ Σ, then
⋃
j≥1Ej ∈ Σ.

The subsets of X that belong to Σ are called Σ-measurable.

With R∗ we indicate the extended real number system consisting of the real num-
bers and the symbols −∞ and +∞, with the usual operations and order. We adopt the
convention 0. (±∞) = (±∞) .0 = 0, but leave (+∞) + (−∞) and (−∞) + (+∞)

undefined.
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We recall that R∗ becomes a compact metric space with the structure induced by the
order preserving map ϕ : R∗ → [−1, 1], defined as

ϕ (−∞) = −1,

ϕ (+∞) = 1,

ϕ (x) =
x

1 + |x|
for x ∈ R.

More on the algebraic and topological structures of R∗ can be found in the very interesting
article [25].

Given a σ-algebra Σ, we consider set functions ν : Σ→ R∗ that take at most one of
the two values −∞ and +∞.

Definition 2. A set function ν : Σ→ R∗ is called a signed measure if

1. ν(∅) = 0 and

2. ν(
⋃
i≥1Ei) =

∑
i≥1 ν(Ei) whenever {Ei}i≥1 ⊆ Σ are pairwise disjoint.

As a consequence of 2) in Definition 2, the series
∑
i≥1 ν(Ei) converges commutatively

in R∗ and, if ν(
⋃
i≥1Ei) is finite, it converges absolutely in R. If a set function ν satisfies

2) in Definition 2, we say that ν is countably additive.

Remark 1. Every countably additive set function is finitely additive as well. In fact,
if {Ei}1≤i≤n ⊆ Σ are pairwise disjoint, it suffices to apply Definition 2 to the family
{Ei}i≥1 where Ei = ∅ for i ≥ n+ 1.

We also observe that if E and F ∈ Σ, with F ⊆ E, and ν(E) is finite, meaning
ν(E) ∈ R, then,

ν(E − F ) = ν(E)− ν(F ).

Moreover, if ν(E) is finite for some E ∈ Σ, then ν(F ) is finite for every F ⊆ E,
F ∈ Σ. In fact, assuming that this statement is not true for some set F and writing

ν(E) = ν(F ) + ν(E − F ),

we find a contradiction to the assumption that ν(E) is finite.

As a consequence, if ν (X) is finite, then ν : Σ → R and we say that the signed
measure ν is finite.

If ν : Σ → [0,+∞], we say that ν is a measure, which will be finite if ν : Σ →
[0,+∞).

The pair (X,Σ) is called a measurable space, while the triple (X,Σ, ν), where ν :

Σ→ [0,+∞] is a measure, is called a measure space.

Example 1. 1. The triple (X,L, µ), where L is the Lebesgue σ-algebra on X and µ is
the Lebesgue measure is called, naturally, the Lebesgue measure space, on X .
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2. Given a measure space (X,Σ, µ) and given a µ-measurable function f : X → R∗,
let f+ and f− be the positive part and the negative part of f , respectively. If at least
one of

∫
E
f+dµ and

∫
E
f−dµ is finite, we say ([19], p. 84), that f has a µ-integral

on E ∈ Σ and, then, we define∫
E

fdµ =

∫
E

f+dµ−
∫
E

f−dµ.

If f has a µ-integral on E for every E ∈ Σ, then, the set function ν : Σ → R∗,
defined as

ν (E) =

∫
E

fdµ (1)

is a signed measure, usually denoted fdµ. To prove this claim, it suffices to show that
the set function ν : Σ→ [0,+∞], defined as E →

∫
E
fdµ, is a measure, when f is

µ-measurable and non negative. Since it is obvious that ν (∅) = 0, we only need to
prove that ν is countably additive, for which we approximate f with simple functions
and use the Monotone Convergence Theorem ([19], p. 84).

Occasionally, it will be convenient to write (1) as ν (E) =
∫
E
f (x) dx.

3. If µ1, µ2 : Σ→ [0,+∞] are measures and one of them is finite, then µ1 − µ2 : Σ→
R∗ is a signed measure.

Definition 3. ([6], p. 123) Let ν : Σ→ R∗ be a signed measure. A set A ⊆ X is called
ν-positive if

1. A ∈ Σ and

2. for every Σ-measurable set B ⊆ A, 0 ≤ ν (B) ≤ +∞.

Definition 4. ([6], p. 123) Let ν : Σ→ R∗ be a signed measure. A set A ⊆ X is called
ν-negative if

1. A ∈ Σ and

2. for every Σ-measurable set B ⊆ A, −∞ ≤ ν (B) ≤ 0.

As a consequence of these two definitions, if a set A is both ν-positive and ν-negative,
then for every Σ-measurable set B ⊆ A, ν (B) = 0. If this is the case, we say that A is a
ν-null set.

Definition 5. Given a signed measure ν : Σ → R∗ and a Σ-measurable set A, the
restriction of ν to A, denoted ν/A, is the set function, in fact a signed measure, defined on
Σ as

(ν/A) (E) = ν (E ∩A) .

Alternatively, ν/A is the signed measure ν defined on the σ-algebra ΣA = {E ∩A :

E ∈ Σ}.
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Let us observe that a Σ-measurable setA is ν-null exactly when ν/A = 0. Furthermore,
if ν is a measure, a Σ-measurable set A is ν-null when ν (A) = 0. This is not the case for
a signed measure, as shown by the following example:

Example 2. Let X = [−1, 1], let L be the Lebesgue σ-algebra on [−1, 1] and let ν : L →
R be the signed measure defined as

ν (A) =

∫
A

xdx. (2)

Then, ν
(
[− 1

2 ,
1
2 ]
)

= 0, but ν
(
[0, 1

2 ]
)
> 0, showing that [− 1

2 ,
1
2 ] is not ν-null.

Remark 2. Two signed measures, ν1, ν2 : Σ→ R∗, are equal on a set A ∈ Σ if ν1 (B) =

ν2 (B) for every Σ-measurable set B ⊆ A.

Theorem 1. (Hahn decomposition), ([6], p. 124) Given a signed measure ν : Σ → R∗,
there is a partition X = P ∪N , where P and N are Σ-measurable, P is ν-positive and
N is ν-negative.

Any pair (P,N) of sets satisfying the conditions in Theorem 1 is called a Hahn
decomposition of X relative to ν.

Remark 3. ([6], p. 124; [19], p. 33) Strictly speaking, the space X can have several Hahn
decompositions relative to a given signed measure. For instance, if we take again X =

[−1, 1], if L is the Lebesgue σ-algebra on [−1, 1] and ν : Σ → R is the signed measure
defined as in (2), then ([0, 1], [−1, 0)) and ((0, 1], [−1, 0]) are both Hahn decompositions
of [−1, 1] relative to ν. Of course, the main point here is that {0} is a ν-null set.

In general, if (P,N) is a Hahn decomposition of the space X relative to the signed
measure ν and Z is a ν-null space, then (P ∪ Z,N\Z) is another Hahn decomposition.
However, we can say that Hahn decompositions are unique up to ν-null sets in the following
sense:

If (P1, N1) and (P2, N2) are Hahn decompositions of X relative to ν, then for every
Σ-measurable set E,

ν (E ∩ P1) = ν (E ∩ P2) (3)

ν (E ∩N1) = ν (E ∩N2) . (4)

In 3) of Example 1, we constructed a signed measure as the difference of two measures,
one of them being finite. The following result states that every signed measure can be
written in this way.

Theorem 2. (Jordan decomposition), ([6], p. 125) Every signed measure ν is equal to the
difference of two unique measures, ν+ and ν−, at least one of which is finite.
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Remark 4. The construction of ν+ and ν− is a direct application of Theorem 1. Indeed, if
(P,N) is any Hahn decomposition for X relative to ν, we define, for E ∈ Σ,

ν+ (E) = ν (E ∩ P )

ν− (E) = −ν (E ∩N) .

The set functions ν+ and ν− are both signed measures, called, respectively, the
positive and the negative variation of ν. Furthermore, since ν does not take both values,
+∞ and −∞, either ν (P ) is a, non negative, real number or ν (N) is a, non positive,
real number. If 0 ≤ ν (P ) < +∞, then ν+ : Σ → [0,+∞). If −∞ < ν (N) ≤ 0, then
ν− : Σ→ [0,+∞).

Moreover ([19], p. 29), if E ∈ Σ is such that ν+ (E) = +∞, then ν (E) = +∞.
Likewise, if ν− (E) = +∞, then ν (E) = −∞.

In principle, since the proof of the Jordan decomposition is based on the Hahn decom-
position, which, strictly speaking, is not unique, there is no reason to expect uniqueness
in Theorem 2. To prove that ν+ and ν− are, indeed, unique, we introduce the notion of
singularity of two measures. Later, this notion will be extended to signed measures.

Definition 6. Two measures, µ1, µ2 : Σ → [0,+∞] are mutually singular, denoted
µ1 ⊥ µ2, if there is a partition X = A ∪ B with A,B ∈ Σ, so that µ1 (B) = 0 and
µ2 (A) = 0. In other words, if B is µ1-null and A is µ2-null.

According to Remark 4, the measures ν+ and ν− are mutually singular.

Now, let us consider two measures, λ1 and λ2, one of them finite, such that λ1 ⊥ λ2

and ν = λ1 − λ2. Since λ1 ⊥ λ2, there is a partition X = A ∪ B with A,B ∈ Σ, so
that λ1 (B) = 0 and λ2 (A) = 0. Moreover, the set A is ν-positive, while the set B is
ν-negative. That is to say, (A,B) is a Hahn decomposition of X relative to ν. So, given
E ∈ Σ,

ν+ (E) = ν (E ∩ P ) = ν (E ∩A) = λ1 (E)

ν− (E) = −ν (E ∩N) = −ν (E ∩B) = λ2 (E)

where we have used (3) and (4).

Remark 5. In our presentation of the Hahn decomposition and the Jordan decomposition,
we have followed [6]. It is possible to obtain, first, the Jordan decomposition of a signed
measure and then, as a consequence, to prove the Hahn decomposition of the space relative
to the signed measure. This is the approach taken in [19].

Proceeding with our overview, we now define the notion of total variation of a signed
measure.

Definition 7. The total variation, denoted |ν|, of a signed measure ν : Σ → R∗, is the
measure defined as

|ν| (E) = ν+ (E) + ν− (E) ,

for E ∈ Σ.
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We claim that ([6], p. 126)

|ν (E)| ≤ |ν| (E) , (5)

for E ∈ Σ. To prove (5), let us observe that it is equivalent to

− |ν| (E) ≤
(1)

ν (E) ≤
(2)
|ν| (E) ,

for E ∈ Σ. Since

ν (E) = ν+ (E)− ν− (E) ≤ ν+ (E) + ν− (E) = |ν| (E) ,

we have (2). To prove (1), we will show that |ν| (E) + ν (E) ≥ 0.

If ν− (E) ∈ R,

|ν| (E) + ν (E) = ν+ (E) + ν− (E) + ν+ (E)− ν− (E)

= 2ν+ (E) ≥ 0.

If ν− (E) = +∞, then 0 ≤ ν+ (E) < +∞, so

ν (E) = ν+ (E)− ν− (E) = −ν− (E)

= −ν+ (E)− ν− (E) = − |ν| (E) .

Thus, we have (1).

Proposition 1. ([19], p. 30) The total variation |ν| can be defined as

|ν| (E) = sup

∑
j

|ν (Ej)| : {Ej}j ⊆ Σ, any finite partition of E

 . (6)

From this proposition, it is possible to obtain another description of |ν| as the smallest
of all the measures µ satisfying the condition |ν (E)| ≤ µ (E), for E ∈ Σ. In fact, if µ
satisfies this condition, then for each finite partition {Ej}j ⊆ Σ of E we can write∑

j

|ν (Ej)| ≤
∑
j

µ (Ej) = µ (E) ,

so, taking the supremum over all these partitions, |ν| (E) ≤ µ (E).

From (6), it should be clear that given two signed measures, ν1, ν2 : Σ → R∗, if
ν1 (E) + ν2 (E) is well defined for all E ∈ Σ, then,

|ν1 + ν2| ≤ |ν1|+ |ν2| .

Let us emphasize that the sum ν1 (E) + ν2 (E) is well defined for E ∈ Σ when we
never encounter the combinations (+∞) + (−∞) or (−∞) + (+∞).
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Example 3. ([19], p. 94) Following the notation in Example 1, if f has a µ-integral, then,

ν+ = f+dµ

ν− = f−dµ

|ν| = |f | dµ.

We are now ready to define the notion of absolute continuity of a signed measure with
respect to another signed measure. We begin with the notion of absolute continuity of a
measure with respect to another measure.

Definition 8. Given measures λ and µ, we say that λ is absolutely continuous with respect
to µ, denoted λ� µ, if E ∈ Σ and µ (E) = 0 imply λ (E) = 0.

Definition 9. Given signed measures λ and µ, we say that λ is absolutely continuous with
respect to µ, denoted λ� µ, if |λ| � |µ|.

When µ is a measure, Definition 9 can be stated in several equivalent ways.

Proposition 2. ([4]. p. 138) If (X,Σ, µ) is a measure space and ν : Σ→ R∗ is a signed
measure, the following statements are equivalent:

1. ν � µ,

2. ν+ � µ and ν− � µ,

3. if E ∈ Σ and µ (E) = 0, then ν (F ) = 0 for all F ⊆ E, F ∈ Σ, and

4. if E ∈ Σ and µ (E) = 0, then ν (E) = 0.

Proof. From Definitions 8 and 9, it should be clear that 1) is equivalent to 2) and that 2)
implies 3). Moreover, 3) implies 4). So, it only remains to prove that 4) implies 1) or,
equivalently, that 4) implies 2).

For this purpose, we consider a Hahn decompositionX = P∪N , where P is ν-positive
and N is ν-negative. If E ∈ Σ and µ (E) = 0, then µ (E ∩ P ) = 0 and, according to 4),
ν (E ∩ P ) = 0. So,

0 = ν (E ∩ P ) = ν+ (E ∩ P )− ν− (E ∩ P )

= ν+ (E ∩ P ) = ν+ (E) .

Similarly, since µ (E) = 0 implies µ (E ∩N) = 0 and, according to 4), ν (E ∩N) = 0,
we have

0 = ν (E ∩N) = ν+ (E ∩N)− ν− (E ∩N)

= −ν− (E ∩N) = −ν− (E) .

So, ν+ � µ and ν− � µ.

This completes the proof.
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Example 4. The signed measure

ν (E) =

∫
E

fdµ (7)

considered in 2) of Example 1, is absolutely continuous with respect to the measure µ. In
fact, if E ∈ Σ and µ (E) = 0, then

∫
E
f+dµ =

∫
E
f−dµ = 0. So, according to Example

3, ν+ � µ and ν− � µ.

The next result proves that, under quite general assumptions, every signed measure
ν, absolutely continuous with respect to a given measure µ, can be written as in (7). We
begin with the following definition:

Definition 10. A measure µ : Σ → [0,+∞] is σ-finite if we can write X =
⋃
j≥1Ej ,

with Σ-measurable sets Ej so that µ (Ej) < +∞ for all j.

It should be clear that every finite measure is σ-finite. The Lebesgue measure on Rn is
an example of a σ-finite measure that is not finite. We can assume, and we will assume
from now on, that the sets {Ej}j≥1 are pairwise disjoint. If that is not the case, we only
need to consider F1 = E1, Fk = Ek\

⋃
1≤j≤k−1Ej for k ≥ 2.

Theorem 3. (Radon-Nikodym property), ([16], p. 238; [19], p. 133) Let (X,Σ, µ) be a
measure space and assume that µ is σ-finite. Then, if ν : Σ → R∗ is a signed measure
absolutely continuous with respect to µ, there exists a µ-measurable function f : X → R∗
so that ν = fdµ. The function f is unique up to µ-null sets.

Following the ideas of Calculus, ν can be seen as the indefinite integral of f with
respect to ν. In this context, the function f is called the Radon-Nikodym derivative of ν
with respect to µ, denoted dν

dµ , or the density of ν in terms of µ.

Remark 6. ([19], p. 134) If the measure µ is not σ-finite, Theorem 3 might not be true, as
shown by the following example:

Let us consider the Lebesgue measure space ([0, 1] ,L, µ) and the counting measure
ν : L → [0,+∞] defined as

ν (E) =

{
card (E) if E is finite

+∞ if E is infinite.

The Lebesgue measure µ is absolutely continuous with respect to the counting measure
ν, since ν (E) = 0 implies E = ∅ and thus, µ (E) = 0. A function f : [0, 1]→ R∗ such
that µ = fdν should be non-negative and ν-integrable on [0, 1]. This implies that f must
be finite. So, if E is the set defined as

E = {x ∈ [0, 1] : f (x) > 0} ,

ν (E) is finite and

µ ([0, 1]) =

∫
E

fdν = µ (E) = 0,

which is a contradiction.
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This completes the truly preliminary part in our overview of selected topics of measure
theory. In the next section we go onto the central topic of this overview.

3. About the Lebesgue decomposition

We begin by extending Definition 6 and Definition 10 to signed measures.

Definition 11. Two signed measures ν1, ν2 : Σ → R∗ are mutually singular, denoted
ν1 ⊥ ν2, if |ν1| and |ν2| are mutually singular.

Definition 12. A signed measure ν : Σ→ R∗ is σ-finite if the measure |ν| is σ-finite.

Remark 7. The relation of absolute continuity and the relation of mutual singularity are
antithetical in the following sense: Given a measure space (X,Σ, µ) and given a signed
measure ν : Σ→ R∗, if ν ⊥ µ and ν � µ, then, ν must be identically zero. Indeed, given
a partition X = A ∪ B with A,B ∈ Σ so that µ (B) = 0 and ν/A = 0, according to
Proposition 2, we must have ν/B = 0 also.

In the following two lemmas we prove equivalent formulations of these definitions.

Lemma 1. Given two signed measures ν1, ν2 : Σ → R∗, the following statements are
equivalent:

1. ν1 ⊥ ν2.

2. there is a partition X = A ∪ B with A,B ∈ Σ such that ν1 (B′) = 0 for all
Σ-measurable B′ ⊆ B, and ν2 (A′) = 0 for all Σ-measurable A′ ⊆ A.

Proof. If |ν1| ⊥ |ν2|, according to Definition 6, there is a partition X = A ∪ B with
A,B ∈ Σ so that |ν1| (B) = 0 and |ν2| (A) = 0. If B′ ⊆ B is Σ-measurable,

0 = |ν1| (B′) = ν+
1 (B′) + ν−1 (B′) ,

so ν+
1 (B′) = 0 and ν−1 (B′) = 0. Thus, ν1 (B′) = 0, with the same proof for ν2 with A.

If we assume that 2) holds, using Proposition 1,

|ν1| (B) = sup

∑
j

|ν (Bj)| : {Bj}j ⊆ Σ, any finite partition of B

 ,

which implies |ν1| (B) = 0, since Bj ⊆ B for all j. In the same way, using A, we show
that |ν2| (A) = 0. This completes the proof.

Lemma 2. Given a signed measure ν : Σ→ R∗, the following statements are equivalent:

1. ν is σ-finite.

2. ν+ and ν− are σ-finite.
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3. there is a partition X =
⋃
i≥1Ei where Ei is Σ-measurable and |ν| (Ei) < +∞,

for all i ≥ 1.

Proof. That 1) implies 3) should be clear from Definition 12. To prove that 2) implies 1),
let X =

⋃
i≥1Ei =

⋃
j≥1 Fj , where Ei, Fj are Σ-measurable pairwise disjoint sets and

ν+ (Ei) < +∞, ν− (Fj) < +∞ for all i, j ≥ 1. Then we can writeX =
⋃
i,j≥1Ei∩Fj ,

where the sets Ei ∩ Fj are Σ-measurable and pairwise disjoint, and |ν| (Ei ∩ Fj) < +∞
for all i, j ≥ 1. Thus, the signed measure ν is σ-finite. To complete the proof, we now
show that 3) implies 2). If we assume that 3) holds, according to the last part of Remark 4,
ν+ (Ei) < +∞ and ν− (Ei) < +∞. Thus, 2) holds. The proof is complete.

Theorem 4. (Lebesgue decomposition), ([19], p.141) Let (X,Σ, µ) be a measure space
and let ν : Σ→ R∗ be a σ-finite signed measure. Then, there exist unique signed measures
νa, νs : Σ→ R∗ so that

ν = νa + νs,

νa � µ, and

νs ⊥ µ.

Remark 8. ([19], p. 142) If the signed measure ν is not σ-finite, Theorem 4 will not be
true in general. To prove this claim, we take the Lebesgue measure space ([0, 1] ,L, µ) and
the counting measure ν : L → [0,+∞] defined as in Remark 6. It should be clear that ν is
not σ-finite. We now show that ν cannot have a Lebesgue decomposition with respect to
the Lebesgue measure µ. In fact, if such decomposition exists, there must be a partition
[0, 1] = A

⋃
B so that A,B ∈ L and νs (B) = µ (A) = 0. For x ∈ B fixed, we can write

1 = ν ({x}) = νa ({x}) + νs ({x}) = 0,

because µ ({x}) = 0 implies νa ({x}) = 0 and, according to Lemma 1, νs (B) = 0

implies νs ({x}) = 0. Thus, we have arrived to a contradiction.

Remark 9. ([19], p. 142) The Jordan and Lebesgue decompositions are related in the
following way: Given the Jordan decomposition ν = ν+−ν− of a σ-finite signed measure
ν : Σ→ R∗,

νa =
(
ν+
)
a
−
(
ν−
)
a

νs =
(
ν+
)
s
−
(
ν−
)
s
.

Besides the reference given in Theorem 4, there are a number of proofs of the Lebesgue
decomposition theorem, specially for measures, as well as some interesting variations. For
instance, see [3], [13], [14], [21], and [22].

We conclude this section with a brief account of the historical development of the
Lebesgue decomposition theorem, which, as we will see, runs parallel to the development
of the Radon-Nikodym theorem. Thus, it is with this theorem that we must begin. Its first
version was formulated by LEBESGUE in 1910, using as reference the Lebesgue measure
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defined on the Borel sets of R. In 1913, RADON, following the ideas of F. RIESZ and
LEBESGUE, introduced the notion of measure as a “completely additive” function, that is a
countably additive function, defined on the Lebesgue measurable sets of Rn. RADON then
proved that a measure can be written as the sum of a measure “with base µ”, where µ is
the Lebesgue measure, and a measure “foreign” to µ. In modern terminology, a measure
with base µ means that it has a density with respect to µ, while a measure foreign to µ
means that they are mutually singular. RADON also proved that a measure with base λ still
has a density with respect to λ, where λ is a measure with base µ. Although RADON’s
construction of the density relied heavily on the topology of Rn, it was consequently
observed by FRÉCHET that most of RADON’s results should remain true if the measure
were to be defined on certain families of subsets of an arbitrary set, not necessarily the
Lebesgue measurable sets of Rn. Finally, it was NIKODYM who, in 1930, proved the
existence of the density in the general case. Thus, the theorem should be known as
Lebesgue-Radon-Nikodym. Let us add that NIKODYM’s argument was greatly simplified
by VON NEUMANN in 1940, using orthogonality properties of the space L2 [23]. For more
on these matters, as well as on the general historical development of measure theory, we
refer to ([2], p. 227; [1], p. 105; [18]; [4], historical notes), and the references therein.

We now move on to the material that constitutes the core of our article.

4. Beyond the Lebesgue decomposition

As a preparation, we need to bring in a few ideas that follow up on Definition 5.

Definition 13. ([6], p. 140) A signed measure ν : Σ → R∗ is concentrated on a Σ-
measurable set A, if ν/ (X\A) = 0, or equivalently, if ν/A = ν.

Equivalently, a signed measure is concentrated on A if |ν| (X\A) = 0.

We stress once again that ν (X\A) = 0 does not necessarily imply that ν is concen-
trated on A (Example 2).

If the signed measure ν is identically zero, we declare that it is trivially concentrated
on the empty set.

Example 5. 1. If ν : Σ → R∗ is a signed measure with Jordan decomposition ν =

ν+ − ν− and if X = P
⋃
N is a Hahn decomposition of X relative to ν, then

the measures ν+and ν− are concentrated on P and N , respectively, according to
Remark 4.

2. The Dirac measure δb : P (Rn)→ [0,+∞) is defined as

δb (E) =

{
1 if b ∈ E
0 if b /∈ E,

for all E ∈ P (Rn), the σ-algebra of all the subsets of Rn. Consequently, δb is
concentrated on {b} ⊆ Rn.
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Now, given two sequences, {aj}j≥1 and {bj}j≥1, where aj ≥ 0 for all j ≥ 1 and
{bj}j≥1 ⊆ Rn, the measure ν : P (Rn)→ [0,+∞] defined as

ν =
∑
j≥1

ajδbj , (8)

meaning
ν (E) =

∑
j≥1

ajδbj (E) ,

is concentrated on the image of the sequence {bj}j≥1.

Definition 14. ([6], p. 12) A signed measure ν : Σ → R∗ is discrete if the singletons
belong to Σ and ν is concentrated on a countable set.

By countable, we mean a set that is finite or can be placed on a bijection with the set
{1, 2, ...} of natural numbers. A discrete signed measure is also called pure point [20].

Example 6. The measures considered in 2) of Example 5 are discrete. As a matter of
fact, if (X,Σ, µ) is a measure space and ν : Σ → R∗ is a discrete signed measure
concentrated on the set C = {bj}j≥1 ∈ Σ, then ν is equal to the signed measure δC
defined as

∑
j≥1

ν ({bj}) δbj . Indeed, according to Remark 2, it suffices to observe that

ν/ (X\C) = δC/ (X\C) = 0 and that ν ({bj}) = δC ({bj}) for all j ≥ 1.

When the underlying set X in Definition 14 has a topological structure, it is possible to
talk about discrete sets. Let us recall that a set E ⊆ X is discrete if for each x ∈ E there
is a neighborhood Vx so that Vx

⋂
E = {x}. The point of this digression is to remark that

a discrete measure is not necessarily concentrated on a discrete set. For instance, if in 2)
of Example 5 the sequence {bj}j≥1 is a bijection between the natural numbers and the
vectors in Rn with rational coordinates, then the measure ν given by (8) is discrete but its
support is not, since it is the set Qn.

Definition 15. A signed measure ν : Σ→ R∗ is continuous if the singletons belong to Σ

and they are ν-null.

For instance, the Lebesgue measure µ : L → [0,+∞] is continuous. Actually, there
are other interesting examples of continuous signed measures, as well as several properties,
which we think are worth looking into. We discuss some of them in the next section. For
now, we will limit our exposition to definitions and results specifically needed for the
refinement of the Lebesgue decomposition.

Remark 10. The concepts of discrete signed measure and continuous signed measure are
antithetical in the following sense: If ν : Σ→ R∗ is a signed measure, both discrete and
continuous, then ν is identically zero. Indeed, assume that ν is concentrated on the set
C = {xj}j≥1. Since ν is continuous, ν ({xj}) = 0 for each j ≥ 1. Thus, ν/C = 0. Since
ν/ (X\C) = 0 by hypothesis, we conclude that ν is the zero measure.
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The following result is a generalization of the classical Lebesgue decomposition
theorem for the Lebesgue measure on the Borel sets of R (see [9], p. 182, and [10], p.
337).

Theorem 5. (Beyond the Lebesgue decomposition), ([6], p. 140) Let (X,Σ) be a
measurable space as in Remark 1, and assume that the singletons belong to Σ. Let
µ : Σ → [0,+∞] be a continuous measure. Then, given a σ-finite signed measure
ν : Σ→ R∗, there are unique σ-finite signed measures ν1, ν2, ν3 : Σ→ R∗ so that

1. ν = ν1 + ν2 + ν3.

2. ν1 is discrete and ν1 ⊥ µ.

3. ν2 is continuous and ν2 ⊥ µ.

4. ν3 � µ and, thus, ν3 is continuous.

Before proving this theorem, we need to establish two auxiliary results.

Lemma 3. Let ν : Σ→ R∗ be a signed measure. Then ν is finite if and only if ν+ and ν−

are finite.

Proof. If ν+ and ν− are finite, it should be clear that ν must be finite, since ν = ν+ − ν−.
Conversely, as mentioned already in Remark 4, if ν+ (E) = +∞ for some Σ-measurable
subset of X , then ν (E) = +∞. Likewise, if ν− (E) = +∞, then ν (E) = −∞. This
completes the proof.

Lemma 4. Given a signed measure ν : Σ→ R∗ and given A ∈ Σ,

|ν/A| = |ν| /A.

Proof. For E ∈ Σ we have, according to Proposition 1,

|ν/A| (E) = sup

∑
j

|(ν/A) (Fj)| : {Fj}j ⊆ Σ, finite partition of E


= sup

∑
j

∣∣∣ν (Fj⋂A
)∣∣∣ : {Fj}j ⊆ Σ, finite partition of E


≤ sup

∑
j

|ν|
(
Fj
⋂
A
)

: {Fj}j ⊆ Σ, finite partition of E


≤ |ν|

(
E
⋂
A
)

= (|ν| /A) (E) .
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Conversely, let us first assume that (|ν| /A) (E) is finite. Given ε > 0, there exists a
finite partition {Gj}j of E

⋂
A so that

(|ν| /A) (E)− ε = |ν|
(
E
⋂
A
)
− ε ≤

∑
j

|ν (Gj)| =
∑
j

∣∣∣ν (Gj⋂A
)∣∣∣

=
∑
j

|(ν/A) (Gj)|

≤ sup

∑
j

|(ν/A) (Fj)| : {Fj}j ⊆ Σ, finite partition of E


≤ |ν/A| (E) .

If (|ν| /A) (E) = +∞, then given N ≥ 1, there exists a finite partition {Gj}j of E
⋂
A

so that

N ≤
∑
j

|ν (Gj)| =
∑
j

∣∣∣ν (Gj⋂A
)∣∣∣

=
∑
j

|(ν/A) (Gj)|

≤ sup

∑
j

|(ν/A) (Fj)| : {Fj}j ⊆ Σ, finite partition of E


≤ |ν/A| (E) .

In both cases, (|ν| /A) (E) ≤ |ν/A| (E). This completes the proof.

Now we proceed with the proof of Theorem 5.

Proof. We start by considering the set Y ⊆ X defined as

Y = {x ∈ X : ν ({x}) 6= 0} = {x ∈ X : |ν| ({x}) 6= 0} .

We claim that Y is countable. In fact, since ν is σ-finite, there is a partition X =
⋃
j≥1Aj

with Aj ∈ Σ and |ν (Aj)| < +∞. So, the restriction νj of ν to Aj , defined as νj (E) =

ν (E
⋂
Aj) for each E ∈ Σ, is a finite signed measure. We show that the set Y

⋂
Aj is

countable for each j ≥ 1. To this purpose, we recall Lemma 4 and consider, for n ≥ 1

fixed, {
x ∈ Aj : |ν| ({x}) ≥ 1

n

}
=

{
x ∈ Aj : |νj | ({x}) ≥

1

n

}
.

This set has to be finite, otherwise, there would be an infinite subset {xi}i≥1 with

|νj | ({xi}) ≥ 1
n for all i ≥ 1. Then, |νj |

(⋃
i≥1 {xi}

)
=
∑
i≥1 |νj | ({xi}) = +∞,

which is a contradiction, according to Lemma 3.
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Since

Y
⋂
Aj =

⋃
n≥1

{
x ∈ Aj : |νj | ({x}) ≥

1

n

}
,

we can say that Y
⋂
Aj is countable and thus

Y =
⋃
j≥1

(
Y
⋂
Aj

)
is countable as well.

We define ν1 as the restriction of ν to the set Y . By construction, the signed measure
ν1 is discrete. Moreover, since µ is continuous, µ/Y = 0. So, ν1 and µ are mutually
singular.

We consider next the signed measure that is the restriction of ν to the set X\Y . Let us
call it λ. Again by construction, λ is continuous. Using Remark 1 and Lemma 2, it should
be clear that λ is σ-finite. Thus, we can invoke Theorem 4, the Lebesgue decomposition
theorem, and write λ as ν2 + ν3, where ν2 ⊥ µ and ν3 � µ. Since µ is continuous, ν3

must be continuous also. We claim that ν2 is continuous as well. To see it, we first observe
that, by construction of ν1, the signed measures ν and ν1 have the same value on each
singleton {x}. Indeed, ν1 ({x}) is zero exactly when x /∈ Y or ν ({x}) = 0. So, given
x ∈ X ,

ν2 ({x}) = ν ({x})− ν1 ({x})− ν3 ({x}) = 0.

Let us observe that ν ({x})and ν1 ({x}) must be finite because ν is σ-finite.

To complete the proof, we need to show that the signed measures ν1, ν2 and ν3 are
unique. Suppose that we can write ν in two ways, ν1 + ν2 + ν3 and λ1 + λ2 + λ3,
with all the signed measures involved being σ-finite. We can assume that there is a
partition X =

⋃
j≥1Aj with Aj ∈ Σ, so that |νi (Aj)| < +∞ and |λi (Aj)| < +∞, for

i = 1, 2, 3 and j ≥ 1. Then, the equality ν1 + ν2 − λ1 − λ2 = λ3 − ν3 on the σ-algebra
ΣAj

= {E
⋂
Aj : E ∈ Σ}, implies λ3 = ν3 on ΣAj

, according to Remark 7. Moreover,
from ν1 − λ1 = λ2 − ν2, Remark 10 implies that ν1 = λ1 and ν2 = λ2, on ΣAj

. Finally,
since {Aj}j≥1 is a partition of X , we can conclude that ν1 = λ1 and λ2 = ν2.

Thus, the proof is complete.

5. On continuous measures and the like

As mentioned before, this section will be dedicated to look deeper into the notion of
continuous measure. Since much can be said about this subject, we will limit ourselves to
review a few properties and related concepts. To begin, we consider a simple property of
the Lebesgue measure, that hints at the meaning of the word continuous, in the context of
measure theory.

Proposition 3. Consider the Lebesgue measure space (Rn,L, µ). Given E ∈ L with
µ (E) > 0, there exists an L-measurable set F ⊆ E so that 0 < µ (F ) < µ (E).
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Proof. Given r > 0 to be chosen, consider the covering of Rn by open balls Bx,r of center
x and radius r, for x ∈ Rn, and consider a countable subcovering,

{
Bxj ,r

}
j≥1

. Then,{
Bxj ,r

⋂
E
}
j≥1

is a countable covering of E, so

0 < µ (E) ≤
∑
j≥1

µ
(
Bxj ,r

⋂
E
)
.

Since µ (E) > 0, there is j0 ≥ 1 so that µ
(
Bxj0

,r

⋂
E
)
> 0. Moreover, µ

(
Bxj0

,r

⋂
E
)
≤

µ
(
Bxj0 ,r

)
= cnr

n for some cn > 0. If we choose r so that 0 < r <
(
µ(E)
cn

)1/n

, we will
have

0 < µ
(
Bxj0

,r

⋂
E
)
< µ (E) .

This completes the proof.

Definition 16. ([7], p. 645) Given a measure ν : Σ→ [0,+∞] and given A ∈ Σ, we say
that A is a ν-atom if ν (A) > 0 and for every Σ-measurable set B ⊆ A, is ν (B) = 0 or
ν (B) = ν (A). A measure without atoms is called atomless.

Every non identically zero discrete measure ν has to have atoms. In fact if ν ({x}) 6= 0,
then {x} is a ν-atom.

Some sources refer to a measure without atoms as non atomic or not atomic. However,
the words “non atomic” can have other meanings in measure theory ([6], p. 290), while
the words “not atomic” have a very precise meaning in computer programming [24], so
we prefer to use the word atomless.

Definition 16 can be extended to signed measures in various ways, for instance, by
saying that A ∈ Σ is a ν-atom if ν (A) 6= 0 and for each B ⊆ A, B ∈ Σ, ν (B) = 0 or
|ν (B)| = |ν (A)| ([8], p. 20). In what follows, we will limit ourselves to the consideration
of measures.

Example 7. Given the Lebesgue measure space (Rn,L, µ), the measure µ is atomless,
according to Proposition 3.

Remark 11. Let (X,Σ) be a measurable space and assume that the singletons belong to Σ.
Then every atomless measure ν : Σ→ [0,+∞] is continuous. In fact, every singleton {x}
for which ν ({x}) > 0 must be a ν-atom. The converse is not true in general, as shown by
the following example:

Let X be an uncountable set and let

Σ = {E ⊆ X : E is countable or X\E is countable} .

The family Σ is a σ-algebra. On Σ define the set function, in fact the measure,

µ (E) =

{
0 if E is countable
1 if X\E is countable.

The singletons belong to Σ and are µ-null sets. However, µ is not atomless, the sets E for
which X\E is countable being the µ-atoms.
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Lemma 5. If ν : Σ→ [0,+∞] is σ-finite and A ∈ Σ is a ν-atom, then ν (A) < +∞.

Proof. We can write A =
⋃
j≥1Aj , disjoint union of Σ-measurable sets with ν (Aj) <

+∞. For each j ≥ 1, ν (Aj) = 0 or ν (Aj) = ν (A). Since ν (A) =
∑
j≥1 ν (Aj) and

ν (A) > 0, there exists j0 ≥ 1 so that ν (Aj0) > 0. Thus, ν (A) = ν (Aj0) < +∞. The
proof is complete.

The converse of this lemma is not true, in general. For instance, consider the counting
measure as in Remark 6, but defined on the subsets of an uncountable set. For this measure,
the atoms are exactly all the singletons, with measure one.

Proposition 3 has a very interesting extension for finite atomless measures.

Proposition 4. ([7], p. 645) Let (X,Σ) be a measurable space. If ν : Σ→ [0,+∞) is a
non identically zero atomless finite measure, for each real number c, 0 < c < ν (X), there
exists E ∈ Σ so that ν (X) = c.

This proposition can be viewed as an intermediate value property. For the somewhat
lengthy proof, we refer to ([7], p. 645). The interesting point is that, for the subclass of
atomless measures, the word continuous should be interpreted as meaning that the measure
takes a continuum of values.

The first version of such a result was proved by SIERPIŃSKI in an article published in
1922 [17]. In this article, he fixes a bounded subsetE0 of Rn and considers the class L (E0)

of those Lebesgue measurable sets E ⊆ E0. He works with a function, that he denotes
f , defined on L (E0) with real values. By “fonction d’ensemble additive et continue”,
SIERPIŃSKI means that f is finitely additive, and continuous in the sense that there is
lim f (E) = 0 as the diameter of the set E goes to zero. Then, SIERPIŃSKI proceeds to
show that f satisfies an intermediate value property that he states in the following way:
Given sets E1, E2 ∈ L (F0) and given a real number t, 0 ≤ t ≤ 1, there exists a set
E = E (t) ∈ L (E0) such that

f (E) = (1− t) f (E1) + tf (E2).

SIERPIŃSKI goes on to observing that such function f is zero on the singletons, that is
to say, that it is continuous in the sense of Definition 15.
Remark 12. Proposition 4 can be easily extended to non identically zero atomless σ-
finite measures. In fact, let X =

⋃
j≥1Aj , a disjoint union of Σ-measurable sets with

ν (Aj) < +∞. We can assume that ν (X) = +∞. Then, given any real number r > 0,
there must exist N ≥ 1 so that r <

∑
1≤j≤N ν (Aj). Now, we consider the restriction of

ν to Σ⋃
1≤j≤N Aj

as in Definition 5. This measure is finite, so there exists E ∈ Σ such that

r = ν

E⋂
 N⋃
j=1

Aj

.
Proposition 4 is not true in general, if we allow the measure to have atoms. For instance,

consider the counting measure, defined on the subsets of a non empty finite set.
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We conclude this section with the promised example of an interesting class of continu-
ous signed measures.

Example 8. Let us consider, for n ≥ 2, the measure spaces (Rn,Bn, µn) and(
Rn−1,Bn−1, µn−1

)
, where Bn and Bn−1 are the Borel σ-algebras, µn and µn−1 are the

Lebesgue measures.

Given a Bn−1-measurable function f : Rn−1 → R∗ having an integral with respect to
µn−1 ((2) in Example 1), we define a set function λ : Bn → R∗ as

λ (E) =

∫
Rn−1

f (x′)χE (x′, 0) dµn−1,

where χE denotes the characteristic function of E. This set function λ is a signed measure
and, furthermore, it is continuous. Moreover, λ and µn are mutually singular. In fact, if
Xn−1 =

{
(x′, 0) : x′ ∈ Rn−1

}
,

µn (Xn−1) = 0 and λ (Rn\Xn−1) = 0.

The same idea works with any subspace Xk of Rn for 0 < k < n. That is to say,
we have a class of signed measures that are extensions of lower dimensional Lebesgue
measures and are continuous, and mutually singular with µn.

In the next, and last, section, we will revisit this example, to illustrate its interest.

6. Where we show that mutually singular finite signed measures are sort of
orthogonal

We fix again a measurable space (X,Σ). In what follows we will consider the space,
denotedM, of finite signed measures ν : Σ→ R.

Proposition 5. The spaceM becomes a real Banach space if we define

‖ν‖M = |ν| (X) .

Proof. From the definition and the properties of the total variation |ν|, it should be clear
that ‖·‖M is a norm. As for the completeness, we will give a fairly direct proof of this
known result.

Let {νj}j≥1 be a Cauchy sequence in M. That is to say, given ε > 0, there is
j0 = j0 (ε) ≥ 1 so

‖νj − νl‖M < ε,

for j, l ≥ j0. This implies that

|νj (E)− νl (E)| = |(νj − νl) (E)| ≤ |νj − νl| (X) < ε,
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for every E ∈ Σ, so the sequence of set functions νj : Σ→ R is Cauchy, uniformly on Σ.
Moreover, for each E ∈ Σ, the real sequence {νj (E)}j≥1 is a Cauchy sequence, so it has
limit. We define

ν (E) = lim
j→∞

νj (E) . (9)

Since the sequence {νj}j≥1 is Cauchy, uniformly on Σ, the limit in (9) is uniform
on Σ. We claim that the set function ν : Σ → R belongs toM. Firstly, it is clear that
ν (∅) = 0. To prove that ν is countably additive, we begin by observing that ν is finitely
additive, from its definition. In fact, if {Ek}1≤k≤p is any finite family of pairwise disjoint
sets in Σ,

ν

(
p⋃
k=1

Ek

)
= lim
j→∞

νj

(
p⋃
k=1

Ek

)
= lim
j→∞

p∑
k=1

νj (Ek)

=

p∑
k=1

lim
j→∞

νj (Ek) =

p∑
k=1

ν (Ek) .

Let us consider next a family of pairwise disjoint sets in Σ, {Ek}k≥1, and let us write
E =

⋃
k≥1Ek. For p ≥ 1 and j ≥ 1 to be chosen later, we have∣∣∣∣∣ν (E)−

p∑
k=1

ν (Ek)

∣∣∣∣∣ ≤ |ν (E)− νj (E)|+

∣∣∣∣∣
p∑
k=1

(νj (Ek)− ν (Ek))

∣∣∣∣∣
+

∣∣∣∣∣∣
∑
k≥p+1

νj (Ek)

∣∣∣∣∣∣ = (1) + (2) + (3) .

Let us estimate each of these three terms. For (1), |ν (E)− νj (E)| < ε/3, for
j ≥ j0 = j0 (ε), independently of E. We then fix j = j0 in the other two terms. For
(3), since

∑
k≥1νj0 (Ek) converges, to νj0 (E),

∣∣∣∑k≥p+1νj0 (Ek)
∣∣∣ < ε/3, for p ≥ p0.

Finally, for p ≥ p0, we can write (2) as∣∣∣∣∣
p∑
k=1

(νj0 (Ek)− ν (Ek))

∣∣∣∣∣ =

∣∣∣∣∣(νj0 − ν)

(
p⋃
k=1

Ek

)∣∣∣∣∣ < ε/3,

since we already observed that the convergence is uniform on Σ. Thus, ν ∈M.

The last step is to prove that {νj}j≥1 converges to ν inM, for which we use the right
hand side of the following inequality (see [19], p. 30):

sup
E∈Σ
|νj (E)− ν (E)| ≤ |νj − ν| (X) ≤ 2 sup

E∈Σ
|νj (E)− ν (E)| .

Given ε > 0, if we use again the uniform convergence of {νj}j≥1 to ν, we have
|νj (E)− ν (E)| < ε/2, for j ≥ j0 (ε) and for all E ∈ Σ. So, the proof is complete.
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After this preparatory work, we are ready to tackle the orthogonality issue. We begin
with a definition.

Definition 17. ([11], p. 292) Given a real normed space (N, ‖·‖N ), and given u, v ∈ N ,
we say that u is orthogonal to v, denoted u ⊥ v, if

‖u+ v‖N = ‖u− v‖N . (10)

Notice that this definition gives a symmetric relation in u and v, so we can say that u
and v are orthogonal. The following result justifies the use of the word “orthogonal” in
Definition 17.

Proposition 6. ([11], p. 292) Let (H, 〈, 〉H) be a real inner product space. Then, given
u, v ∈ H , v 6= 0, the following statements are equivalent:

1. ‖u+ v‖H = ‖u− v‖H .

2. 〈u, v〉H = 0.

Proof. We start by writing out the expression ‖u+ v‖2H − ‖u− v‖
2
H .

‖u+ v‖2H − ‖u− v‖
2
H = 〈u+ v, u+ v〉H − 〈u− v, u− v〉H

= 〈u, u〉H + 2 〈u, v〉H + 〈v, v〉H − 〈u, u〉H
+ 2 〈u, v〉H − 〈v, v〉H
= 4 〈u, v〉H .

Thus, if 2) holds, then ‖u+ v‖H = ‖u− v‖H . Conversely, if 1) holds, then 〈u, v〉H = 0.

This completes the proof.

Proposition 7. ([15], p. 165) If ν1, ν2 ∈M and ν1 ⊥ ν2 in the sense that ν1 and ν2 are
mutually singular, then ν1 ⊥ ν2 in the sense of Definition 17. However, the converse is not
true.

Proof. According to ([15], p. 165), ν1 and ν2 are mutually singular if and only if
|ν1 + ν2| = |ν1 − ν2|. This clearly implies that ‖ν1 + ν2‖M = ‖ν1 − ν2‖M. Thus,
ν1 and ν2 are orthogonal in the sense of Definition 17.

To see that the converse is not true, we consider the following example:

Let f(x) = sinx and g (x) = cosx defined on [0, π]. On the measure space ([0, π] ,L),
define the signed measures υ1 = fdx and υ2 = gdx.
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Figure 1. sinx and cosx.

Figure 2. sinx and − cosx.

As these two graphics show,∫ π

0

|f + g| (x) dx =

∫ π

0

|f − g| (x) dx,

or
‖υ1 + υ2‖M = ‖υ1 − υ2‖M .

However, for E =
[
0, π4

]
we have

|υ1 + υ2| (E) =

∫ π/4

0

|f + g| (x) dx =

∫ π/4

0

sinxdx+

∫ π/4

0

cosxdx = 1,
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while

|µ− υ| (E) =

∫ π/4

0

|f − g| (x) dx < 1.

This completes the proof.

To conclude our glance at the orthogonality of mutually singular finite signed measures,
let us say that there is ample evidence of this connection, starting with VON NEUMANN’s
proof of the Lebesgue decomposition theorem [23]. Other references include [21]. More-
over, combining the Lebesgue decomposition theorem and the Radon-Nikodym theorem
for a finite signed measure ν and a σ-finite measure µ, we obtain a very simple version of
the projection theorem [5].

There are other formulations of orthogonality, all equivalent in the context of real inner
product spaces (see, for example [11], [12]). However, the most interesting formulations
are those preserving the property that in every two-dimensional subspace there exist non
zero orthogonal vectors [11]. The notion of orthogonality given in Definition 17 satisfies
such property [11] .

We close our exposition with another look at the class of continuous signed measures
described in Example 8. To this purpose, we consider, for n ≥ 2, the Borel measure space
(Rn,Bn, µn), and the Banach spaceM of finite signed measures ν : Bn → R. We define
the subspace N ofM as

N = {ν ∈M : ν � µn} .

According to Theorem 3, the Radon-Nikodym property, each signed measure in N has the
form fdµn, for f ∈ L1 (µn) uniquely defined up to a µn-null set. Furthermore, according
to Example 3,

‖fdµn‖M =

∫
Rn

|f | dµn = ‖f‖L1(µn) .

Thus,N is isometrically isomorphic to the Banach space L1 (µn) and, as a consequence, it
is a closed subspace ofM. As for examples of signed measures in the complementM\N ,
quite often these examples are discrete measures such as those presented in Example 5
and Example 6. However, the class discussed in Example 8, provides an entirely different
type of signed measure belonging toM\N . This is a feature that makes the class quite
interesting.
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