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Operator-valued Fourier multipliers on
toroidal Besov spaces

Multiplicadores de Fourier operador-valuados sobre espacios de
Besov toroidales
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ABsTrACT. We prove in this paper that a sequence M : Z" — L(FE) of bounded
variation is a Fourier multiplier on the Besov space Bj ,(T", E) for s € R,
1<p<oo,1<q< ooand E a Banach space, if and only if F is a UMD-
space. This extends the Theorem 4.2 in [3] to the n—dimensional case. As
illustration of the applicability of this results we study the solvability of two
abstract Cauchy problems with periodic boundary conditions.
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REesUMEN. En el presente articulo se prueba que una sucesién M : Z" — L(E)
de variacién acotada, es un multiplicador de Fourier sobre el espacio de Besov
B, (T, E) paras € R, 1 < p < 00,1 < ¢ < ooy E un espacio de Banach, siy
solo si, E es un espacio UMD. Este resultado extiende el Teorema 4.2 en [3] al
caso n-dimensional. Como ilustracién de la aplicabilidad de este resultado, se
estudia la solubilidad de dos problemas de Cauchy abstractos con condiciones

de frontera periédicas.

Palabras y frases clave. Multiplicadores de Fourier, simbolos operador-valuados,
espacios UMD, espacios de Besov toroidales.
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1. Introduction

We are interested in obtaining a Fourier multiplier theorem on the toroidal
or periodic Besov spaces B, , (T"E)for s e R, 1 < p<oo,1<qg<
and E a UM D—space, with discrete symbols satisfying a bounded variation
condition similar to the introduced in [11] and [10]. To reach this goal we give
an extension of Theorem 4.2 in [3] and then, as an example of the applicability
of the theory, we consider the following two Cauchy problems:

(1)

{ Owu(t,z) + Alt)u(t,z) = f(t,z), te (0,7],z€T",
(0, z) = uo(x), xzeT",

and
{ Owu(t,x) + Apu(t,z) = f(t,z), tel0,2n], ze T, @)

u(0,2) = u(2m, ), zeT,

where T' > 0 and A(t) in (1) is a family of uniformly normal elliptic differential
operators given by

A(t):== > aa(t) D" (3)

|| <m

Here m € N, a, € Cy([0,00),L(E)) for |a] < m, E is a UMD-space and
D; := —i0;. For the Problem (2), A, :=w + A, where A is as in (3) but with
constant coefficients and w > wy with wy appropiated. We stress that in [2] the
autors use the evolution equation (1) with n = 3 and A(t) = —A to investigate
the concentration of a pool of soluble polymers in a small cubical section [0, 27r]3
(=2 T3) of a biological cell (see also [7]). We remark that the results apply also in
the case that the in (3) defined operator A(t) is replaced by a Fourier-multiplier
operator A(t) = Fr. (a(t,")Frn), where {a(t,) : Z" — L(E);t > 0} is a
family of bounded variation symbols satisfying a certain uniform boundedness
condition (see (64)).

For E a real (or complex) Banach space, 1 < p < oo and n € N let
LP (R™, F) and LP (T™, E) be the usual Bochner space of p-integrable E-valued
functions on R™ and on the n-dimensional torus T™ respectively. Now, we say
that a function M : Z" — L(E), where L(E) is the Banach space of bounded
linear operators T : E — E endowed with the usual operator norm, is a Fourier
multiplier on LP (T", E) if for each f € L? (T", E) there exists g € L? (T", E)
such that

g (k)= M(k)f (k) for all k € Z", (4)
where ” denotes the Fourier transform. In the same way, we say that M is
a Fourier multiplier on B; , (T", E) if for each f € B,  (T", E) there exists
g € By ,(T", E) such that (4) holds. We recall that E is called a UMD-space,
it M, defined by M(k) := Ig for k > 0, and by M (k) = 0 otherwise, is a
Fourier-multiplier on L?(T", E) for some 1 < p < o0.
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OPERATOR-VALUED FOURIER MULTIPLIERS 111

In contrast to extensive theory on F—valued distributions in general, and
Fourier multiplier theorems on L? (R", E) and B, , (R", E) (and its aplications
to partial differential equations) in particular, the contribution in literature to
E—valued periodic distributions is rather sparse. For example, in [6], [5], [7],
[10] and [11], the classical Fourier multiplier theorems of Marcinkiewicz and
Mikhlin are extended to vector-valued functions and operator-valued multipli-
ers on Z" satisfying certain R-boundedness condition. More specifically, the
authors of those works established Fourier multiplier theorems on L? (T", E)
if 1 < p < oo, Fis a UMD-space and, instead uniform boundedness, a R-
boundedness condition holds. This R-boundedness condition is similar to our
uniform boundedness condition (52). The firth results about the vector-valued
periodic Besov spaces B , (T™, E') and Fourier multiplier theorems on these
spaces appeared in [3] but with n = 1. There, in Theorem 4.2, the autors proved
that each sequence M : Z — L (E) satisfaying the variational Marcinkiewicz
condition is a Fourier multiplier on B, (T, E) if and only if 1 < p < oo and
E is a UMD-space. The corresponding result of this theorem for Besov spaces
on the real line has been established by Bu and Kim in [5]. The variational
Marcinkiewicz condition, giving in [3] is equivalent to the bounded variation
condition (52) in case n = 1.

In this paper we obtain (Theorem 5.7) an analogous result to the assertion
of Theorem 4.2 in [3] for the toroidal Besov space B, , (T", ). Indeed we prove
that, given s € R, 1 < p < 0o and 1 < ¢ < oo, each fuction M : Z" — L(E)
which satisfies (52) is a Fourier multiplier in By  (T", E) iff E'is a UM D—space.
Of course, the proof of the implication where the UMD property of E is the
thesis, is similar to the case n = 1 in [3]. The hard part of this work was to
show the other direction of the equivalence. With this, we establish results of
existence and uniqueness of solution for the problems (1) and (2), since we
prove that the sequences

Moa(k) ==X\ +a(t, k)", kez,

are of bounded variation, where a(t, ) is the symbol of A(t).

The plan of the paper is as follows: After some preliminary definitions and
remarks in Section 2, we develop in Section 3 some fundamental elements on
Besov spaces. In particular it is proved in Lemma 3.1 the existence of a resolu-
tion of the unity (very useful in the following sections) and in Theorem 3.7 the
independence of norms on the resolution of unity in the space B, (T" E). In
Section 4 we define discrete Fourier multipliers on LP(T, E) and B o (T E),
the UMD-spaces and show in Corollary 4.8 an elementary result to character—
ize UMD-spaces. We prove in Section 5 the main result of the present paper,
the Theorem 5.7. As an example, we prove in Section 6 (Corollary 6.5) the
existence and uniqueness of solution for the problems (1) and (2) in certain
periodic Besov spaces.
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In the next three sections we explain in detail definitions and preliminary
results for this work in order to do more clear the study of the periodic Besov
spaces B, , (T", E) and the main result.

2. Functions and distributions on T" and Z"

In this section we will present some notations, function spaces on the torus T"
and on the lattice Z", as well as spaces of periodic and tempered distributions.
Furthermore we will give some results, which are proven in similar way to the
one-dimensional case discussed in [3] (see also [4] and [7]).

Throughout this paper n € N is fixed, Ny := NU{0}, {d; : j =1,...,n} is
the standard basis of R”, (z) := (1+4|x|)*/? for z € R", where |z is the euclidean
norm of z, B,.(a) and B, (a) denote the open ball and closed ball (respectively)
of radius r > 0 centered at a point a € R™. F denotes an arbitary Banach space
with norm ||| . If X and Y are local convex spaces, then £(X,Y) denotes
the space of all linear and continuous applications from X into Y. As usual
L(X) = L(X,X). For a, 8 € Z™ the writing o < 8 means that «; < j; for
each i =1,...,n, and [o, 8] := {k € Z" : a« < k < }. In the following dz :=
(2m)~™dx, where dz is the Lebesgue measure. Furthermore C7"(R™, E), for
m € NoU{oo}, denote as usual the set of all m-times continuously differentible
functions ¢ : R® — E with compact support and we write C, := C?.

Definition 2.1 (The spaces C*°(T", E)). We denote with C™(T", E), m €
Ny, the space of all 27-periodic (in each component), E-valued and m-times
continuously differentiable functions defined in R™. The space of test functions
is the space C*(T", E) :== (| C™(T™, E).
m&ENp
The topology of C°°(T™, E) is induced by the contable family of seminorms
{qx; k € No} given by

ar(p) == max sup [[0%(2)]l, ¢ € C™(T", E). (5)
l‘*ae‘iok z€l0,27]n

It can be shown that (C°°(T™, E), {qx; k € No}) is a Frechet space.
Definition 2.2 (The space of periodic distributions D’(T", E)). The space
D'(T™ E) = L(C>(T"),E) is called the space of E-valued periodic (or
toroidal) distributions. The value of u € D'(T", E) on a test function ¢ €
C>(T™) will be denoted by u(yp) or (u, p).

The topology of D'(T™, E) is the weak-*-topology, i.e. a sequence (ux)keN
in D'(T", E) converges to u € D'(T™, E) iff,

<uka§0> k‘) <U,(p> in Ea VQD € COO(TTL)

— 00

Indeed the topology of D'(T", E) is induced by the family of seminorms
{a,; » € C°(T")} where

g (u) = llu(p), uweD(T",E), ¢eC>(T").
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For example, for any ¢ € C*°(T", E), the map
)30 [ el
[0,27]™
defines a E— valued periodic distribution, which we call again ).

Definition 2.3. We denote with LP(T", E), 1 < p < oo, the space of all
strongly measurable 27-periodic (in each component) functions f : R* — E,
such that || f|| ;s n gy < 00, where

1/p
£l Loz iy = (/[02 . IIf(a:)l%dx> , 1< p<oo,

and with the usual definition for p = oc.

As the continuous case it holds
LP(T", E) — D'(T", E), V1<p<oc.

Definition 2.4. The space S(Z", E) consists of all functions ¢ : Z" — E for
which the following holds: For each M € R there exists a constant C,, ys such
that

le(@llp < Con()™™,  forall € € 2™ (6)

The elements of S(Z™, E) are called E—valued rapidly decreasing functions on
Z". As usual S(Z™) := S(Z",C).

The topology in S(Z™, E) is given by the contable family of seminorms
{pr : k € No} defined by

(@) = sup ()* [le(©)ll,  for g € S(Z", B). (7)
gezr

Then a sequence (¢;),cy in S(Z", E) converges to a function ¢ € S(Z", E) iff

P (1 — @) - 0 for all k € Ny.

The space of E—valued tempered distributions on Z™ will be denoted by
S'(Z™, E) and consists of all linear and continuous mappings from S(Z") into
E. This distributions space is also endowed with the weak-*-topology.

Example 2.5. Let ¢ € C.(R") and f € §'(Z", E). Then the mapping ¢f :
S(Z™) — F defining by (¢f)(p) = f(og) for all ¢ € S(Z™) belongs to
S (Z", E).

Revista Colombiana de Matemaéticas



114 B. BARRAZA MARTINEZ, I. GONZALEZ MARTINEZ & J. HERNANDEZ MONZON

Definition 2.6. a) For a function f € C*°(T", FE) we define

Fel) @ = [t = [ e cez @)

T [0,27]™
We call Fr~ f the toroidal or periodic Fourier transform of f.

b) For g € S(Z™, F) we define

(Folg) () := > e™%g(¢), weT" (9)

gezr
We call anl g the inverse periodic Fourier transform of g.

¢) Let uw € D'(T", E). The periodic Fourier transform of w is defined by
(Frou) (9) = u ([Fr'ol(—)) . ¢ €S(@"). (10)

d) For v € §'(Z", E) we define the inverse periodic Fourier transform of v
by

(Frnv) (@) := v ([Frad)(—)), o € C=(T"). (11)

Proposition 2.7. The following mappings are linear and continuous: a)
C®(T",E) > f = Frof € S(Z™, E), b) S(Z",E) 3 g — Fplg € C>(T", E),
¢) D'(TE) > u = Frou € S'(Z",E) and d) S'(Z",E) > v — Fplv €
D'(T™, E).

Definition 2.8. We say that a function v : Z® — FE grows at most polyno-
mially at infinity if there exist constans M € R and C > 0 (both depending on
u) such that

lu(@)ll < CE©,  forall ¢ € 2" (12)

The space of all functions u : Z™ — E with at most polynomial growth at
infinity will be denoted by O(Z", E).

Note that if u € S(Z™, E), then v € O(Z™, E). We can also identify the
space O(Z", E) with the space of all sequences (ax),cz» in E, for which there
are constants C' and M such that [|ax|| < C(k)™ for all k € Z".

Example 2.9. Let u € §’(Z", E). The function defined by a(§) = u(te),
& € Z™ belongs to O(Z™, E), where 1p¢ € S(Z") is defined by

1, ife=k,

0, if&+#k. (13)

wg(k) = 5£,k = {
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Proposition 2.10. The map O(Z"™, E) > uw— A, € §'(Z™, E), where
Aulp) =Y p(Ou(§),  VpeSE), (14)
gezn
is bijective.
Remark 2.11. Due to the last proposition, one can identify v € S'(Z", E)
with Az, and so

u(p) = Aalp) = Y w(&ulve), Vo eSE"). (15)
sezn

Definition 2.12. For ¢ € C°(T"), v € D'(T™) and e € E, the tensor products
¢ ® e and u ® e are defined by

(¢ @e)(z) = p(x)e, x€[0,27]",
(u@e)(p) = u(ple, e C=(T").
It is straightforward to prove that ¢ ® e € C°(T™, E) and u® e € D'(T", E).

Proposition 2.13. Let (ag)kezn C E be a sequence with at most polynomial
growth at infinity (i.e. [k — a] € O(Z", E)), then the mapping g : C*°(T") —
E, defined by

9(@) =Y (Fre) (Kar, o€ O(T"), (16)
keZr
belongs to D'(T™, E). Furthermore, for all g € D'(T", E) it holds
9(@) = Y (Frp) (K)gler) (o € C(T™), (17)
kezn
where ey, (x) := e** for all z € R™.
It follows from the last proposition that for all g € D'(T", E),
9= 3 ex@g(h) inD/(T" E), (18)
kezn
where §(k) := g(e—g), k € Z™, are call theFourier coefficients of g. To see this
fact note that ex(p) = /e“”'kcp(z) dx = (Frnp) (—k) for all p € C(T™).
TTL
We finish this section with some results, which we will need for the following
one. Before, note that
ex(e_e) = / R for all £, k € Z™.

[0,27]™
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Lemma 2.14. If (ap)rez» € O(Z", E), then ), ;. ex ® ap € D'(T", E).
Furthermore, if (bg)rezn € O(Z™, E),

Z er Qap = Z er ® by in D' (T", E) <= aj, = by, for each k € Z™. (19)
kezn kezn

Proof. Duetoe_g(p) = (Frnyp) (k) for all p € C°(T™), it follows from Propo-
sition 2.13 that the mapping

i Y (Frp) (R)ak = Y en(o)ax

kezZ™ kezn

belongs to D'(T", E), i.e. there exists some g € D'(T", E) such that

g = Zek®ak.

kezn

Now, if 7, cpm €k ® arp = D 1cym €k @ by, then it holds for each £ € Z™ that

ag = ( Z ex ®ak>(e,§) = ( Z ek ®bk)(e,5) = be.

kezm kezr

The reciprocal is trivial. o

As a direct consequence of the last lemma and the equalities (17) and (18)
we have that:

Theorem 2.15. Let f,g € D'(T", E) and (ay)rezn € O(Z", E).
a) f=g<= f(k)=g(k) for all k € Z".
b) f =2 kezn ek @ ax = f(k) = ay, for all k € 7.

3. The periodic Besov spaces B,  (T", E)

A sequence ¢ = (¢;)jen, C S(R™) is called a resolution of unity , denoted
(0j)jen, € (R™), if it satisfies the following three conditions:

(1) supp(¢o) C Qo := B2(0) and
supp(¢;) C ;== {x eR™: 27 < 2| < 23""1}7 jeN. (20)

(2) S 6;(€) =1 for all £ € R™.

Jj=0
(3) For each o € N there exists a constant C, > 0 such that
1(0%9;)(€)] < Ca2771%lxq, (€), for all £ € R™ and j € Ny,

where yq, denotes the characteristic function on ;.
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The set ®(R™) is not empty as it is shown in the following generalization of
Lemma 4.1 in [3].

Lemma 3.1. There exists a sequence (¢;);en, € ®(R™) such that

a) ¢; >0 for all j € Ny,

b) supp(¢;) € Q; for all j € Ny,

¢) 6;(&) =1 if ¢l € [7-272,3-271] and j > 3,

)
)
) ¢
d) l¢l € [7-2973,3-277] and j > 3 implies € ¢ supp(¢;—1) N supp(d;+1).
Proof. Let pg € S(R™) with 0 < ¢p < 1, supp(po) S B2(0) and ¢g(¢) = 1, if
€] < 22, Let ¢ be another function in S(R”) such that 0 < ¢ <1, supp(ga)

{xER”'3<\x|<7} and @(¢) = 1, if £ < ¢ < 2. Now, foryENand
& € R™, define

e©=0(55) w99 =Y o).
k=0
Then it is clear that for j =1,2,... it holds
supp(p;) C K :={{ € R":3- 2772 < [¢| < 72777}, (21)
©; (&) =1, if |¢] € [13-277%,13.2973], (22)

Due to K;N K 12 = @ and ¢;(13-2973) =1 = ,,1(13-2773) for each j € N,
we have that

supp (;) Nsupp (¢j+1) #@ and  supp (;) Nsupp (pj42) =&,  (23)

for all j € Ng.
Assertion: For each £ € R"™, there exists some j € Ny such that

1
= pil&) =1, (24)
=1
where ¢_; := 0. In fact: Let ¢ € R™. Because R = [0, 13/8]UU;<;1[13~2j*47 13-
2773], then || < 13/8 or 13-277* < |£] < 13- 2773 for some j € N. From this,
(22) and (23) it follows clearly (24).

Now, define for j = 0,1, 2,

;(€) = g((g)), for all £ € R™. (25)

By direct calculation we get that (¢);en, € ®(R") and it satisfies a) —d). ™
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In the continuous case (in R™) it can be shown that if (¢;) € ®(R"), then
there exists a constant C,, > 0 such that

[P @3]l gy < Oy for all j € No, (26)

where Fy, ¢; is the inverse Fourier transform (in R™) of ¢;.

Theorem 3.2. Let ¢ € C.(R"™) and f € D'(T", E). Then

Fal(@Fmf) =Y ex®(k (27)

kezn

Proof. From Example 2.5 and Remark 2.11 it follows for ¢ € C.(R"™) and
f e D(T" E) that
[Fo (0Fen )] (k) = ( fiwﬂnf))( k) = (@Fn ) (Frme—k) (=)
= (&) Frn ) (We) (Frme_) (=€)

cen

=Y A& (Frn f)(We)de ke = d(k)(Frn f) (1)

£ezm
= ¢(k) f ([Frltnl (=) = ¢(k) f(e—r) = d(k) f ().

That is, ~ .
[Frd (0Fm )] (k) = ¢(k) f(k) for all k € Z, (28)
and therefore (27) holds, due to (18). o

In similar way to the proof of Proposition 2.2 in [3], we obtain the following
result.

Proposition 3.3. For each ¢ € C°(R™) and 1 < p < oo, it holds

S e @ (k) f (k)

kezn

S H]:]lgnlngLl(Rn) Hf”LP(T",E) ’ (29)
Lr(T",E)

for all f € C=(T™, E).

Definition 3.4. A function f : R®™ — F is called an E—trigonometric poly-
nomial, if there exist a, 8 € Z" with o < 8 and (21)re[a,5) C E such that

Z er ® xg, (30)

ke[e,pl

where ey () := e** for all z € R".
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We can write the E— trigonometric polynomial f in (30) as

f: Zek®xk;

kezn
with zj := 0 for k ¢ [«, 8], or in the form
f= ), e,
kE[—N,N™

for some N € N.
We denote the class of all E—valued trigonometric polynomials on T™ by
T(T™, E). It is clear that 7(T", E) C C>(T", E).

Remark 3.5. Due to Theorem 2.15 b) if f = >Z, 1, g ex ® 2x € T(T", X),
then

i oak, if k€[, ],
Flk) = { 0, otherwise,

when f is seen as a distribution in D'(T", E).

Definition 3.6. Let 1 < p,¢ < 00, s € R and ¢ = (¢;),en, € P(R™). We
define the F—valued and n—dimensional toroidal or periodic Besov space by

By(T", ) i= {1 € D'(T", E) : ||f I pgs = |l pgoon ) < 0}

where
_ ) q 1/q
(z24] £ asewinl,, ) . f1<a<x,
>0 kEZn Lr(T",E)
Hf”B;:g’ =
sup 257 e®¢-kfk’ , if ¢ = o0,
sup ké K ® ¢;(k) f(k) o

(31)

Note that for f € D/(T", E), (6;);en, € ®(R?) and j > 0, Fl (6, Fpn f) =

D kezn €k ® (b](k)f(k) is a trigonometric polynomial. Furthermore B;zg’(?l‘", E)
is a Banach space with the norm defined in (31).

In the following theorem we prove that the E—valued and n—dimensional
periodic Besov spaces are independent on ¢ € ®(R™).

Theorem 3.7. Let ¢ := (¢;)jen,y, ¢ = (@5)jen, in ®(R™). Then the norms
By¢(Tn, ) 0T€ equivalent.

H'HB;;?(TW,E) and |||
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Proof. We must prove that there are constants ¢, C' > 0 such that

c Hf“B;;f(’]l‘",E) < ||f| B;;?(T",E) < c ”f‘ By &(T™,E)» (32)

for all f € By#(T", X). But, due to the transitivity of <, it suffices to show
(32) for ¢ as in Lemma 3.1. We will show this for 1 < p < oo, the case p = o0
is proved in similar way. Let 1 < p < 0o, ¢ € ®(R") and ¢ as in Lemma 3.1.
Since supp(¢;) Nsupp(¢;4+2) = @ for all j € Ny,

1
¢i(z) = ¢j(z) > @julx), Vo €R"and j € N, (33)
I=—1

where ¢_1 = ¢_1 := 0. From (Ja| + [b))? < ¢p(Jal? + |b|?) for all a,b € C,
Proposition 3.3 and (26) it follows that

1
(33) is NI
150 = D270 D en@ (k) D e
P 3>0 kezn =1 (T, B)
1
. ~ q
Seg 3o 22 D e sk WIB)|
I=—1;>0 kezn (1", E)
1
(28) s _ A q
= Cq Z Z 2j qH Z ek ® ¢] (k) (‘F’H‘nl (SD]“FZ‘FT"'}C)) (k) LP(Tn E)
I=—15>0 kezn ,

1
< ¢ Z Zstq ||‘7:]1£"1¢j“(il(]1&") H}—il (¢j+l]:T’Lf)||qu(1rn,E)
I=—1;>0
1

< ¢yCn Z Z2jsq H}Mnl (‘Pj+l-7:T”f)Hip(Tn,E)

1=—14>0
1
. FENIL
= cgen 3232 S evmpamfm)| (34)
1=—1;5>0 kezn (T.E)
Now, because
. ENIL
2qu‘ ,
Z Z e @ pjx1(k) f(k) Lo (T, 5)
§>0 kezn
, : ENIL
< 9Fisq Qaqu . ‘
<oy v Y e gm|, . 69
7>0 kezn
then
1% ¢ oy < Catn(2m) (1420 4270 e (36)
Exchanging the roles of ¢ and ¢ in the expressions (33) - (36), we have that
(32) follows from (36) with ¢ as in Lemma 3.1. vf
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Due to the last theorem we will write Bj (T", E) instead B¢ (T", E).
From now on, By (T", E) will be considered with the resolution of the unity
of Lemma 3.1.

Remark 3.8. Let s ¢ R, 1 < p,q < oo and x € E fixed. Note that the function
f:T" — E, defined by f := ¢ ® x, with eg(y) = 1 for all y € R”, satisfies
(due to Remark 3.5)

S0 2091 37 en @ 050 f(R)|

>0 kezn

q

= 294916,(0)|" |||
) >0

= l¢o(0)|" Izl =: CG Izll% . (37)

Lr(T",E

if ¢ < oco. Similar result holds for ¢ = co. Because of (¢;) en, € ®(R™), one
obtains with this idea that 7(T", £) C B, ,(T", E).

4. Discrete Fourier multipliers

Definition 4.1. A function M : Z"™ — L(E, F) is called a discrete operator-
valued (Bj ,—)Fourier multiplier from B, (T", E) to B, (T", F) if for each
f € B, (T", E) there exists g € B, ,(T", F') such that g(k) = M (k) f(k) for
all k € Z". If E = F, we will say that M is a discrete Fourier multiplier on
By (T", E).

Theorem 4.2. Let M : Z" — L(E,F) be a function. Then the following
assertion are equivalent:

a) M is a discrete B, ,—Fourier multiplier.

b) There exists a constant C > 0 such that

| 3 er e o)

kezn

<C S n 5 38
sy ) = C Ml o) (38)

forall f € B (T", E).

Proof. a) = b)] Let M : Z" — L(E, F') be a discrete B, ,—Fourier multiplier.
For f=) comer® f(k) € B, ,(T", E), define

Su(f) =Y e ® M(k)F (k). (39)

Due to the hypothesis there exists a g € By ,(T", F) such that g(k) = M (k) f(k)
far all k € Z™. Therefore, due to (18) we have

Su(f) = ex®g(k) =g,

kEZ
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ie. Sy is a well defined application from B;  (T",X) into B, (T",F).
Now, we will prove that Sy is a closed linear operator. Let (fm)men, =

(Zkezn er ® fm(k)>m€No C By ,(T", E) such that

fm — f and SMf’H’L T> h

m—r oo

in B5 (T", E) and B; (T, F'), respectively. Since

29| 37 ek @ 65(k) (i — S (K)|

kezn

<fm = flss an gy =0

Lp(T™,E) m—00

in C, then

S €4 ® by () (fom — [ (K) —— 0 in I? (T, F),

m—oo
kezr

for each j € Ny. Because of L? (T", E) — D' (T™, E), it holds for each [ € Z"
that

o (1) (frm — [ ) = Z ex(e—1)¢j(k)(fm — f) (k) —— 0 in E.

keZn m—r 00
Then A .
o; (D) fm (1) m) ¢;()f(1) inFE, VI€Z" and j € Ny. (40)

In the same way one obtains that

;(OM(1) fn(l) —— h(l) in F, Y1 € Z" and j € Ny. (41)

m—oo

Because M (k) € L(E, F), it follows from (40) that for each k € Z"

¢ (k)M (K) (k) —— ¢ (k)M (k) f(k) in F.

Therefore
Y en @G ()M (k) (k) ——— D ex @ &5 (k)M (k) f (k).
kezn keZn

because these sums are finite. In the same way it follows from (41) that

> ek @by (R)M(k) (k) —— >~ ex @ ¢;(k)h(k).
kezm kezm

Then

> er@(R)M(R)f(k) =Y ex ® ¢;(k)h(k), for j €Ny

kezn kezn
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and thus

[Sarf — h||t1]3;1q(1rn,F)
=321 3 ey (k) (Saaf — ) (B

j=0 kezm Lr(T7sF)
. — ~ q
_ ZQ JqH 3 e ® (RS f(k) - 3 e ® qu(k)h(k)‘ S
§>0 kezn kezn
= 0’

i.e. Sprf = h, and hence Sy is a closed linear operator. Thus, by the closed
graph theorem, Sy is bounded and consequently (38) holds.

b) = a)] Suppose that (38) holds for each f € B; (T", E). From this and
(37) there exists a constant ¢ > 0 such that

IME) zp,m < ¢ forallkeZm

Let f € B, (T, E). Because f € D'(T", E), there exist constants d > 0 and
N € N such that

HM(k)f(k)HF <cdgy(e—_g) = cd max  sup \(—i)lo“kae_““ﬂ
‘0;6‘51% z€[0,2m]™

<cdklN <Ck)YN  Vkez".

Therefore (M (k)f(k))kezn € O(Z", F). Thus g := >, cpn e @ M(k)f(k) €
D'(T", F), due to Proposition 2.13, and thereby g(k) = M(k)f(k), due to
Theorem 2.15. Furthermore, g € B,  (T", F) because of (38). Consequently

M :7" — L(E, F) is a B, ,—Fourier multiplier. vf

Remark 4.3. i) In the proof of Theorem 4.2 it was shown that M : Z™ —
L(E) is a uniformly bounded function, if M is a discrete B, ,—Fourier
multiplier.

i) If M : Z" — L(F) is a uniformly bounded function, then the operator
Sy : D(T™ E) — D'(T", E) defined by

Surf = 3 ex ® M) f(R) (42)

kezn

is well defined and
(SafY (k) = M(k)f(k) for all k € Z",
as shown in the proof of b) = a) in the previous theorem.
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A definition of LP-Fourier multiplier, equivalent to the definition given in
the introduction, is the following (see [7], Lemma 3.10):

Definition 4.4. Let 1 < p < oco. A uniformly bounded function M : Z" —
L(E) is called a discrete LP— Fourier multiplier, if there exists a constant C' > 0
such that

1S3l goon ) < CUfllpogen mys V. € T(T", E), (43)

where Sys is defined by (42). In this case Sy € L(LP (T, E)), due to the
density of T(T", X) in L? (T™, E) (see [7], Proposition 2.4.). If M a discrete

LP— Fourier multiplier, we will write M € M,(E) and [[M]|, = ||MH/\7,,
denotes the smallest constant C' such that (43) holds.

Theorem 0.1 in [11] motivates the following definition of UM D—spaces.

Definition 4.5. E is called a UMD—space, if the map R : Z™" — L(FE) defined
by

Ig, ifk>0,
= 44
R(k) { 0, otherwise, (44)

is a discrete operator-valued LP—Fourier multiplier for some (or equivalently,
for all) p € (1,00), where I is the identity operator in E. We call Sg the
operator-valued n—dimensional Riesz proyection.

Remark 4.6. 1t is easy to prove that R is a discrete LP—Fourier multiplier if
and only if, the map N : Z" — L(FE) defined by

Ig, ifk<0
N(k) := ’ - 4
(k) { 0, otherwise, (45)

is also a discrete LP-Fourier multiplier.
Theorem 4.7. Let M, M, € M,(E), | = 1,2, then:
a) My + M, € MP(E) with SM1+M2 = S]Vh + SMQ.

b) My -Ms € MVP(E) with SMl‘Mg = S]\/[1 OS]\/[27 where My - Mo : A — C(E)
is given by (My - Ms)(k) := M (k) o Ma(k) for k € Z"™.

¢) For each oo € 7™ fized, the application My, : 7" — L(F) defined by
My(k) == M(k—«) forall keZ", (46)
is a discrete L,—Fourier multiplier with || M|, = ||M]|,-
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Proof. The proof of a) and b) follow directly from the definition. For the proof
of ¢) let v € Z" fixed and f =), ;. ex ® x in T(T", E). Then

||SMaf||iP(T”’E)

. p . p
= / Z e M (k — a)ka dr = / Z ez(&o‘)'”M(f)m@ra dx
e E e E
Yei=Teta it P p
e [ | o= fou( S ol
" eenn gezn ’
p p
< MBI e ®y§‘ o) IMIp | Y ecra ®Tesa I
cezn ’ E+aezn ’

= IMIE | 3 e @

p
rezn Lr(T",E)

From this follows that M, € MVP(E) with [[Mq||, < [[M]],. In the same way
one proves that || M[|, < [[Ma]],. v

Corollary 4.8. E is a UMD-space if and only if for each p € (1,00) there
exists a constant C}, > 0 such that for

f= Y e®z € T(T",E) (KeNy)

ke[-K,K]™

there exists some € Z" which satisfies §; > K (for all j =1,...,n) and

< P(T" . E)- 4
> e ®kaLP('ﬂ‘”,E) < Cpllfllze(rn ) (47)
k€0,5]

Proof. =] Let E be a UMD—space, 1 < p < co and

f= > ez € T(TE) (KeN).
ke[-K,K|"™

Then R and N, defined as in (44) and (45), respectively, are LP—discrete Fourier
multipliers. Due to Theorem 4.7 ¢), R, and Nz are also LP—discrete Fourier
multipliers for all a, 8 € Z™. We set zj, := 0 for k ¢ [-K, K]™. Then for all
a, B € Z™ with a < 3 it holds

| 5 o

ké[a,ﬁ] LT’(T",E)
- No(k) R, (k ‘ - HS ’
keZZn % & Mo Ra®re]|, oo e kezzn i PCHE
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< HNﬁ'RallpH > €k®1‘kH
k€Z7l

< N R P n B 48
sy S IV IR ooy, (49
due to Theorem 4.7.

<] Suppose that for 1 < p < oo there exists C, > 0 such that for each
f= Zke[—K,K]" ey @ € T(T™, E) we can find § € Z™ with 8; > K for all
j=1,...,n and such that (47) holds. Then

Sufliri = | 3 w0 mm], . =] |
SRSl (T, E) ;gz:n er ® R(k)wy Lr(T™,E) ke[%;(]" O BT Lr(T™,E)
(47)
= X e, .., < Gl
k€[0,8] ’

for all f = Zke[_K K €k ® T € T(T™, E), and thus the operator vector-
valued n—dimensional Riesz proyection is bounded in L? (T", E). Therefore E

is a UMD—space. o
5. Multipliers of bounded variation; main result

Definition 5.1. Let G C Z". For a function M : Z" — L(E,F) let the
restriction of M to G be defined by

Ak%%:{MwL if k € G,

0, if k ¢ G.

In particular Mz» = M. Let a,3 € (ZU{—00,00})" with a < B. For the
standard basis of R" {0, : j = 1,...,n}, the difference operators A% are defined
by

AM (o) = | Mieon)(®) = Miogy(@ = 05), i o # o,
[2,5] 0, if z; = ay.

Moreover, let AOM[aﬁ] = Mia,g),
A Mg p) = AT AT M g, for y = (1,4, 7m) € {1,017,

and let the variation of M on [a, 8] be defined by

Var Mia,p) = Y 1AM Q)] (49)
’ £€la ]

where ve = (Ve,, .-+, 7, ) With

o 13 if gj 7é Qs
7&’{o,ﬁg:%. (50)
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Note that if o, 8 € Z™ with « < fand M : Z™ — L(E, F) is a function such
that M, g = 0 in Z", then A‘SJ'M[QJ;](k) =0forall k€ Z"and j=1,...,n,
and in consequence [Vaﬁr} Miq,5 = 0.

Remark 5.2. Using properties of telescopic sums it can be seen that for each
B € Z™ it holds

M(B)= > A"Mpypg/(€) (51)
£€lo,fl

for all @ € Z™ with a < 3.

Definition 5.3. The coarse decomposition of Z™ is defined by: Dy := {0} and
for d € N,

Dd = {k €ZL": |k1|7'- '7|kl—1| < 2T+17 2" < |kl| < 2T+17 |kl+1|7"'7‘kn| < 2T}a

where d = nr+1 withr € Ngand ! € {1,2,...,n}. Ford € N, Dg = Dg+ UD4-
where Dy+ := {k € Dy : £k; > 0}. Furthermore

\é&}irM = X{ir Mp,, + 1\)/?,1“ Mp, (deN) and
Var M := Var Mp,.
Do Do
Note that for d € N and D4+ as in the above definition, Dy+ = [a g+, B4+ ] for

some g+, B+ € Z™ (for example, o+ = (—27+1, ..., —2rFl 2r —or . 27
where 27 is in the [—th position). Therefore })/'ar Mp,, make sense.
FE=

Now, the variational Marcinkiewicz condition, given in [3] by
sup [ My +sup > [[Myy1 — My < o0,
hez 729 91 <|p|<2i 1
will be generalised by the following definition.

Definition 5.4. Let M : Z" — L(E, F) be uniformly bounded. M is called a
function of bounded variation with respect to the coarse decomposition of Z",
if there exists a positive constant C' such that

sup Var M < C. (52)
deNog Da

Lemma 5.5. Let j € Ng. Then the function M := M; : Z" — L(E) defined by

(53)

M) = Ip, if k=ki6y with ky € [7-2773,27] and j > 3,
o 0, otherwise

is of bounded variation with respect to the coarse decomposition of Z"™.
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Proof. By definition M : Z" — L(E) satisfies | M (k)z|| < ||z|| for all k € Z™
and z € E. Therefore {M (k) : k € Z"} C L(E) is uniformly bounded with

[M(E)|l gy <1 forall k € Z". (54)
We will show that M satisfies (52). In fact, \I/DarM = 0 because Mp, = 0. Now,
)
we fix d e Nwithd=nj+1,j€Nyandl € {1,...,n}. Due to (53), we have:
i) If j < 3, then Mp, = 0 and therefore \l/)arM =0.
d
ii) From j > 3 and [ € {2,...,n} it follows Mp, = 0 because if k € Dy,

then k; # 0 and hence k # k191 which yields Mp, (k) = 0. Moreover, by
definition Mp,(k) =0 if k ¢ D,. Therefore \l;arM =0.
d

iti) If 7 > 3 and I = 1, then for each k € Z™ it holds that

Ig, ifk=2/4,
0, otherwise.

MDd(k) = {
It follows that Mp, = Mp L+ \{276,} = 0, and then

Var M = Do A Mp, () oo = A7 M 260
kGDd+
Since Dg+ = [agt, Bq+] with agr = (27, -27,...,—27), we have

Var M = [ A0 Mp, (F01)| ) = |A°A% - A M, (2701)]|
= || A% A% Mp , (276)) ||L(E)
= || A% A% (Mp, (2761) — L2700 - ))HL(E)
—,_/

=0

= HAéz . .,Aén—lMD (20 51 H.C(E R "M(Qj(;l)HL(E) <1,

due to (54).

In consequence M : Z™ — L(E) defined by (53) is of bounded variation with
respect to the coarse decomposition of Z". o]

Lemma 5.6. Let (¢;);>0 be as in Lemma 3.1.

a) For j > 1 it holds
nj+n
supp(¢;) NZ™ C U Dy =: D}, (55)
d=n(j—m—1)+1

where D_q := Dy for d € N and m is the smallest non-negative integer
satisfying /n < 2™.
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b) supp(¢o) NZ™ C |J Dg.
d=0

Proof. a) Let k € Z™ N supp(¢;) with j > 1, then 2971 < |k| < 29+ If

k¢ D?, k€ Dy with d =nr +1 for some [ € {1,...,n} and some r > j + 1 or
r < j—m — 2. In the first case it holds

k| > |ky| > 2" > 29+

which contradicts that |k| < 2971, Now, we consider the second case, i.e. k € D,
with d =nr 4+ for some [ € {1,...,n} and some r < j —m — 2. If r > 0, then
|ks| < 2rtl < 2i=m=1 for all s € {1,...,n}, and thus

k| < Vnlkloo < Vn2I7MTH <2771

which now is in contradiction with |k| > 2/=1. The same happens when r < 0
since D_4 = Dy. In consequence k € Dy with d = nr+1 for some [ € {1,...,n}
and somer € {j—m—1,...,5}.

b) If 0 # k = (k1,...,kn) € supp(¢o) N Z™, then |ks| < 2 for all s €
{1,2,...,n} and therefore k € D; for some | € {1,2,...,n}, since otherwise
there would be some 7 € N and s € {1,2,...,n} such that |ks| > 2". Then we
have that

upp(60) 121\ {0} € | Dy

d=1

From this follows b), due to 0 € Dy. ™

Now, we will prove the main result of this paper. But before note that

Z Z alka Z ag Z bl7 (56>

k€[a,B] l€[a,k] k€a,B] le[k,B]
for all a, 8 € Z™ with a < .

Theorem 5.7. Let s € R, 1 < p < o0 and 1 < g < oo0. Each function
M :Z" — L(E) of bounded variation with respect to the coarse decomposition
of Z" is a Fourier multiplier on By, (T", E) if and only if E is a UMD-space.

Proof. <] Let E be a UMD-space. Suppose that M : Z™ — L (F) satisfies
(52), f € By ,(T", E) and let (¢;);>0 be as in Lemma 3.1. Due to Lemma 5.6
we obtain that for 7 > 1 and = € T™ fixed it holds

| > et ommmfm| =[] X e mmmin)|

kezn k€supp(¢;)NZ™

E
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n(j+1)

< Y X eanmmmie)|

d=n(j—m—1)+1 k€Dy

n(j+1)
< (| Z esimmmion)

d=n(j—m—1)+1 keD ;1

o X eammmin,).

keD,_
(57)
Now we consider the sum over Dg+ = [, 3, ].
| > etrommmfm)|
keD ;4

DU > A M, O o0 f0)||

kED ;4 £€[ay+ K]

L T st swin],

kED ;4 £€[ay+ k]

= H Y A Mg, p,0k) D €T 0(Of (g)HE

keD ¢ €€(k,B4+]

Skg%p > HA Moy 5,1 (F) L(B) H > em@(@f@HE
at keD 4 £€lk,Byt]

(52) _ .

<o |3 o 0f©)
FeDat T eclk,pu)

We get the same estimate for the sum over D;- with a similar procedure. Then,
from (48) and (57) it follows that

| 32 era; (k)ae(e)f (k)|

LP(T",E)
kezZn
<2Upn(m+2)| Y o fw)|
kezn (T".E)
Analogously, using Lemma 5.6 b) we obtain
ik-x 7 <2K, ” ik f ’ .
| 3 "ok M) | R 3 B,
Thus, there exists a constant C' > 0 such that
. _ .
| X aeomumin,, <o X aosmin),

kezm kezn
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for all f € By ,(T", E) and j € No, and therefore

| evw M) )| < Cfllzy (o 59 -

Bs _(T",E)
hezn 5,q(T™E)

Thus, Theorem 4.2 implies that M is a B, (T", E)-Fourier multiplier.

=] Now, we suppose that each function M : Z" — L (E) satisfying (52)
is a By ,(T", E)-Fourier multiplier. Let (¢¢)een, € ®(R") be as in Lemma 3.1
and fix j € N with j > 3. For this j let M : Z" — L (E) be the function given
in Lemma 5.5. Moreover, let us consider an arbitrary sequence (2x),czn in E
and the E-valued trigonometric polynomial

h:= Z er Q Tg.

-~ k=ki61,
72778 < k<3271

This h can be written as

h = Z ek®ﬁ(k)7

- k=ki61,
7.2973<k;<3.29 71

where h(k) = 0 for k ¢ {kidy : 7-2773 <k <3-2/7'} and (k) = 2y else,
due to Remark 3.5. By Lemma 3.1, ¢;(z) = 1 for all z € R™ with 7-2/73 <
|z] < 3-2771 and ¢;(z) = 0 for all z € R™ with 72973 < |z| < 3-2/7! and
l # j. Thus

H S e ®M(k)h(kz)‘ ; )
kezr LS
q
= o > ex ® du(k)M(K)h(k)
1>0 k=k1 61, Lr(T".E)
7.2078<k, <3.2771
(53) ol S
=) 2 > e @ pu(k)h(k)
1>0 k=k161, Lr(T™.E)
720 73<k, <27
q
= 24s] > e ®h(k) . (58)
k=k161 Lr(T".E)

720 73< k<27

Similarly we obtain that

Hh||1q9;,q(Tn’E) = Z 9asl
1>0

q

> ex @ gu(k)h(k)
k=k161,
729 73<k, <3291

Lr(T".E)
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> ex @ h(k)

- k=kié1,
729 73<k; <3.2971

‘ q
— 9asj

(59)
L,(T",E)

From Theorem 4.2, (58) and (59) it follows that

H Z er R Tk <C’H Z er X T

k=kid1, Lr(T".E)  k=kidy,
72973 <k <27 72978 < k<3291

;. (60)
L (T".E)

where C' do not depend on j. Note that we can write (60) as

27 3.201

H Z eé@erLp(T,E)SC" Z eé@”)

£=7-27-3 £=7-23-3

L»(T,E)

for all (¢),cy, C & and therefore
H > ek®xk‘ SCnH > ek®$k’
ke[0,27-3] Lr(T.E) ke[—2i—3,2i-1]

for all (z1),ey, C E and j > 3.

Now, let f= 5. ex®ux, € T(T,E) and set x; = 0 for k ¢ [N, N]|.
ke[—N,N]
There exists some jy > 3 such that N < 29v =3 and
<

H €k®1'k’ < C, 6k®mk‘
Z Lr(T.B) Z .
ke[0,295 3] ke[—2iN =8 20N 1]

= Cullfllre(r,m)-
Therefore F is a UM D-space due to Corollary 4.8. oif

61
LP(T,E) (61)

(61)

L»(T,.E)

Remark 5.8. In the proof of Theorem 5.7 we have proved that if F is a
UMD—space, s € R, 1 <p <o0o,1 < g <o0and M is of bounded variation
with respect to the coarse decomposition of Z", then there exists C' > 0 such
that

||SM||[:(B;,Q(W,E)) < Cdség) \j/jaflr M.
0

Remark 5.9. Let M : Z" — L(E, F') be uniformly bounded.

a) As a particular case of the proof of Theorem 3.24 a) in [7], it holds that

M is of bounded variation with sup Var M < 2371 if the set
deNy Da

{|k|lvk\ A" Mp, (k) :d €Ny and k € Dd}

is uniformly bounded.
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b) It is easy to see that

{ |]f|m| A"™Mp, (k) : d € Ng and k € Dy}
c { k" ATM (k) : k € Z" and v € {0,1}" }.

6. Periodic boundary valued problems

In this section we will study the existence and uniqueness of solution for the
problems (1) and (2). Note that A(t) given in (3) is a (formal) lineal differential
operator with £ (E) —valued coefficients, where a® : [0,00) x Z" — L (E),

a (k)= aa(t) k" (62)

|a]=m

is called its principal symbol.

For 0 € [0,7], set >, :={A € C: |arg\| < 0} U {0}. Given k > 1 and 0 €
[0, 7), the operator A is called (uniformly) (k,8) —ellipticif >, C p (—a® (¢, k))
and

I Otk_lH < " for all
H M+ a2 k)] cE) T 14} ora /\eze (63)

and (¢, k) € [0, 00) x Z™ with |k| = 1. It is called f—elliptic, if it is (k, 8) —elliptic
for some k > 1, and normally-elliptic if it is §—elliptic.

Remark 6.1. Similarly to the continuous case (see [1], Remarks 3.1) we have:

a) Condition (63) is equivalent to

_ K
A+ a0 (8, k)] H <

H [ (t. k)] cE) ~ k" H A
for all A € >~, and (t,£) € [0,00) x Z™ with k # 0.

b) The order m is even whenever A is normally elliptic.

Remark 6.2. Let A be uniformly (r,0) —elliptic, a (t, k) := 32|, <, @a (1) K
and b := a — a°. Due to

M+ a(t k) = [1 +b (k) (AT +a° (¢, k))*l} (M +d° (k) ,

by a Neumann series argument, there exists some wy > 0 such that

2K

A +alt,k ‘1H <
H[ (& k)] cE) ~ k" + A

(64)

for all A € wo+ >, and (t,k) € [0,00) x Z".
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Proposition 6.3. Let s € R, 1 <p<o0,1 <qg<o00, EaUMD-space, A an
uniformly (k,0)-elliptic differential operator satisfaying Zla\<m laallo < C,
and let B

A= Apg; By ™(T", E) — By (T", E), ur— Au,

be the B, ,—realization of A. Then there exist C, > 1 and wo > 0 such that
wo+ Y. Cp(=A(t)) and

|or+amn™| <G (65)

£(Bg ,(T7,B)) ~ 14 |A]

for all X\ € wo + ), and t > 0. In particular, each A(t) generates an analytic
semigroup on By (T", E), if A is uniformly normally elliptic.

For the proof of this proposition we will use the following notations and
lemma, whose proof can be found in [7].

Giving o € Nj\ {0}, let

-
Zy = {Wz(wl,...,wr) 1<r<lal,0 <w? Sa,ij :a}
j=1

denote the set of all additive decompositions of « into r = 1y, multi-indices. For
the sake of consistence we set Z := {@} and rg := 0. For W = (w',...,w") €
Z, let wi be defined by

,
wl = g wl.

I=j+1

Lemma 6.4 ([7], Lemma 7.1c). Let S : Z"™ — L (E, F) be a function such that
the inverse (S™1) (k) := (S(k))™" exists for all k € Z™. Then for o € NI, we
have
™ w ; )
AT(ST) (= > (=)™ (57 (k= ) [T ((A"'8)S7) (k= wl)
Wez j=1

a

forkeZ".

Proof of Proposition 6.3. Let a be as in Remark 6.2 and v € {0,1}". For
A€ w+ Y, and t >0, we define My, (k) == AX(A+a(t,) " (k), k € Z".
Using Lemma 6.4, the triangular inequality, the fact that A%’ (k: — wi)a is a

polynomial in k — w?, of degree not greater than |a| — |w/| and (64), we obtain
for all k € Z™ that

K| A My (R)|
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<R ST [+ at k=)

wez,
T‘W 1 . B p—
LAY a (k= wd) || A+ a (k= wi)) )
j=1
<CET ST [ +attk—))7"
Wez,
w 3 S\ . —1
TIO X 18 =) | (3 a (10— ) )
Jj=1 |a|<m
Al
<ok N
W; e ="+ 1A

W

B S S et &)

J=1 |a|<m finite |k_wi|m+ |A‘

<Ok O ﬁ(\k_wir'w"‘—““fwi'm )
ez Rl Ik —wl™ + ||

W ) N
< Colk™ 37 Ow] Ik —wil ™ < G,

Wez,  j=1

where C,, is a constant which do not depend on A and t, and || - || abbreviates
|- Il z(&)- It follows that M) ; is of bounded variation due to Remark 5.9. Thus
Theorem 5.7 implies that My ; is a discrete Fourier multiplier on Bj  (T", E)

and (65) holds due to Remark 5.8.

Corollary 6.5. Let 0 < p<1l,seR, 1 <p<oo,1<g< o0, EaUMD-
space and A a uniformly normally elliptic differential operator satisfaying

(t—an(t)) € CP([0,T],L(E)) (66)
for all |a] < m.

a) If f € C?([0,T],B;, (T", E)), then the problem (1) has a unique classi-
cal solution

we C?((0,T],B) (T, E)) N ctr((0,T) ,B; ,(T", E)).

b) If s1 € R, 1 < p1,q¢1 < oo and wy as in Proposition 6.3, then for

each f € Byt (T, B, (T",E)) and w > wq there exists a unique

u € BlFs(T,Bs (T, E)) such that u(t) + A,u(t) = f(t) for almost

P1,91
all t €10,27]. In this sense u is the unique solution for the problem (2).
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Proof. a) This is a consequence of Proposition 6.3, (66), Theorems 1.2 and
1.3 in [9] and Sétzes 4.11 and 4.12 in [8].

b) This follows from Proposition 6.3 and Theorem 5.1 in [3].
o

Remark 6.6. The results of this section are still valid if the operator A(t) de-
fined in (3) is replaced by a Fourier-multiplier operator A(t) = Fr. (a(t, ) Frn),
where {a(t,-) : Z" — L(E); t > 0} is a family of bounded variation symbols
satisfying the condition (64) uniformly.
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