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Abstract. We prove in this paper that a sequence M : Zn → L(E) of bounded
variation is a Fourier multiplier on the Besov space Bs

p,q(Tn, E) for s ∈ R,
1 < p < ∞, 1 ≤ q ≤ ∞ and E a Banach space, if and only if E is a UMD-
space. This extends the Theorem 4.2 in [3] to the n−dimensional case. As
illustration of the applicability of this results we study the solvability of two
abstract Cauchy problems with periodic boundary conditions.
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Resumen. En el presente art́ıculo se prueba que una sucesión M : Zn → L(E)
de variación acotada, es un multiplicador de Fourier sobre el espacio de Besov
Bs

p,q(Tn, E) para s ∈ R, 1 < p <∞, 1 ≤ q ≤ ∞ y E un espacio de Banach, si y
solo si, E es un espacio UMD. Este resultado extiende el Teorema 4.2 en [3] al
caso n-dimensional. Como ilustración de la aplicabilidad de este resultado, se
estudia la solubilidad de dos problemas de Cauchy abstractos con condiciones
de frontera periódicas.

Palabras y frases clave. Multiplicadores de Fourier, śımbolos operador-valuados,
espacios UMD, espacios de Besov toroidales.
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1. Introduction

We are interested in obtaining a Fourier multiplier theorem on the toroidal
or periodic Besov spaces Bsp,q (Tn, E) for s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞
and E a UMD−space, with discrete symbols satisfying a bounded variation
condition similar to the introduced in [11] and [10]. To reach this goal we give
an extension of Theorem 4.2 in [3] and then, as an example of the applicability
of the theory, we consider the following two Cauchy problems:{

∂tu(t, x) +A(t)u(t, x) = f(t, x), t ∈ (0, T ] ,x ∈ Tn,

u(0, x) = u0(x), x ∈ Tn,
(1)

and {
∂tu(t, x) +Aωu(t, x) = f(t, x), t ∈ [0, 2π] , x ∈ Tn,

u(0, x) = u(2π, x), x ∈ Tn,
(2)

where T > 0 and A(t) in (1) is a family of uniformly normal elliptic differential
operators given by

A(t) :=
∑
|α|≤m

aα (t)Dα. (3)

Here m ∈ N, aα ∈ Cb ([0,∞) ,L (E)) for |α| ≤ m, E is a UMD-space and
Dj := −i∂j . For the Problem (2), Aω := ω + A, where A is as in (3) but with
constant coefficients and ω ≥ ω0 with ω0 appropiated. We stress that in [2] the
autors use the evolution equation (1) with n = 3 and A(t) = −∆ to investigate

the concentration of a pool of soluble polymers in a small cubical section [0, 2π]
3

(∼= T3) of a biological cell (see also [7]). We remark that the results apply also in
the case that the in (3) defined operator A(t) is replaced by a Fourier-multiplier
operator A(t) = F−1

Tn
(
a(t, ·)FTn

)
, where {a(t, ·) : Zn → L(E); t ≥ 0} is a

family of bounded variation symbols satisfying a certain uniform boundedness
condition (see (64)).

For E a real (or complex) Banach space, 1 ≤ p < ∞ and n ∈ N let
Lp (Rn, E) and Lp (Tn, E) be the usual Bochner space of p-integrable E-valued
functions on Rn and on the n-dimensional torus Tn respectively. Now, we say
that a function M : Zn → L(E), where L(E) is the Banach space of bounded
linear operators T : E → E endowed with the usual operator norm, is a Fourier
multiplier on Lp (Tn, E) if for each f ∈ Lp (Tn, E) there exists g ∈ Lp (Tn, E)
such that

ĝ (k) = M(k)f̂ (k) for all k ∈ Zn, (4)

where ∧ denotes the Fourier transform. In the same way, we say that M is
a Fourier multiplier on Bsp,q (Tn, E) if for each f ∈ Bsp,q (Tn, E) there exists
g ∈ Bsp,q (Tn, E) such that (4) holds. We recall that E is called a UMD-space,
if M , defined by M(k) := IE for k ≥ 0, and by M(k) = 0 otherwise, is a
Fourier-multiplier on Lp(Tn, E) for some 1 < p <∞.
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In contrast to extensive theory on E−valued distributions in general, and
Fourier multiplier theorems on Lp (Rn, E) and Bsp,q (Rn, E) (and its aplications
to partial differential equations) in particular, the contribution in literature to
E−valued periodic distributions is rather sparse. For example, in [6], [5], [7],
[10] and [11], the classical Fourier multiplier theorems of Marcinkiewicz and
Mikhlin are extended to vector-valued functions and operator-valued multipli-
ers on Zn satisfying certain R-boundedness condition. More specifically, the
authors of those works established Fourier multiplier theorems on Lp (Tn, E)
if 1 < p < ∞, E is a UMD-space and, instead uniform boundedness, a R-
boundedness condition holds. This R-boundedness condition is similar to our
uniform boundedness condition (52). The firth results about the vector-valued
periodic Besov spaces Bsp,q (Tn, E) and Fourier multiplier theorems on these
spaces appeared in [3] but with n = 1. There, in Theorem 4.2, the autors proved
that each sequence M : Z → L (E) satisfaying the variational Marcinkiewicz
condition is a Fourier multiplier on Bsp,q (T, E) if and only if 1 < p < ∞ and
E is a UMD-space. The corresponding result of this theorem for Besov spaces
on the real line has been established by Bu and Kim in [5]. The variational
Marcinkiewicz condition, giving in [3] is equivalent to the bounded variation
condition (52) in case n = 1.

In this paper we obtain (Theorem 5.7) an analogous result to the assertion
of Theorem 4.2 in [3] for the toroidal Besov space Bsp,q (Tn, E). Indeed we prove
that, given s ∈ R, 1 < p < ∞ and 1 ≤ q ≤ ∞, each fuction M : Zn → L(E)
which satisfies (52) is a Fourier multiplier inBsp,q (Tn, E) iff E is a UMD−space.
Of course, the proof of the implication where the UMD property of E is the
thesis, is similar to the case n = 1 in [3]. The hard part of this work was to
show the other direction of the equivalence. With this, we establish results of
existence and uniqueness of solution for the problems (1) and (2), since we
prove that the sequences

Mt,λ(k) := λ (λ+ a(t, k))
−1
, k ∈ Zn,

are of bounded variation, where a(t, ·) is the symbol of A(t).

The plan of the paper is as follows: After some preliminary definitions and
remarks in Section 2, we develop in Section 3 some fundamental elements on
Besov spaces. In particular it is proved in Lemma 3.1 the existence of a resolu-
tion of the unity (very useful in the following sections) and in Theorem 3.7 the
independence of norms on the resolution of unity in the space Bsp,q(Tn, E). In
Section 4 we define discrete Fourier multipliers on Lp(T, E) and Bsp,q(Tn, E),
the UMD-spaces and show in Corollary 4.8 an elementary result to character-
ize UMD-spaces. We prove in Section 5 the main result of the present paper,
the Theorem 5.7. As an example, we prove in Section 6 (Corollary 6.5) the
existence and uniqueness of solution for the problems (1) and (2) in certain
periodic Besov spaces.
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112 B. BARRAZA MART́ıNEZ, I. GONZÁLEZ MART́ıNEZ & J. HERNÁNDEZ MONZÓN

In the next three sections we explain in detail definitions and preliminary
results for this work in order to do more clear the study of the periodic Besov
spaces Bsp,q (Tn, E) and the main result.

2. Functions and distributions on Tn and Zn

In this section we will present some notations, function spaces on the torus Tn
and on the lattice Zn, as well as spaces of periodic and tempered distributions.
Furthermore we will give some results, which are proven in similar way to the
one-dimensional case discussed in [3] (see also [4] and [7]).

Throughout this paper n ∈ N is fixed, N0 := N∪{0}, {δj : j = 1, . . . , n} is
the standard basis of Rn, 〈x〉 := (1+|x|)1/2 for x ∈ Rn, where |x| is the euclidean
norm of x, Br(a) and B̄r(a) denote the open ball and closed ball (respectively)
of radius r > 0 centered at a point a ∈ Rn. E denotes an arbitary Banach space
with norm ‖·‖

E
. If X and Y are local convex spaces, then L(X,Y ) denotes

the space of all linear and continuous applications from X into Y . As usual
L(X) := L(X,X). For α, β ∈ Zn the writing α ≤ β means that αi ≤ βi for
each i = 1, . . . , n, and [α, β] := {k ∈ Zn : α ≤ k ≤ β}. In the following d̄x :=
(2π)−ndx, where dx is the Lebesgue measure. Furthermore Cmc (Rn, E), for
m ∈ N0∪{∞}, denote as usual the set of all m-times continuously differentible
functions ϕ : Rn → E with compact support and we write Cc := C0

c .

Definition 2.1 (The spaces C∞(Tn, E)). We denote with Cm(Tn, E), m ∈
N0, the space of all 2π-periodic (in each component), E-valued and m-times
continuously differentiable functions defined in Rn. The space of test functions
is the space C∞(Tn, E) :=

⋂
m∈N0

Cm(Tn, E).

The topology of C∞(Tn, E) is induced by the contable family of seminorms
{qk; k ∈ N0} given by

qk(ϕ) := max
α∈Nn0
|α|≤k

sup
x∈[0,2π]n

‖∂αϕ(x)‖, ϕ ∈ C∞(Tn, E). (5)

It can be shown that (C∞(Tn, E), {qk; k ∈ N0}) is a Frechet space.

Definition 2.2 (The space of periodic distributions D′(Tn, E)). The space
D′(Tn, E) := L(C∞(Tn), E) is called the space of E-valued periodic (or
toroidal) distributions. The value of u ∈ D′(Tn, E) on a test function ϕ ∈
C∞(Tn) will be denoted by u(ϕ) or 〈u, ϕ〉.

The topology of D′(Tn, E) is the weak-∗-topology, i.e. a sequence (uk)k∈N
in D′(Tn, E) converges to u ∈ D′(Tn, E) iff,

〈uk, ϕ〉 −→
k→∞

〈u, ϕ〉 in E, ∀ϕ ∈ C∞(Tn).

Indeed the topology of D′(Tn, E) is induced by the family of seminorms
{q′ϕ; ϕ ∈ C∞(Tn)} where

q′ϕ(u) := ‖u(ϕ)‖, u ∈ D′(Tn, E), ϕ ∈ C∞(Tn).
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For example, for any ψ ∈ C∞(Tn, E), the map

C∞(Tn) 3 ϕ 7→
∫

[0,2π]n

ϕ(x)ψ(x) d̄x,

defines a E− valued periodic distribution, which we call again ψ.

Definition 2.3. We denote with Lp(Tn, E), 1 ≤ p ≤ ∞, the space of all
strongly measurable 2π-periodic (in each component) functions f : Rn → E,
such that ‖f‖Lp(Tn,E) <∞, where

‖f‖Lp(Tn,E) :=

(∫
[0,2π]n

‖f(x)‖pE d̄x

)1/p

, 1 ≤ p <∞,

and with the usual definition for p =∞.

As the continuous case it holds

Lp(Tn, E) ↪→ D′(Tn, E), ∀ 1 ≤ p ≤ ∞.

Definition 2.4. The space S(Zn, E) consists of all functions ϕ : Zn −→ E for
which the following holds: For each M ∈ R there exists a constant Cϕ,M such
that

‖ϕ(ξ)‖E ≤ Cϕ,M 〈ξ〉
−M , for all ξ ∈ Zn. (6)

The elements of S(Zn, E) are called E−valued rapidly decreasing functions on
Zn. As usual S(Zn) := S(Zn,C).

The topology in S(Zn, E) is given by the contable family of seminorms
{pk : k ∈ N0} defined by

pk(ϕ) := sup
ξ∈Zn
〈ξ〉k ‖ϕ(ξ)‖E , for ϕ ∈ S(Zn, E). (7)

Then a sequence (ϕl)l∈N in S(Zn, E) converges to a function ϕ ∈ S(Zn, E) iff

pk (ϕl − ϕ) −→
l→∞

0 for all k ∈ N0.

The space of E−valued tempered distributions on Zn will be denoted by
S ′(Zn, E) and consists of all linear and continuous mappings from S(Zn) into
E. This distributions space is also endowed with the weak-∗-topology.

Example 2.5. Let φ ∈ Cc(Rn) and f ∈ S ′(Zn, E). Then the mapping φf :
S(Zn) −→ E defining by (φf)(ϕ) := f(φϕ) for all ϕ ∈ S(Zn) belongs to
S ′(Zn, E).
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Definition 2.6. a) For a function f ∈ C∞(Tn, E) we define

(FTnf) (ξ) :=

∫
Tn

e−ix·ξf(x)d̄x =

∫
[0,2π]n

e−ix·ξf(x)d̄x, ξ ∈ Zn. (8)

We call FTnf the toroidal or periodic Fourier transform of f .

b) For g ∈ S(Zn, E) we define(
F−1

Tn g
)

(x) :=
∑
ξ∈Zn

eix·ξg(ξ), x ∈ Tn. (9)

We call F−1
Tn g the inverse periodic Fourier transform of g.

c) Let u ∈ D′(Tn, E). The periodic Fourier transform of u is defined by

(FTnu) (ϕ) := u
(
[F−1

Tn ϕ](−·)
)
, ϕ ∈ S(Zn). (10)

d) For v ∈ S ′(Zn, E) we define the inverse periodic Fourier transform of v
by (

F−1
Tn v

)
(ψ) := v ([FTnψ](−·)) , ψ ∈ C∞(Tn). (11)

Proposition 2.7. The following mappings are linear and continuous: a)
C∞(Tn, E) 3 f 7→ FTnf ∈ S(Zn, E), b) S(Zn, E) 3 g 7→ F−1

Tn g ∈ C∞(Tn, E),
c) D′(Tn, E) 3 u 7→ FTnu ∈ S ′(Zn, E) and d) S ′(Zn, E) 3 v 7→ F−1

Tn v ∈
D′(Tn, E).

Definition 2.8. We say that a function u : Zn −→ E grows at most polyno-
mially at infinity if there exist constans M ∈ R and C ≥ 0 (both depending on
u) such that

‖u(ξ)‖E ≤ C〈ξ〉
M , for all ξ ∈ Zn. (12)

The space of all functions u : Zn −→ E with at most polynomial growth at
infinity will be denoted by O(Zn, E).

Note that if u ∈ S(Zn, E), then u ∈ O(Zn, E). We can also identify the
space O(Zn, E) with the space of all sequences (ak)k∈Zn in E, for which there
are constants C and M such that ‖ak‖

E
≤ C〈k〉M for all k ∈ Zn.

Example 2.9. Let u ∈ S ′(Zn, E). The function defined by ū(ξ) := u(ψξ),
ξ ∈ Zn belongs to O(Zn, E), where ψξ ∈ S(Zn) is defined by

ψξ(k) := δξ,k :=

{
1, if ξ = k,

0, if ξ 6= k.
(13)
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Proposition 2.10. The map O(Zn, E) 3 u 7→ Λu ∈ S ′(Zn, E), where

Λu(ϕ) :=
∑
ξ∈Zn

ϕ(ξ)u(ξ), ∀ϕ ∈ S(Zn), (14)

is bijective.

Remark 2.11. Due to the last proposition, one can identify u ∈ S ′(Zn, E)
with Λū, and so

u(ϕ) = Λū(ϕ) =
∑
ξ∈Zn

ϕ(ξ)u(ψξ), ∀ϕ ∈ S(Zn). (15)

Definition 2.12. For φ ∈ C∞(Tn), u ∈ D′(Tn) and e ∈ E, the tensor products
φ⊗ e and u⊗ e are defined by

(φ⊗ e)(x) := φ(x)e, x ∈ [0, 2π]n,

(u⊗ e)(ϕ) := u(ϕ)e, ϕ ∈ C∞(Tn).

It is straightforward to prove that φ⊗ e ∈ C∞(Tn, E) and u⊗ e ∈ D′(Tn, E).

Proposition 2.13. Let (ak)k∈Zn ⊂ E be a sequence with at most polynomial
growth at infinity (i.e. [k 7→ ak] ∈ O(Zn, E)), then the mapping g : C∞(Tn)→
E, defined by

g(ϕ) :=
∑
k∈Zn

(FTnϕ) (k)ak, ϕ ∈ C∞(Tn), (16)

belongs to D′(Tn, E). Furthermore, for all g ∈ D′(Tn, E) it holds

g(ϕ) =
∑
k∈Zn

(FTnϕ) (k)g(ek) (ϕ ∈ C∞(Tn)), (17)

where ek(x) := eik·x for all x ∈ Rn.

It follows from the last proposition that for all g ∈ D′(Tn, E),

g =
∑
k∈Zn

ek ⊗ ĝ(k) in D′(Tn, E), (18)

where ĝ(k) := g(e−k), k ∈ Zn, are call theFourier coefficients of g. To see this

fact note that ek(ϕ) =

∫
Tn

eix·kϕ(x) d̄x = (FTnϕ) (−k) for all ϕ ∈ C∞(Tn).

We finish this section with some results, which we will need for the following
one. Before, note that

ek(e−ξ) =

∫
[0,2π]n

ei(k−ξ)·x d̄x = δξ,k, for all ξ, k ∈ Zn.
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Lemma 2.14. If (ak)k∈Zn ∈ O(Zn, E), then
∑
k∈Zn ek ⊗ ak ∈ D′(Tn, E).

Furthermore, if (bk)k∈Zn ∈ O(Zn, E),∑
k∈Zn

ek ⊗ ak =
∑
k∈Zn

ek ⊗ bk in D′(Tn, E)⇐⇒ ak = bk for each k ∈ Zn. (19)

Proof. Due to e−k(ϕ) = (FTnϕ) (k) for all ϕ ∈ C∞(Tn), it follows from Propo-
sition 2.13 that the mapping

ϕ 7→
∑
k∈Zn

(FTnϕ) (k)a−k =
∑
k∈Zn

ek(ϕ)ak

belongs to D′(Tn, E), i.e. there exists some g ∈ D′(Tn, E) such that

g =
∑
k∈Zn

ek ⊗ ak.

Now, if
∑
k∈Zn ek ⊗ ak =

∑
k∈Zn ek ⊗ bk, then it holds for each ξ ∈ Zn that

aξ =
( ∑
k∈Zn

ek ⊗ ak
)

(e−ξ) =
( ∑
k∈Zn

ek ⊗ bk
)

(e−ξ) = bξ.

The reciprocal is trivial. �X

As a direct consequence of the last lemma and the equalities (17) and (18)
we have that:

Theorem 2.15. Let f, g ∈ D′(Tn, E) and (ak)k∈Zn ∈ O(Zn, E).

a) f = g ⇐⇒ f̂(k) = ĝ(k) for all k ∈ Zn.

b) f =
∑
k∈Zn ek ⊗ ak ⇐⇒ f̂(k) = ak for all k ∈ Zn.

3. The periodic Besov spaces Bsp,q (Tn, E)

A sequence φ := (φj)j∈N0 ⊂ S(Rn) is called a resolution of unity , denoted
(φj)j∈N0

∈ Φ(Rn), if it satisfies the following three conditions:

(1) supp(φ0) ⊂ Ω0 := B2(0) and

supp(φj) ⊂ Ωj :=
{
x ∈ Rn : 2j−1 ≤ |x| ≤ 2j+1

}
, j ∈ N. (20)

(2)
∑
j≥0

φj(ξ) = 1 for all ξ ∈ Rn.

(3) For each α ∈ Nn0 there exists a constant Cα > 0 such that

|(∂αφj)(ξ)| ≤ Cα2−j|α|χΩj (ξ), for all ξ ∈ Rn and j ∈ N0,

where χΩj denotes the characteristic function on Ωj .
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The set Φ(Rn) is not empty as it is shown in the following generalization of
Lemma 4.1 in [3].

Lemma 3.1. There exists a sequence (φj)j∈N0
∈ Φ(Rn) such that

a) φj ≥ 0 for all j ∈ N0,

b) supp(φj) ( Ωj for all j ∈ N0,

c) φj(ξ) = 1 if |ξ| ∈ [7 · 2j−3, 3 · 2j−1] and j ≥ 3,

d) |ξ| ∈ [7 · 2j−3, 3 · 2j−1] and j ≥ 3 implies ξ /∈ supp(φj−1) ∩ supp(φj+1).

Proof. Let ϕ0 ∈ S(Rn) with 0 ≤ ϕ0 ≤ 1, supp(ϕ0) ( B2(0) and ϕ0(ξ) = 1, if
|ξ| ≤ 13

8 . Let ϕ be another function in S(Rn) such that 0 ≤ ϕ ≤ 1, supp(ϕ) ({
x ∈ Rn : 3

2 ≤ |x| ≤
7
2

}
and ϕ(ξ) = 1, if 13

8 ≤ |ξ| ≤
13
4 . Now, for j ∈ N and

ξ ∈ Rn, define

ϕj(ξ) := ϕ

(
ξ

2j−1

)
and Ψ(ξ) :=

∞∑
k=0

ϕk(ξ).

Then it is clear that for j = 1, 2, . . . it holds

supp(ϕj) ⊂ Kj :=
{
ξ ∈ Rn : 3 · 2j−2 ≤ |ξ| ≤ 7 · 2j−2

}
, (21)

ϕj(ξ) = 1, if |ξ| ∈ [13·2j−4, 13·2j−3]. (22)

Due to Kj ∩Kj+2 = ∅ and ϕj(13 ·2j−3) = 1 = ϕj+1(13 ·2j−3) for each j ∈ N0,
we have that

supp (ϕj) ∩ supp (ϕj+1) 6= ∅ and supp (ϕj) ∩ supp (ϕj+2) = ∅, (23)

for all j ∈ N0.

Assertion: For each ξ ∈ Rn, there exists some j ∈ N0 such that

Ψ(ξ) =

1∑
`=−1

ϕj+`(ξ) ≥ 1, (24)

where ϕ−1 := 0. In fact: Let ξ ∈ Rn. Because R+
0 = [0, 13/8]∪

⋃∞
j=1[13·2j−4, 13·

2j−3], then |ξ| ≤ 13/8 or 13 · 2j−4 ≤ |ξ| ≤ 13 · 2j−3 for some j ∈ N. From this,
(22) and (23) it follows clearly (24).

Now, define for j = 0, 1, 2, . . .

φj(ξ) :=
ϕj(ξ)

Ψ(ξ)
, for all ξ ∈ Rn. (25)

By direct calculation we get that (φ)j∈N0
∈ Φ(Rn) and it satisfies a)− d). �X
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In the continuous case (in Rn) it can be shown that if (φj) ∈ Φ(Rn), then
there exists a constant Cn > 0 such that∥∥F−1

Rn φj
∥∥
L1(Rn)

≤ Cn, for all j ∈ N0, (26)

where F−1
Rn φj is the inverse Fourier transform (in Rn) of φj .

Theorem 3.2. Let φ ∈ Cc(Rn) and f ∈ D′(Tn, E). Then

F−1
Tn (φFTnf) =

∑
k∈Zn

ek ⊗ φ(k)f̂(k). (27)

Proof. From Example 2.5 and Remark 2.11 it follows for φ ∈ Cc(Rn) and
f ∈ D′(Tn, E) that[

F−1
Tn (φFTnf)

]̂
(k) =

(
F−1

Tn (φFTnf)
)
(e−k) = (φFTnf)((FTne−k)(−·))

=
∑
ξ∈Zn

φ(ξ)(FTnf)(ψξ)(FTne−k)(−ξ)

=
∑
ξ∈Zn

φ(ξ)(FTnf)(ψξ)δξ,k = φ(k)(FTnf)(ψk)

= φ(k)f
(
[F−1

Tn ψk](−·)
)

= φ(k)f(e−k) = φ(k)f̂(k).

That is, [
F−1

Tn (φFTnf)
]̂(k) = φ(k)f̂(k) for all k ∈ Zn, (28)

and therefore (27) holds, due to (18). �X

In similar way to the proof of Proposition 2.2 in [3], we obtain the following
result.

Proposition 3.3. For each φ ∈ C∞c (Rn) and 1 ≤ p ≤ ∞, it holds∥∥∥∥ ∑
k∈Zn

ek ⊗ φ(k)f̂(k)

∥∥∥∥
Lp(Tn,E)

≤
∥∥F−1

Rn φ
∥∥
L1(Rn)

‖f‖Lp(Tn,E) , (29)

for all f ∈ C∞(Tn, E).

Definition 3.4. A function f : Rn −→ E is called an E−trigonometric poly-
nomial, if there exist α, β ∈ Zn with α ≤ β and (xk)k∈[α,β] ⊂ E such that

f =
∑

k∈[α,β]

ek ⊗ xk, (30)

where ek(x) := eik·x for all x ∈ Rn.
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We can write the E− trigonometric polynomial f in (30) as

f =
∑
k∈Zn

ek ⊗ xk,

with xk := 0 for k /∈ [α, β], or in the form

f =
∑

k∈[−N,N ]n

ek ⊗ xk,

for some N ∈ N.

We denote the class of all E−valued trigonometric polynomials on Tn by
T (Tn, E). It is clear that T (Tn, E) ⊂ C∞(Tn, E).

Remark 3.5. Due to Theorem 2.15 b) if f =
∑
k∈[α,β] ek ⊗ xk ∈ T (Tn, X),

then

f̂(k) =

{
xk, if k ∈ [α, β],

0, otherwise,

when f is seen as a distribution in D′(Tn, E).

Definition 3.6. Let 1 ≤ p, q ≤ ∞, s ∈ R and φ := (φj)j∈N0
∈ Φ(Rn). We

define the E−valued and n−dimensional toroidal or periodic Besov space by

Bs,φp,q (Tn, E) :=
{
f ∈ D′(Tn, E) : ‖f‖Bs,φp,q := ‖f‖Bs,φp,q (Tn,E) <∞

}
,

where

‖f‖Bs,φp,q :=



( ∑
j≥0

2sjq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)f̂(k)
∥∥∥q
Lp(Tn,E)

)1/q

, if 1 ≤ q <∞,

sup
j∈N0

2sj
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)f̂(k)
∥∥∥
Lp(Tn,E)

, if q =∞,

(31)

Note that for f ∈ D′(Tn, E), (φj)j∈N0 ∈ Φ(Rn) and j ≥ 0, F−1
Tn (φjFTnf)

(27)
=∑

k∈Zn ek⊗φj(k)f̂(k) is a trigonometric polynomial. Furthermore Bs,φp,q (Tn, E)
is a Banach space with the norm defined in (31).

In the following theorem we prove that the E−valued and n−dimensional
periodic Besov spaces are independent on φ ∈ Φ(Rn).

Theorem 3.7. Let φ := (φj)j∈N0
, ϕ := (ϕj)j∈N0

in Φ(Rn). Then the norms
‖·‖Bs,φp,q (Tn,E) and ‖·‖Bs,ϕp,q (Tn,E) are equivalent.
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Proof. We must prove that there are constants c, C > 0 such that

c ‖f‖Bs,ϕp,q (Tn,E) ≤ ‖f‖Bs,φp,q (Tn,E) ≤ C ‖f‖Bs,ϕp,q (Tn,E) , (32)

for all f ∈ Bs,ϕp,q (Tn, X). But, due to the transitivity of ≤, it suffices to show
(32) for φ as in Lemma 3.1. We will show this for 1 ≤ p <∞, the case p =∞
is proved in similar way. Let 1 ≤ p < ∞, ϕ ∈ Φ(Rn) and φ as in Lemma 3.1.
Since supp(φj) ∩ supp(φj+2) = ∅ for all j ∈ N0,

φj(x) = φj(x)

1∑
l=−1

ϕj+l(x), ∀x ∈ Rn and j ∈ N0, (33)

where φ−1 = ϕ−1 := 0. From (|a| + |b|)p ≤ cp(|a|p + |b|p) for all a, b ∈ C,
Proposition 3.3 and (26) it follows that

‖f‖q
Bs,φp,q

(33)
=
∑
j≥0

2jsq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)

1∑
l=−1

ϕj+l(k)f̂(k)
∥∥∥q
Lp(Tn,E)

≤ cq
1∑

l=−1

∑
j≥0

2jsq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)ϕj+l(k)f̂(k)
∥∥∥q
Lp(Tn,E)

(28)
= cq

1∑
l=−1

∑
j≥0

2jsq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)
(
F−1

Tn (ϕj+lFTnf)
)∧

(k)
∥∥∥q
Lp(Tn,E)

≤ cq
1∑

l=−1

∑
j≥0

2jsq
∥∥F−1

Rn φj
∥∥q
L1(Rn)

∥∥F−1
Tn (ϕj+lFTnf)

∥∥q
Lp(Tn,E)

≤ cqcn
1∑

l=−1

∑
j≥0

2jsq
∥∥F−1

Tn (ϕj+lFTnf)
∥∥q
Lp(Tn,E)

= cqcn

1∑
l=−1

∑
j≥0

2jsq
∥∥∥ ∑
k∈Zn

ek ⊗ ϕj+l(k)f̂(k)
∥∥∥q
Lp(Tn,E)

. (34)

Now, because∑
j≥0

2jsq
∥∥∥ ∑
k∈Zn

ek ⊗ ϕj±1(k)f̂(k)
∥∥∥q
Lp(Tn,E)

≤ 2∓jsq
∑
j≥0

2jsq
∥∥∥ ∑
k∈Zn

ek ⊗ ϕj(k)f̂(k)
∥∥∥q
Lp(Tn,E)

, (35)

then
‖f‖q

Bs,φp,q (Tn,E)
≤ cqcn(2π)−n(1 + 2sq + 2−sq) ‖f‖qBs,ϕp,q (Tn,E) . (36)

Exchanging the roles of φ and ϕ in the expressions (33) - (36), we have that
(32) follows from (36) with φ as in Lemma 3.1. �X
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Due to the last theorem we will write Bsp,q(Tn, E) instead Bs,φp,q (Tn, E).
From now on, Bsp,q(Tn, E) will be considered with the resolution of the unity
of Lemma 3.1.

Remark 3.8. Let s ∈ R, 1 ≤ p, q ≤ ∞ and x ∈ E fixed. Note that the function
f : Tn → E, defined by f := e0 ⊗ x, with e0(y) = 1 for all y ∈ Rn, satisfies
(due to Remark 3.5)∑

j≥0

2sjq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)f̂(k)
∥∥∥q
Lp(Tn,E)

=
∑
j≥0

2sjq |φj(0)|q ‖x‖qE

= |φ0(0)|q ‖x‖qE =: Cq0 ‖x‖
q
E , (37)

if q < ∞. Similar result holds for q = ∞. Because of (φj)j∈N0
∈ Φ(Rn), one

obtains with this idea that T (Tn, E) ⊂ Bsp,q(Tn, E).

4. Discrete Fourier multipliers

Definition 4.1. A function M : Zn → L(E,F ) is called a discrete operator-
valued (Bsp,q−)Fourier multiplier from Bsp,q(Tn, E) to Bsp,q(Tn, F ) if for each

f ∈ Bsp,q(Tn, E) there exists g ∈ Bsp,q(Tn, F ) such that ĝ(k) = M(k)f̂(k) for
all k ∈ Zn. If E = F , we will say that M is a discrete Fourier multiplier on
Bsp,q(Tn, E).

Theorem 4.2. Let M : Zn −→ L(E,F ) be a function. Then the following
assertion are equivalent:

a) M is a discrete Bsp,q−Fourier multiplier.

b) There exists a constant C > 0 such that∥∥∥ ∑
k∈Zn

ek ⊗M(k)f̂(k)
∥∥∥
Bsp,q(Tn,F )

≤ C ‖f‖Bsp,q(Tn,E) , (38)

for all f ∈ Bsp,q(Tn, E).

Proof. a)⇒ b)] Let M : Zn → L(E,F ) be a discrete Bsp,q−Fourier multiplier.

For f =
∑
k∈Zn ek ⊗ f̂(k) ∈ Bsp,q(Tn, E), define

SM (f) :=
∑
k∈Z

ek ⊗M(k)f̂(k). (39)

Due to the hypothesis there exists a g ∈ Bsp,q(Tn, F ) such that ĝ(k) = M(k)f̂(k)
far all k ∈ Zn. Therefore, due to (18) we have

SM (f) =
∑
k∈Z

ek ⊗ ĝ(k) = g,
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i.e. SM is a well defined application from Bsp,q(Tn, X) into Bsp,q(Tn, F ).
Now, we will prove that SM is a closed linear operator. Let (fm)m∈N0

=(∑
k∈Zn ek ⊗ f̂m(k)

)
m∈N0

⊂ Bsp,q(Tn, E) such that

fm −−−−→
m→∞

f and SMfm −−−−→
m→∞

h

in Bsp,q(Tn, E) and Bsp,q(Tn, F ), respectively. Since

2sjq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)(fm − f )̂ (k)
∥∥∥
Lp(Tn,E)

≤ ‖fm − f‖Bsp,q(Tn,E) −−−−→m→∞
0

in C, then ∑
k∈Zn

ek ⊗ φj(k)(fm − f )̂ (k) −−−−→
m→∞

0 in Lp (Tn, E) ,

for each j ∈ N0. Because of Lp (Tn, E) ↪→ D′ (Tn, E), it holds for each l ∈ Zn
that

φj(l)(fm − f )̂ (l) =
∑
k∈Zn

ek(e−l)φj(k)(fm − f )̂ (k) −−−−→
m→∞

0 in E.

Then
φj(l)f̂m(l) −−−−→

m→∞
φj(l)f̂(l) in E, ∀ l ∈ Zn and j ∈ N0. (40)

In the same way one obtains that

φj(l)M(l)f̂m(l) −−−−→
m→∞

ĥ(l) in F, ∀ l ∈ Zn and j ∈ N0. (41)

Because M(k) ∈ L(E,F ), it follows from (40) that for each k ∈ Zn

φj(k)M(k)f̂m(k) −−−−→
m→∞

φj(k)M(k)f̂(k) in F.

Therefore∑
k∈Zn

ek ⊗ φj(k)M(k)f̂m(k)
F−−−−→

m→∞

∑
k∈Zn

ek ⊗ φj(k)M(k)f̂(k),

because these sums are finite. In the same way it follows from (41) that∑
k∈Zn

ek ⊗ φj(k)M(k)f̂m(k)
F−−−−→

m→∞

∑
k∈Zn

ek ⊗ φj(k)ĥ(k).

Then ∑
k∈Zn

ek ⊗ φj(k)M(k)f̂(k) =
∑
k∈Zn

ek ⊗ φj(k)ĥ(k), for j ∈ N0
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and thus

‖SMf − h‖qBsp,q(Tn,F )

=
∑
j≥0

2sjq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k) (SMf − h)
∧

(k)
∥∥∥q
Lp(Tn;F )

=
∑
j≥0

2sjq
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)ŜMf(k)−
∑
k∈Zn

ek ⊗ φj(k)ĥ(k)
∥∥∥q
Lp(Tn;F )

= 0,

i.e. SMf = h, and hence SM is a closed linear operator. Thus, by the closed
graph theorem, SM is bounded and consequently (38) holds.

b) ⇒ a)] Suppose that (38) holds for each f ∈ Bsp,q(Tn, E). From this and
(37) there exists a constant c > 0 such that

‖M(k)‖L(E,F ) ≤ c for all k ∈ Zn.

Let f ∈ Bsp,q(Tn, E). Because f ∈ D′(Tn, E), there exist constants d > 0 and
N ∈ N such that∥∥M(k)f̂(k)

∥∥
F
≤ cd qN (e−k) = cd max

α∈Nn0
|α|≤N

sup
x∈[0,2π]n

|(−i)|α|kαe−ikx|

≤ cd|k|N ≤ C〈k〉N ∀k ∈ Zn.

Therefore (M(k)f̂(k))k∈Zn ∈ O(Zn, F ). Thus g :=
∑
k∈Zn ek ⊗M(k)f̂(k) ∈

D′(Tn, F ), due to Proposition 2.13, and thereby ĝ(k) = M(k)f̂(k), due to
Theorem 2.15. Furthermore, g ∈ Bsp,q(Tn, F ) because of (38). Consequently

M : Zn → L(E,F ) is a Bsp,q−Fourier multiplier. �X

Remark 4.3. i) In the proof of Theorem 4.2 it was shown that M : Zn →
L(E) is a uniformly bounded function, if M is a discrete Bsp,q−Fourier
multiplier.

ii) If M : Zn → L(E) is a uniformly bounded function, then the operator
SM : D′(Tn, E) −→ D′(Tn, E) defined by

SMf :=
∑
k∈Zn

ek ⊗M(k)f̂(k) (42)

is well defined and

(SMf )̂ (k) = M(k)f̂(k) for all k ∈ Zn,

as shown in the proof of b)⇒ a) in the previous theorem.
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A definition of Lp-Fourier multiplier, equivalent to the definition given in
the introduction, is the following (see [7], Lemma 3.10):

Definition 4.4. Let 1 ≤ p < ∞. A uniformly bounded function M : Zn →
L(E) is called a discrete Lp− Fourier multiplier, if there exists a constant C > 0
such that

‖SMf‖Lp(Tn,E) ≤ C ‖f‖Lp(Tn,E) , ∀ f ∈ T (Tn, E), (43)

where SM is defined by (42). In this case SM ∈ L(Lp (Tn, E)), due to the
density of T (Tn, X) in Lp (Tn, E) (see [7], Proposition 2.4.). If M a discrete

Lp− Fourier multiplier, we will write M ∈ M̃p(E) and ‖M‖p := ‖M‖M̃p

denotes the smallest constant C such that (43) holds.

Theorem 0.1 in [11] motivates the following definition of UMD−spaces.

Definition 4.5. E is called a UMD−space, if the map R : Zn → L(E) defined
by

R(k) :=

{
IE , if k ≥ 0,

0, otherwise,
(44)

is a discrete operator-valued Lp−Fourier multiplier for some (or equivalently,
for all) p ∈ (1,∞), where IE is the identity operator in E. We call SR the
operator-valued n−dimensional Riesz proyection.

Remark 4.6. It is easy to prove that R is a discrete Lp−Fourier multiplier if
and only if, the map N : Zn → L(E) defined by

N(k) :=

{
IE , if k ≤ 0,

0, otherwise,
(45)

is also a discrete Lp-Fourier multiplier.

Theorem 4.7. Let M, Ml ∈ M̃p(E), l = 1, 2, then:

a) M1 +M2 ∈ M̃p(E) with SM1+M2 = SM1 + SM2 .

b) M1 ·M2 ∈ M̃p(E) with SM1·M2 = SM1 ◦SM2 , where M1 ·M2 : Zk → L(E)
is given by (M1 ·M2)(k) := M1(k) ◦M2(k) for k ∈ Zn.

c) For each α ∈ Zn fixed, the application Mα : Zn → L(E) defined by

Mα(k) := M(k − α) for all k ∈ Zn, (46)

is a discrete Lp−Fourier multiplier with ‖Mα‖p = ‖M‖p.
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Proof. The proof of a) and b) follow directly from the definition. For the proof
of c) let α ∈ Zn fixed and f =

∑
k∈Zn ek ⊗ xk in T (Tn, E). Then

‖SMα
f‖pLp(Tn,E)

=

∫
Tn

∥∥∥ ∑
k∈Zn

eik·xM(k − α)xk

∥∥∥p
E
d̄x =

∫
Tn

∥∥∥ ∑
ξ∈Zn

ei(ξ+α)·xM(ξ)xξ+α

∥∥∥p
E
d̄x

yξ:=xξ+α
=

∫
Tn

∥∥∥ ∑
ξ∈Zn

eiξ·xM(ξ)yξ

∥∥∥p
E
d̄x =

∥∥∥SM( ∑
ξ∈Zn

eξ ⊗ yξ
)∥∥∥p
Lp(Tn,E)

≤ ‖M‖pp
∥∥∥ ∑
ξ∈Zn

eξ ⊗ yξ
∥∥∥p
Lp(Tn,E)

= ‖M‖pp
∥∥∥ ∑
ξ+α∈Zn

eξ+α ⊗ xξ+α
∥∥∥p
Lp(Tn,E)

= ‖M‖pp
∥∥∥ ∑
k∈Zn

ek ⊗ xk
∥∥∥p
Lp(Tn,E)

.

From this follows that Mα ∈ M̃p(E) with ‖Mα‖p ≤ ‖M‖p. In the same way

one proves that ‖M‖p ≤ ‖Mα‖p. �X

Corollary 4.8. E is a UMD-space if and only if for each p ∈ (1,∞) there
exists a constant Cp > 0 such that for

f =
∑

k∈[−K,K]n

ek ⊗ xk ∈ T (Tn, E) (K ∈ N0)

there exists some β ∈ Zn which satisfies βj ≥ K (for all j = 1, . . . , n) and∥∥∥ ∑
k∈[0,β]

ek ⊗ xk
∥∥∥
Lp(Tn,E)

≤ Cp ‖f‖Lp(Tn,E). (47)

Proof. ⇒] Let E be a UMD−space, 1 < p <∞ and

f =
∑

k∈[−K,K]n

ek ⊗ xk ∈ T (Tn, E) (K ∈ N0).

Then R andN , defined as in (44) and (45), respectively, are Lp−discrete Fourier
multipliers. Due to Theorem 4.7 c), Rα and Nβ are also Lp−discrete Fourier
multipliers for all α, β ∈ Zn. We set xk := 0 for k /∈ [−K,K]n. Then for all
α, β ∈ Zn with α ≤ β it holds∥∥∥ ∑

k∈[α,β]

ek ⊗ xk
∥∥∥
Lp(Tn,E)

=
∥∥∥ ∑
k∈Zn

ek ⊗Nβ(k)Rα(k)xk

∥∥∥
Lp(Tn,E)

=
∥∥∥SNβ ·Rα ∑

k∈Zn
ek ⊗ xk

∥∥∥
Lp(Tn,E)
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≤ ‖Nβ ·Rα‖p
∥∥∥ ∑
k∈Zn

ek ⊗ xk
∥∥∥
Lp(Tn,E)

≤ ‖N‖p ‖R‖p ‖f‖Lp(Tn,E), (48)

due to Theorem 4.7.

⇐] Suppose that for 1 < p < ∞ there exists Cp > 0 such that for each
f =

∑
k∈[−K,K]n ek ⊗ xk ∈ T (Tn, E) we can find β ∈ Zn with βj ≥ K for all

j = 1, . . . , n and such that (47) holds. Then

‖SRf‖Lp(Tn,E) =
∥∥∥ ∑
k∈Zn

ek ⊗R(k)xk

∥∥∥
Lp(Tn,E)

=
∥∥∥ ∑
k∈[0,K]n

ek ⊗ xk
∥∥∥
Lp(Tn,E)

=
∥∥∥ ∑
k∈[0,β]

ek ⊗ xk
∥∥∥
Lp(Tn,E)

(47)

≤ Cp ‖f‖Lp(Tn,E) ,

for all f =
∑
k∈[−K,K]n ek ⊗ xk ∈ T (Tn, E), and thus the operator vector-

valued n−dimensional Riesz proyection is bounded in Lp (Tn, E). Therefore E
is a UMD−space. �X

5. Multipliers of bounded variation; main result

Definition 5.1. Let G ⊂ Zn. For a function M : Zn → L(E,F ) let the
restriction of M to G be defined by

MG(k) :=

{
M(k), if k ∈ G,
0, if k /∈ G.

In particular MZn = M . Let α, β ∈ (Z∪{−∞,∞})n with α ≤ β. For the
standard basis of Rn {δj : j = 1, . . . , n}, the difference operators ∆δj are defined
by

∆δjM[α,β](x) :=

{
M[α,β](x)−M[α,β](x− δj), if xj 6= αj ,

0, if xj = αj .

Moreover, let ∆0M[α,β] := M[α,β],

∆γM[α,β] := ∆γ1δ1 · · ·∆γnδnM[α,β], for γ = (γ1, . . . , γn) ∈ {1, 0}n,

and let the variation of M on [α, β] be defined by

Var
[α,β]

M[α,β] :=
∑

ξ∈[α,β]

∥∥∆γξM[α,β](ξ)
∥∥ , (49)

where γξ = (γξ1 , . . . , γξn) with

γξj :=

{
1, if ξj 6= αj ,

0, if ξj = αj .
(50)
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Note that if α, β ∈ Zn with α ≤ β and M : Zn → L(E,F ) is a function such
that M[α,β] = 0 in Zn, then ∆δjM[α,β](k) = 0 for all k ∈ Zn and j = 1, . . . , n,
and in consequence Var

[α,β]
M[α,β] = 0.

Remark 5.2. Using properties of telescopic sums it can be seen that for each
β ∈ Zn it holds

M(β) =
∑

ξ∈[α,β]

∆γξM[α,β](ξ) (51)

for all α ∈ Zn with α ≤ β.

Definition 5.3. The coarse decomposition of Zn is defined by: D0 := {0} and
for d ∈ N,

Dd :=
{
k ∈ Zn : |k1|, . . . , |kl−1| < 2r+1, 2r ≤ |kl| < 2r+1, |kl+1|, . . . , |kn| < 2r

}
,

where d = nr+ l with r ∈ N0 and l ∈ {1, 2, . . . , n}. For d ∈ N, Dd = Dd+ ∪Dd−

where Dd± := {k ∈ Dd : ±kl > 0}. Furthermore

Var
Dd

M := Var
Dd+

MDd+
+ Var
Dd−

MDd−
(d ∈ N) and

Var
D0

M := Var
D0

MD0 .

Note that for d ∈ N and Dd± as in the above definition, Dd± = [αd± , βd± ] for
some αd± , βd± ∈ Zn (for example, αd+ =

(
−2r+1, . . . ,−2r+1, 2r,−2r, . . . ,−2r

)
,

where 2r is in the l−th position). Therefore Var
Dd±

MDd±
make sense.

Now, the variational Marcinkiewicz condition, given in [3] by

sup
k∈Z
‖Mk‖+ sup

j≥0

∑
2j≤|k|≤2j+1

‖Mk+1 −Mk‖ <∞,

will be generalised by the following definition.

Definition 5.4. Let M : Zn → L(E,F ) be uniformly bounded. M is called a
function of bounded variation with respect to the coarse decomposition of Zn,
if there exists a positive constant C such that

sup
d∈N0

Var
Dd

M < C. (52)

Lemma 5.5. Let j ∈ N0. Then the function M := Mj : Zn → L(E) defined by

M(k) :=

{
IE , if k = k1δ1 with k1 ∈

[
7 · 2j−3, 2j

]
and j ≥ 3,

0, otherwise
(53)

is of bounded variation with respect to the coarse decomposition of Zn.
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Proof. By definition M : Zn → L(E) satisfies ‖M(k)x‖ ≤ ‖x‖ for all k ∈ Zn
and x ∈ E. Therefore {M(k) : k ∈ Zn} ⊂ L(E) is uniformly bounded with

‖M(k)‖L(E) ≤ 1 for all k ∈ Zn. (54)

We will show that M satisfies (52). In fact, Var
D0

M = 0 because MD0 = 0. Now,

we fix d ∈ N with d = nj + l, j ∈ N0 and l ∈ {1, . . . , n}. Due to (53), we have:

i) If j < 3, then MDd = 0 and therefore Var
Dd

M = 0.

ii) From j ≥ 3 and l ∈ {2, . . . , n} it follows MDd = 0 because if k ∈ Dd,
then kl 6= 0 and hence k 6= k1δ1 which yields MDd(k) = 0. Moreover, by
definition MDd(k) = 0 if k /∈ Dd. Therefore Var

Dd
M = 0.

iii) If j ≥ 3 and l = 1, then for each k ∈ Zn it holds that

MDd(k) =

{
IE , if k = 2jδ1,

0, otherwise.

It follows that MDd−
= MDd+\{2jδ1} = 0, and then

Var
Dd

M =
∑

k∈Dd+

∥∥∆γkMDd+
(k)
∥∥
L(E)

=
∥∥∆

γ2jδ1M(2jδ1)
∥∥
L(E)

.

Since Dd+ = [αd+ , βd+ ] with αd+ = (2j ,−2j , . . . ,−2j), we have

Var
Dd

M =
∥∥∆

γ2jδ1MDd+
(2jδ1)

∥∥
L(E)

=
∥∥∆0∆δ2 · · ·∆δnMDd+

(2jδ1)
∥∥
L(E)

=
∥∥∆δ2 · · ·∆δnMDd+

(2jδ1)
∥∥
L(E)

=
∥∥∆δ2 · · ·∆δn−1

(
MDd+

(2jδ1)−MDd+
(2jδ1 − δn)︸ ︷︷ ︸

=0

)∥∥
L(E)

=
∥∥∆δ2 · · ·∆δn−1MDd+

(2jδ1)
∥∥
L(E)

= · · · =
∥∥M(2jδ1)

∥∥
L(E)

≤ 1,

due to (54).

In consequence M : Zn → L(E) defined by (53) is of bounded variation with
respect to the coarse decomposition of Zn. �X

Lemma 5.6. Let (φj)j≥0 be as in Lemma 3.1.

a) For j ≥ 1 it holds

supp(φj) ∩ Zn ⊂
nj+n⋃

d=n(j−m−1)+1

Dd =: Dn
j , (55)

where D−d := D0 for d ∈ N and m is the smallest non-negative integer
satisfying

√
n ≤ 2m.
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b) supp(φ0) ∩ Zn ⊂
n⋃
d=0

Dd.

Proof. a) Let k ∈ Zn ∩ supp(φj) with j ≥ 1, then 2j−1 < |k| < 2j+1. If
k /∈ Dn

j , k ∈ Dd with d = nr + l for some l ∈ {1, . . . , n} and some r ≥ j + 1 or
r ≤ j −m− 2. In the first case it holds

|k| ≥ |kl| ≥ 2r ≥ 2j+1,

which contradicts that |k| < 2j+1. Now, we consider the second case, i.e. k ∈ Dd

with d = nr+ l for some l ∈ {1, . . . , n} and some r ≤ j −m− 2. If r ≥ 0, then
|ks| < 2r+1 ≤ 2j−m−1 for all s ∈ {1, . . . , n}, and thus

|k| ≤
√
n|k|∞ ≤

√
n2j−m−1 ≤ 2j−1,

which now is in contradiction with |k| > 2j−1. The same happens when r < 0
since D−d = D0. In consequence k ∈ Dd with d = nr+ l for some l ∈ {1, . . . , n}
and some r ∈ {j −m− 1, . . . , j}.

b) If 0 6= k = (k1, . . . , kn) ∈ supp(φ0) ∩ Zn, then |ks| < 2 for all s ∈
{1, 2, . . . , n} and therefore k ∈ Dl for some l ∈ {1, 2, . . . , n}, since otherwise
there would be some r ∈ N and s ∈ {1, 2, . . . , n} such that |ks| ≥ 2r. Then we
have that

[supp(φ0) ∩ Zn]\{0} ⊂
n⋃
d=1

Dd.

From this follows b), due to 0 ∈ D0. �X

Now, we will prove the main result of this paper. But before note that∑
k∈[α,β]

∑
l∈[α,k]

albk =
∑

k∈[α,β]

ak
∑
l∈[k,β]

bl, (56)

for all α, β ∈ Zn with α ≤ β.

Theorem 5.7. Let s ∈ R, 1 < p < ∞ and 1 ≤ q ≤ ∞. Each function
M : Zn → L (E) of bounded variation with respect to the coarse decomposition
of Zn is a Fourier multiplier on Bsp,q(Tn, E) if and only if E is a UMD-space.

Proof. ⇐] Let E be a UMD-space. Suppose that M : Zn → L (E) satisfies
(52), f ∈ Bsp,q(Tn, E) and let (φj)j≥0 be as in Lemma 3.1. Due to Lemma 5.6
we obtain that for j ≥ 1 and x ∈ Tn fixed it holds∥∥∥ ∑

k∈Zn
eik·xφj(k)M(k)f̂(k)

∥∥∥
E

=
∥∥∥ ∑
k∈supp(φj)∩Zn

eik·xφj(k)M(k)f̂(k)
∥∥∥
E
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≤
n(j+1)∑

d=n(j−m−1)+1

∥∥∥ ∑
k∈Dd

eik·xφj(k)M(k)f̂(k)
∥∥∥
E

≤
n(j+1)∑

d=n(j−m−1)+1

(∥∥∥ ∑
k∈Dd+

eik·xφj(k)M(k)f̂(k)
∥∥∥
E

+
∥∥∥ ∑
k∈Dd−

eik·xφj(k)M(k)f̂(k)
∥∥∥
E

)
.

(57)

Now we consider the sum over Dd+ := [α
d+
, β

d+
].∥∥∥ ∑

k∈Dd+

eik·xφj(k)M(k)f̂(k)
∥∥∥
E

(51)
=
∥∥∥ ∑
k∈Dd+

∑
ξ∈[αd+ ,k]

∆γξM[αd+ ,k](ξ)e
ik·xφj(k)f̂(k)

∥∥∥
E

=
∥∥∥ ∑
k∈Dd+

∑
ξ∈[αd+ ,k]

∆γξM[αd+ ,βd+ ](ξ)e
ik·xφj(k)f̂(k)

∥∥∥
E

(56)
=
∥∥∥ ∑
k∈Dd+

∆γkM[αd+ ,βd+ ](k)
∑

ξ∈[k,βd+ ]

eiξ·xφj(ξ)f̂(ξ)
∥∥∥
E

≤ sup
k∈Dd+

∑
k∈Dd+

∥∥∥∆γkM[αd+ ,βd+ ](k)
∥∥∥
L(E)

∥∥∥ ∑
ξ∈[k,βd+ ]

eiξ·xφj(ξ)f̂(ξ)
∥∥∥
E

(52)

≤ C sup
k∈Dd+

∥∥∥ ∑
ξ∈[k,βd+ ]

eiξ·xφj(ξ)f̂(ξ)
∥∥∥
E
.

We get the same estimate for the sum over Dd− with a similar procedure. Then,
from (48) and (57) it follows that∥∥∥ ∑

k∈Zn
eik·xφj(k)M(k)f̂(k)

∥∥∥
Lp(Tn,E)

≤ 2Kpn(m+ 2)
∥∥∥ ∑
k∈Zn

eik·xφj(k)f̂(k)
∥∥∥
Lp(Tn,E)

.

Analogously, using Lemma 5.6 b) we obtain∥∥∥ ∑
k∈Zn

eik·xφ0(k)M(k)f̂(k)
∥∥∥
Lp(Tn,E)

≤ 2Kpn
∥∥∥ ∑
k∈Zn

eik·xφ0(k)f̂(k)
∥∥∥
Lp(Tn,E)

.

Thus, there exists a constant C > 0 such that∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)M(k)f̂(k)
∥∥∥
Lp(Tn.E)

≤ C
∥∥∥ ∑
k∈Zn

ek ⊗ φj(k)f̂(k)
∥∥∥
Lp(Tn.E)
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for all f ∈ Bsp,q(Tn, E) and j ∈ N0, and therefore∥∥∥ ∑
k∈Zn

ek ⊗M(k)f̂(k)
∥∥∥
Bsp,q(Tn,E)

≤ C ‖f‖Bsp,q(Tn,E) .

Thus, Theorem 4.2 implies that M is a Bsp,q(Tn, E)-Fourier multiplier.

⇒] Now, we suppose that each function M : Zn → L (E) satisfying (52)
is a Bsp,q(Tn, E)-Fourier multiplier. Let (φ`)`∈N0 ∈ Φ(Rn) be as in Lemma 3.1
and fix j ∈ N with j ≥ 3. For this j let M : Zn → L (E) be the function given
in Lemma 5.5. Moreover, let us consider an arbitrary sequence (xk)k∈Zn in E
and the E-valued trigonometric polynomial

h :=
∑

k=k1δ1,
7·2j−3≤k1≤3·2j−1

ek ⊗ xk.

This h can be written as

h =
∑

k=k1δ1,
7·2j−3≤k1≤3·2j−1

ek ⊗ ĥ(k),

where ĥ(k) = 0 for k /∈
{
k1δ1 : 7 · 2j−3 ≤ k1 ≤ 3 · 2j−1

}
and ĥ(k) = xk else,

due to Remark 3.5. By Lemma 3.1, φj(x) = 1 for all x ∈ Rn with 7 · 2j−3 ≤
|x| ≤ 3 · 2j−1 and φl(x) = 0 for all x ∈ Rn with 7 · 2j−3 ≤ |x| ≤ 3 · 2j−1 and
l 6= j. Thus ∥∥∥ ∑

k∈Zn
ek ⊗M(k)ĥ(k)

∥∥∥q
Bsp,q(Tn,E)

=
∑
l≥0

2qsl
∥∥∥∥ ∑

k=k1δ1,
7·2j−3≤k1≤3·2j−1

ek ⊗ φl(k)M(k)ĥ(k)

∥∥∥∥q
Lp(Tn.E)

(53)
=
∑
l≥0

2qsl
∥∥∥∥ ∑

k=k1δ1,
7·2j−3≤k1≤2j

ek ⊗ φl(k)ĥ(k)

∥∥∥∥q
Lp(Tn.E)

= 2qsj
∥∥∥∥ ∑

k=k1δ1
7·2j−3≤k1≤2j

ek ⊗ ĥ(k)

∥∥∥∥q
Lp(Tn.E)

. (58)

Similarly we obtain that

‖h‖qBsp,q(Tn,E) =
∑
l≥0

2qsl
∥∥∥∥ ∑

k=k1δ1,
7·2j−3≤k1≤3·2j−1

ek ⊗ φl(k)ĥ(k)

∥∥∥∥q
Lp(Tn.E)
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= 2qsj
∥∥∥∥ ∑

k=k1δ1,
7·2j−3≤k1≤3·2j−1

ek ⊗ ĥ(k)

∥∥∥∥q
Lp(Tn,E)

. (59)

From Theorem 4.2, (58) and (59) it follows that∥∥∥∥ ∑
k=k1δ1,

7·2j−3≤k1≤2j

ek ⊗ xk
∥∥∥∥
Lp(Tn.E)

≤ C
∥∥∥∥ ∑

k=k1δ1,
7·2j−3≤k1≤3·2j−1

ek ⊗ xk
∥∥∥∥
Lp(Tn.E)

, (60)

where C do not depend on j. Note that we can write (60) as

∥∥∥ 2j∑
`=7·2j−3

e` ⊗ x`
∥∥∥
Lp(T,E)

≤ Cn
∥∥∥ 3·2j−1∑
`=7·2j−3

e` ⊗ x`
∥∥∥
Lp(T,E)

for all (x`)`∈N0
⊂ E and therefore∥∥∥ ∑

k∈[0,2j−3]

ek ⊗ xk
∥∥∥
Lp(T,E)

≤ Cn
∥∥∥ ∑
k∈[−2j−3,2j−1]

ek ⊗ xk
∥∥∥
Lp(T,E)

(61)

for all (xk)k∈N0
⊂ E and j ≥ 3.

Now, let f =
∑

k∈[−N,N ]

ek ⊗ xk ∈ T (T, E) and set xk = 0 for k /∈ [−N,N ].

There exists some jN ≥ 3 such that N ≤ 2jN−3 and∥∥∥ ∑
k∈[0,2jN−3]

ek ⊗ xk
∥∥∥
Lp(T.E)

(61)

≤ Cn

∥∥∥ ∑
k∈[−2jN−3,2jN−1]

ek ⊗ xk
∥∥∥
Lp(T,.E)

= Cn ‖f‖Lp(T,E).

Therefore E is a UMD-space due to Corollary 4.8. �X

Remark 5.8. In the proof of Theorem 5.7 we have proved that if E is a
UMD−space, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞ and M is of bounded variation
with respect to the coarse decomposition of Zn, then there exists C > 0 such
that

‖SM‖L(Bsp,q(Tn,E)) ≤ C sup
d∈N0

Var
Dd

M .

Remark 5.9. Let M : Zn −→ L(E,F ) be uniformly bounded.

a) As a particular case of the proof of Theorem 3.24 a) in [7], it holds that
M is of bounded variation with sup

d∈N0

Var
Dd

M ≤ 23n+1, if the set

{
|k||γk|∆γkMDd (k) : d ∈ N0 and k ∈ Dd

}
is uniformly bounded.

Volumen 50, Número 1, Año 2016



OPERATOR-VALUED FOURIER MULTIPLIERS 133

b) It is easy to see that{
|k||γk|∆γkMDd (k) : d ∈ N0 and k ∈ Dd

}
⊂
{
|k||γ|∆γM (k) : k ∈ Zn and γ ∈ {0, 1}n

}
.

6. Periodic boundary valued problems

In this section we will study the existence and uniqueness of solution for the
problems (1) and (2). Note that A(t) given in (3) is a (formal) lineal differential
operator with L (E)−valued coefficients, where a0 : [0,∞)× Zn → L (E),

a0 (t, k) :=
∑
|α|=m

aα (t) kα (62)

is called its principal symbol.

For θ ∈ [0, π], set
∑
θ := {λ ∈ C : |arg λ| ≤ θ} ∪ {0}. Given κ ≥ 1 and θ ∈

[0, π), the operator A is called (uniformly) (κ, θ)−elliptic if
∑
θ ⊂ ρ

(
−a0 (t, k)

)
and ∥∥∥ [λI + a0 (t, k)

]−1
∥∥∥
L(E)

≤ κ

1 + |λ|
for all λ ∈

∑
θ

(63)

and (t, k) ∈ [0,∞)×Zn with |k| = 1. It is called θ−elliptic, if it is (κ, θ)−elliptic
for some κ ≥ 1, and normally-elliptic if it is π

2−elliptic.

Remark 6.1. Similarly to the continuous case (see [1], Remarks 3.1) we have:

a) Condition (63) is equivalent to∥∥∥ [λI + a0 (t, k)
]−1

∥∥∥
L(E)

≤ κ

|k|m + |λ|

for all λ ∈
∑
θ and (t, ξ) ∈ [0,∞)× Zn with k 6= 0.

b) The order m is even whenever A is normally elliptic.

Remark 6.2. Let A be uniformly (κ, θ)−elliptic, a (t, k) :=
∑
|α|≤m aα (t) kα

and b := a− a0. Due to

λI + a (t, k) =
[
I + b (t, k)

(
λI + a0 (t, k)

)−1
] (
λI + a0 (t, k)

)
,

by a Neumann series argument, there exists some ω0 > 0 such that∥∥∥ [λI + a (t, k)]
−1
∥∥∥
L(E)

≤ 2κ

|k|m + |λ|
(64)

for all λ ∈ ω0 +
∑
θ and (t, k) ∈ [0,∞)× Zn.
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Proposition 6.3. Let s ∈ R, 1 < p <∞, 1 ≤ q ≤ ∞, E a UMD−space, A an
uniformly (κ, θ)-elliptic differential operator satisfaying

∑
|α|≤m ‖aα‖∞ ≤ C,

and let

A := ABsp,q : Bs+mp,q (Tn, E)→ Bsp,q(Tn, E), u 7−→ Au,

be the Bsp,q−realization of A. Then there exist Cκ ≥ 1 and ω0 > 0 such that
ω0 +

∑
θ ⊂ ρ (−A (t)) and∥∥∥ (λI +A (t))

−1
∥∥∥
L(Bsp,q(Tn,E))

≤ Cκ
1 + |λ|

(65)

for all λ ∈ ω0 +
∑
θ and t ≥ 0. In particular, each A (t) generates an analytic

semigroup on Bsp,q(Tn, E), if A is uniformly normally elliptic.

For the proof of this proposition we will use the following notations and
lemma, whose proof can be found in [7].

Giving α ∈ Nn0\ {0}, let

Zα :=
{
W =

(
w1, ..., wr

)
: 1 ≤ r ≤ |α| , 0 < wj ≤ α,

r∑
j=1

wj = α
}

denote the set of all additive decompositions of α into r = rW multi-indices. For
the sake of consistence we set Z0 := {∅} and r∅ := 0. For W =

(
w1, ..., wr

)
∈

Zα let wj∗ be defined by

wj∗ :=

r∑
l=j+1

wl.

Lemma 6.4 ([7], Lemma 7.1c). Let S : Zn → L (E,F ) be a function such that

the inverse
(
S−1

)
(k) := (S(k))

−1
exists for all k ∈ Zn. Then for α ∈ Nn0 , we

have

∆α
(
S−1

)
(k) =

∑
W∈Zα

(−1)
rW
(
S−1

)
(k − α)

rW∏
j=1

((
∆wjS

)
S−1

)
(k − wj∗)

for k ∈ Zn.

Proof of Proposition 6.3. Let a be as in Remark 6.2 and γ ∈ {0, 1}n. For

λ ∈ ω0 +
∑
θ and t ≥ 0, we define Mλ,t (k) := λ (λ+ a (t, ·))−1

(k), k ∈ Zn.

Using Lemma 6.4, the triangular inequality, the fact that ∆wj
(
k − wj∗

)α
is a

polynomial in k−wj∗ of degree not greater than |α| − |wj | and (64), we obtain
for all k ∈ Zn that

|k||γ| ‖∆γMλ,t (k)‖
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≤ |λ| |k||γ|
∑
W∈Zγ

∥∥ (λ+ a (t, k − γ))
−1 ∥∥

·
rW∏
j=1

(∥∥∆wja
(
t, k − wj∗

) ∥∥∥∥ (λ+ a
(
t, k − wj∗

))−1 ∥∥)
≤ C |λ| |k||γ|

∑
W∈Zγ

∥∥ (λ+ a (t, k − γ))
−1 ∥∥

·
rW∏
j=1

( ∑
|α|≤m

∣∣∆wj
(
k − wj∗

)α ∣∣∥∥ (λ+ a
(
t, k − wj∗

))−1 ∥∥)
≤ C2κ |k||γ|

∑
W∈Zγ

|λ|
|k − γ|m + |λ|

·
rW∏
j=1

( ∑
|α|≤m

∑
finite

cα,wj |k − wj∗|m−|w
j | 2κ

|k − wj∗|m + |λ|

)

≤ Cκ |k||γ|
∑
W∈Zγ

CW
|λ|

|k − γ|m + |λ|

rW∏
j=1

(
|k − wj∗|−|w

j | |k − wj∗|m

|k − wj∗|m + |λ|

)

≤ Cκ |k||γ|
∑
W∈Zγ

CW

rW∏
j=1

|k − wj∗|−|w
j | ≤ Ĉκ,

where Ĉκ is a constant which do not depend on λ and t, and ‖ · ‖ abbreviates
‖ · ‖L(E). It follows that Mλ,t is of bounded variation due to Remark 5.9. Thus
Theorem 5.7 implies that Mλ,t is a discrete Fourier multiplier on Bsp,q(Tn, E)

and (65) holds due to Remark 5.8. �X

Corollary 6.5. Let 0 < ρ < 1, s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, E a UMD-
space and A a uniformly normally elliptic differential operator satisfaying

(t 7→ aα(t)) ∈ Cρ ([0, T ] ,L (E)) (66)

for all |α| ≤ m.

a) If f ∈ Cρ
(
[0, T ] , Bsp,q (Tn, E)

)
, then the problem (1) has a unique classi-

cal solution

u ∈ Cρ
(
(0, T ] , Bm+s

p,q (Tn, E)
)
∩ C1+ρ

(
(0, T ] , Bsp,q (Tn, E)

)
.

b) If s1 ∈ R, 1 ≤ p1, q1 ≤ ∞ and ω0 as in Proposition 6.3, then for
each f ∈ Bs1p1,q1

(
T, Bsp,q (Tn, E)

)
and ω ≥ ω0 there exists a unique

u ∈ B1+s1
p1,q1

(
T, Bsp,q (Tn, E)

)
such that u(t) + Aωu(t) = f(t) for almost

all t ∈ [0, 2π]. In this sense u is the unique solution for the problem (2).
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Proof. a) This is a consequence of Proposition 6.3, (66), Theorems 1.2 and
1.3 in [9] and Sätzes 4.11 and 4.12 in [8].

b) This follows from Proposition 6.3 and Theorem 5.1 in [3].

�X

Remark 6.6. The results of this section are still valid if the operator A(t) de-
fined in (3) is replaced by a Fourier-multiplier operator A(t) = F−1

Tn
(
a(t, ·)FTn

)
,

where {a(t, ·) : Zn → L(E) ; t ≥ 0} is a family of bounded variation symbols
satisfying the condition (64) uniformly.
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