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Intersection numbers of geodesic arcs

Números de Intersección de Arcos Geodésicos

Yoe Alexander Herrera Jaramillo1

1Universidad Autónoma de Bucaramanga, Bucaramanga,
Colombia

Abstract. For a compact surface S with constant curvature −κ (for some
κ > 0) and genus g ≥ 2, we show that the tails of the distribution of the nor-
malized intersection numbers i(α, β)/l(α)l(β) (where i(α, β) is the intersection
number of the closed geodesics α and β and l(·) denotes the geometric length)
are estimated by a decreasing exponential function. As a consequence, we
find the asymptotic average of the normalized intersection numbers of pairs of
closed geodesics on S. In addition, we prove that the size of the sets of geodesic
arcs whose T -self-intersection number is not close to κT 2/(2π2(g− 1)) is also
estimated by a decreasing exponential function. And, as a corollary of the lat-
ter, we obtain a result of Lalley which states that most of the closed geodesics
α on S with l(α) ≤ T have roughly κl(α)2/(2π2(g−1)) self-intersections, when
T is large.
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number, mixing, ergodicity.
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Resumen. Para una superficie S con curvatura constante −κ (con κ > 0) y
género g ≥ 2, mostramos que las colas de la distribución de i(α, β)/l(α)l(β)
(donde i(α, β) es el número de intersección de las geodésicas cerradas α y β) se
puede estimar con una función exponencial decreciente. Como consecuencia,
encontramos el promedio asintótico de los números de intersecciones normal-
izados de los pares de geodésicas cerradas en S. Además, demostramos que el
tamaño de los conjuntos de geodésicas cuyo número de T -auto-intersecciones
no es cercano κT 2/(2π2(g−1)) también decrece exponencialmiente rápido. Y,
como corolario de este último, obtenemos un resultado de Lalley que afirma
que la mayoŕıa de las geodésicas cerradas α en S con l(α) ≤ T tienen aproxi-
madamente κl(α)2/(2π2(g − 1)) auto-intersecciones, cuando T es grande.

Palabras y frases clave. geodésica, flujo geodésico, corrientes geodésicas, número
de intersección, mezcla, ergodicidad.
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1. Introduction

Let S be a compact surface of constant curvature −κ, for some κ > 0, and
genus g ≥ 2. A geodesic (parametrized by the arc length) on S is a smooth
locally distance-minimizing curve γ : R → S. For every x ∈ S and every unit
vector v tangent to S at x, there is a unique geodesic γ(x,v) on S such that
γ(x,v)(0) = x and γ̇(x,v)(0) = v, where γ̇(t) denotes the unit vector tangent
to γ at γ(t). The restriction γ′ = γ|[a,b] for −∞ ≤ a < b ≤ ∞ is called a
geodesic arc or segment and its length is l(γ′) = b− a. The geodesic γ is closed
if there exists l > 0 such that γ([0, l]) = γ(R), and in this case, we say that
l(γ) = min{l | γ([0, l]) = γ(R)}.

Two geodesics γ and η on S are identical if they both have the same trace,
that is, there is r 6= 0 such that either (i) γ(t) = η(t + r) and γ̇(t) = η̇(t + r)
or (ii) γ(t) = η(r − t) and γ̇(t) = −η̇(r − t), for every t ∈ R. Let [γ] be
the equivalence class formed by all geodesics on S that are identical to γ. We
choose a representative geodesic from each class and form a set that we denote
by G. Let CG be the subset of G consisting of the geodesics that are closed.
Let CGT = {γ ∈ CG : l(γ) ≤ T} and N(T ) be the cardinality of CGT . H.
Huber proved in [8, Theorem 10] that the number N(T ) satisfies the asymptotic
formula N(T ) ∼ e

√
κT /
√
κT , that is, lim

T→∞
T
√
κN(T )e−T

√
κ = 1.

Definition 1.1. Let T > 0, and γ and η be geodesics on S. The T -intersection
number of γ and η is denoted by iT (γ, η) and defined by

iT (γ, η) = #{r ∈ [0, T ] | γ(r) = η(t); γ̇(r), η̇(t) non-parallel, for some t ∈ [0, T ]}.

In particular, iT (γ, γ) is the T -self-intersection number of γ.

Remark 1.2. If l(γ), l(η) ≤ T and both γ and η are either closed geodesics or
geodesic arcs then

iT (γ, η) = i(γ, η),

where i(γ, η) is the (geometric) intersection number of γ and η. In addition,
iT (γ, γ) = i(γ, γ) is the self-intersection number of γ.

The intersection numbers have been of interest to many researchers and
here are some of the most relevant results so far achieved. Lalley showed in
[13, Theorem 1] that for T large enough, the self-intersection number of most
of the closed geodesics α with l(α) ≤ T is about κl(α)2/(2π2(g−1)). Later, Pol-
licott and Sharp generalized this result to self-intersections of closed geodesics
with and angle in a given interval (see [16, Theorem 1]). Recently, Chas and
Lalley in [6, Main Theorem] proved that if a free homotopy class of curves
on a surface with boundary is chosen at random from among all classes of
word length m, then the distribution of the self-intersection numbers appro-
priately scaled approaches the Gaussian distribution, for m “large enough.”
Furthermore, Lalley also showed in [12, Theorem 1] that the random variable
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[NT −κT 2/(2π2(g−1))]/T has a limit distribution as T →∞, where NT is the
number of self-intersections of a closed geodesic on S of length ≤ T randomly
chosen.

In this paper, we prove that the tails of the distribution of the normalized
intersection numbers of the pairs of elements of CG, that is i(α, β)/l(α)l(β) for
α, β ∈ CG, are estimated by a decreasing exponential function.

Theorem 1.3. Let ε > 0. There exists δ > 0 such that

1

N(R)N(T )
#

{
(α, β) ∈ CGR × CGT :

∣∣∣ i(α, β)

l(α)l(β)
− κ

2π2(g − 1)

∣∣∣ ≥ ε} = O(e−δR),

as R→∞, with T ≥ R.

Theorem 1.3 allows us to show that the average of the normalized inter-
section numbers of pairs of closed geodesics of length at most R and T is
asymptotically equal to κ/(2π2(g − 1)).

Corollary 1.4.
1

N(R)N(T )

∑
α∈CGR
β∈CGT

i(α, β)

l(α)l(β)
∼ κ

2π2(g − 1)
, as R, T →∞.

In order to introduce our other results we need the following definitions.

Let T 1(S) = {v = (x, v) | x ∈ S, v ∈ Tx(S), ‖v‖ = 1} be the unit tangent
bundle of S. Let ϑ denote the Riemannian measure on T 1(S), i.e., the vol-
ume measure of T 1(S). In addition, let ϑ denote the normalized Riemannian

measure, that is, ϑ =
1

ϑ(T 1(S))
ϑ =

κ

2π2(g − 1)
ϑ.

By identifying the unit tangent bundle of S with the set of geodesics on
S we prove that the size (or ϑ-measure) of the subset of T 1(S) consisting of
vectors whose corresponding geodesics have the normalized T -self-intersection
number not close to κ/(2π2(g − 1)) is bounded by a decreasing exponential
function.

Theorem 1.5. Let ε > 0. There exists δ > 0 such that

ϑ

{
v ∈ T 1(S) :

∣∣∣∣ iT (γv, γv)

T 2
− κ

2π2(g − 1)

∣∣∣∣ ≥ ε} = O
(
e−δT

)
, as T →∞.

As a consequence of Theorem 1.5, we obtain the result given by Lalley
in [13, Theorem 1].

Corollary 1.6 (Lalley). For every ε > 0,

lim
T→∞

1

N(T )
#

{
γ ∈ CGT :

∣∣∣∣i(γ, γ)− κl(γ)2

2π2(g − 1)

∣∣∣∣ < εl(γ)2

}
= 1.
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The outline of this paper is the following. Section 2 is the collection of
definitions and results needed in the demonstrations of Theorems 1.3 and 1.5,
and Section 3 contains the proofs of these theorems as well as the proofs of
Corollary 1.4 and Corollary 1.6. For detailed explanation of all the concepts
(or a different approach on them) used in this work, please see [3], [9], [11], [15]
and [16].

2. Preliminaries

2.1. Measure of Maximum Entropy

The map ϕ : T 1(S)×R→ T 1(S) defined by ϕ(v, t) = ϕtv = (γv(t), γ̇v(t)) is the
geodesic flow over S. Let htop(ϕ) be the topological entropy of ϕ. A measure µ
on T 1(S) is ϕ-invariant if µ(ϕt(E)) = µ(E), for every t ∈ R and every Borel set
E of T 1(S). For instance, the measure ϑ is ϕ-invariant. Denote by Pϕ the set of
ϕ-invariant probability measures on T 1(S) equipped with the weak*-topology,
and for µ ∈ Pϕ, let hµ(ϕ) denote its measure theoretic entropy with respect
to ϕ (please see [9, §4.3] for definitions.) The Variational Principle (proven by
T.N.T. Goodman) in [7, Main Theorem] states that htop(ϕ) = supµ∈Pϕ

hµ(ϕ).
In fact, Bowen proved in [5] that in our case this supremum is actually a
maximum and is uniquely achieved by the normalized Riemannian measure
ϑ, with hϑ(ϕ) = htop(ϕ) =

√
κ. Therefore, ϑ coincides with the measure of

maximum entropy on T 1(S). Moreover, ϑ also coincides with the Margulis-
Bowen measure from [14], and in this work, we use the characterization of this
measure given by Bowen in [4].

The (ϕ-)orbit of v ∈ T 1(S) is the set {ϕtv | t ∈ R}. These orbits form a
partition of T 1(S). Note that there is a one-to-one correspondence between the
set of orbits and the set G. The vector v ∈ T 1(S) and its orbit are periodic if
there exists l > 0 such that ϕlv = v, the number l is a period and the minimal
period is precisely l(γv).

For a periodic orbit γ, Bowen defined the occupation measure ζγ on T 1(S)
by

ζγ(E) =

∫ l(γ)

0

χE(ϕtv)dt, (1)

for v ∈ γ and E a Borel set of T 1(S). In addition, Bowen proved in [4, (5.5)]
the following.

Theorem 2.1 (Bowen). The periodic orbits of the geodesic flow ϕ are equidis-
tributed with respect to the measure of maximium entropy ϑ as the period tends
to +∞. More precisely, for any Borel set E with ϑ(∂E) = 0,

ϑ(E) = lim
T→∞

1

N(T )

∑
γ∈CGT

ζγ
l(γ)

(E).
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2.2. Geodesic Currents

Let L = T 1(S)/ ∼, with (x, v) ∼ (x,−v), be the line bundle of S and F
be the foliation of L by ϕ-orbits. A (geodesic) current µ on S is a positive
transverse invariant measure for the geodesic foliation F . The set of currents
on S equipped with the weak*topology is denoted by C and called the space of
currents on S.

Given any ϕ-invariant measure µ, we can consider the associated transverse
measure µ̃ for the foliation F . Each µ̃ ∈ C is normalized by the requirement
that (locally) µ = µ̃ × dt, where dt is the one–dimensional Lebesgue measure
along leaves in F . The current associated to ϑ is called the Liouville current
on S. In this paper, we identify the measure µ with the current µ̃.

The basic example of a current is the one associated to a closed geodesic γ
on S. To this geodesic γ corresponds a compact leaf γ̃ of F . We associate to it
the current µγ which induces on each transverse manifold V the Dirac measure
at the point V ∩ γ̃. Such current corresponds to the ϕ-invariant measure ζγ , as
defined in (1).

Observe that it is always possible to add two geodesic currents, and to
multiply a geodesic current by a non-negative real number. Then, the space C
appears as the completion of the space of real multiples of homotopy classes of
closed curves by the following fact, proven by Bonahon in [3, Proposition 2],
which we state although we will not make use of it in this paper.

Proposition 2.2. The uniform space C is complete, and the real multiples of
homotopy classes of closed curves are dense in it.

2.3. Intersection Form

Starting from the bundle L→ S, we consider the Whitney sum L ⊕ L→ S.
In other words, L⊕L is the 4-dimensional manifold of triples (x, λ1, λ2), where
x ∈ S and λ1 and λ2 are two lines in the tangent space Tx(S). Forgetting the
first or the second line defines two projections p1 and p2 from L⊕ L to L. We
consider the two foliations F1 and F2 of codimension 2 in L⊕ L, whose leaves
are the preimages of the leaves of F by, respectively, p1 and p2. These foliations
are transverse outside the diagonal 4 = {(x, v, v) | (x, v) ∈ L} of L⊕ L.

Recall that a transverse invariant measure on L is an assingment of a posi-
tive measure to each transversal τ to L, supported on τ ∩L and invariant under
homotopy. Let µ and ν be two currents. Through p1, µ induces a transverse in-
variant measure µ̂1 on F1, which, by transversality of F1 and F2, gives outside
4 a measure on each leaf of F2. Similarly, ν induces outside 4 a measure ν̂2

on each leaf of F1. Consider then the product measure µ̂1 × ν̂2 on L ⊕ L \ 4.
The total mass of this measure is finite. The intersection form of µ and ν is

ı(µ, ν) = µ̂1 × ν̂2(L⊕ L \ 4).
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Remark 2.3. The normalized Liouville current denoted by ϑ (which corre-
sponds to the normalized Riemannian measure) that satisfies the equality

ı(ϑ, ϑ) = 1.

By identifying the closed geodesic α on S with the current ζα, Bonahon
proved the following facts in [2, Theorem 4.1] and [3, Proposition 15].

Theorem 2.4 (Bonahon). The intersection form function ı : C×C → [0,∞) is
a continuous extension of the intersection number function. In particular, for
α and β closed geodesics on S,

ı(ζα, ζβ) = i(α, β).

In addition,

ı(ϑ, ϑ) =
2π2(g − 1)

κ
=
ϑ(T 1(S))

2

and

ı(ϑ, ϑ) =
κ

2π2(g − 1)
=

2

ϑ(T 1(S))
.

3. Results

The proofs of Theorem 1.3 and 1.5 are based on both the continuity of the
intersection form function (given by Theorem 2.4) and a deviation result given
by Y. Kifer [11].

For T > 0 and v ∈ T 1(S), Y. Kifer defined the occupation measure ζTv by

ζTv (E) =

∫ T

0

χE(ϕtv)dt,

for every Borel set E of T 1(S).

Note that if γ is a periodic orbit, we have ζ
l(γ)
v = ζγ , for v ∈ γ.

Fact 1. The intersection form can be extended to the whole set of (positive)
finite measures (not necessarily ϕ-invariant). By abuse of notation, we denote
this extension also by ı. Such extension satisfies the following condition

ı
(
ζTv , ζ

T
w

)
= iT (γv, γw), for v,w ∈ T 1(S) and T > 0.

Since T 1(S) is a compact metric space and ϕ is a hyperbolic dynamical
system, the deviation results of Y. Kifer in [10, Theorem 3.4] and [11, Theorem
2.1], respectively, can be translated into our setting in the following way.
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Theorem 3.1 (Kifer). For any closed subset K of P, the space of probability
measures on T 1(S),

lim sup
T→∞

1

T
log ϑ

{
v ∈ T 1(S) :

ζTv
T
∈ K

}
≤ − inf

µ∈K
I(µ),

where

I(µ) =

{
htop(ϕ)− hµ(ϕ), µ ∈Pϕ

∞, otherwise
.

Remark 3.2. Note that, for any subset Z ⊂P, inf
µ∈Z

I(µ) = inf
µ∈Z∩Pϕ

I(µ), since

I(µ) =∞, for µ 6∈Pϕ.

Theorem 3.3 (Kifer). Let U be an open neighborhood of the measure of max-
imal entropy ϑ in the set of ϕ-invariant probability measures on T 1(S). Then

lim
T→∞

1

N(T )
#{γ ∈ CGT : ζγ/l(γ) 6∈ U} = O

(
e−δT

)
,

as T →∞, where δ = inf
µ∈Uc
{htop(ϕ)− hµ(ϕ)}.

Proof of Theorem 1.5. Let ε > 0. Consider the set

K := {µ ∈P : |ı(µ, µ)− ı(ϑ, ϑ)| ≥ ε}. (2)

By Theorem 2.4 and Fact 1,{
v ∈ T 1(S) :

∣∣∣∣ iT (γv, γv)

T 2
− κ

2π2(g − 1)

∣∣∣∣ ≥ ε} (3)

=

{
v ∈ T 1(S) :

ζTv
T
∈ K

}
. (4)

By (3), it is enough to prove that there exists δ > 0 such that

ϑ

{
v ∈ T 1(S) :

ζTv
T
∈ K

}
= O

(
e−δT

)
, as T →∞. (5)

In order to prove 5 we first see that the set K defined in (2) is a closed subset
of P since the intersection form function ı is continuous by Theorem 2.4.
Therefore, by Theorem 3.1,

lim sup
T→∞

1

T
log ϑ

{
v ∈ T 1(S) :

ζTv
T
∈ K

}
≤ − inf

µ∈K
I(µ).

Now we consider two cases taking Remark 3.2 into account.
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(i) K ∩Pϕ = ∅.

In this case, inf
µ∈K

I(µ) =∞. Thus,

lim sup
T→∞

1

T
log ϑ

{
v ∈ T 1(S) :

ζTv
T
∈ K

}
≤ −∞.

Hence, for every r > 0, M(T ) := ϑ
{

v ∈ T 1(S) : ζTv ∈ K
}
≤ e−r,

consequently, M(T ) = 0 = O
(
e−δT

)
, as T →∞, for any δ > 0.

(ii) K ∩Pϕ 6= ∅.

Since ϑ is the unique probability measure of T 1(S) where the maximum
entropy htop(ϕ) =

√
κ is achieved and ϑ 6∈ K, then taking δ as

δ = inf
µ∈K

I(µ) = inf
µ∈K∩Pϕ

I(µ) = inf
µ∈K∩Pϕ

(
√
κ− hµ(ϕ)),

we have that δ > 0 is such that

lim sup
T→∞

1

T
log ϑ

{
v ∈ T 1(S) :

ζTv
T
∈ K

}
≤ −δ.

Therefore, from cases (i) and (ii) we conclude (5), and consequently our
result.

�X

Proof of Corollary 1.6. Let T, ε > 0 and

O(T, ε) :=

{
γ ∈ CGT :

∣∣∣∣ i(γ, γ)

l(γ)2
− κ

2π2(g − 1)

∣∣∣∣ < ε

}
.

Consider
U = Kc = {µ ∈P : |ı(µ, µ)− ı(ϑ, ϑ)| < ε}.

Then, O(T, ε) = {γ ∈ CGT : ζγ ∈ U}.
By Theorem 3.3, we have

1

N(T )
#{γ ∈ CGT : ζγ/l(γ) 6∈ U} = O

(
e−δT

)
.

Consequently,

lim
T→∞

1

N(T )
#

{
γ ∈ CGT :

∣∣∣∣i(γ, γ)− κl(γ)2

2π2(g − 1)

∣∣∣∣ < εl(γ)2

}
= 1.

�X
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Proof of Theorem 1.3. Consider the function ı : P ×P → ı(P ×P). This
function is continuous since it is the restriction of the intersection form function
ı, which is continuous by Theorem 2.4, to P ×P a closed subset of C × C.

Therefore, for ε > 0, the set Z = ı−1

(
κ

2π2(g − 1)
− ε, κ

2π2(g − 1)
+ ε

)
is an

open subset of P ×P since it is the preimage under ı of the ball of radius ε
centered at ı(ϑ, ϑ) = κ/(2π2(g − 1)).

Let R, T > 0 with R ≤ T and

WR,T =

{
(α, β) ∈ CGR × CGT :

(
ζα
l(α)

,
ζβ
l(β)

)
∈ Z

}
.

By Theorem 2.4,

{
(α, β) ∈ CGR × CGT :

∣∣∣∣ i(α, β)

l(α)l(β)
− κ

2π2(g − 1)

∣∣∣∣ ≥ ε} (6)

= CGR × CGT \WR,T . (7)

Hence, by (6), it is enough to prove that there exists δ > 0 such that

#CGR × CGT \WR,T

N(R)N(T )
= O

(
e−δR

)
.

Since (ϑ, ϑ) ∈ Z and Z is an open set of the product topology of P×P, there
exist U ,V ⊆P open neighborhoods of ϑ in P such that U × V ⊆ Z.

Let UR =

{
α ∈ CGR :

ζα
l(α)

∈ U
}

and VT =

{
β ∈ CGT :

ζβ
l(β)

∈ V
}

.

Given that both U and V are open neighborhoods of ϑ on P, Theorem 3.1,
guarantees the existence of δ1, δ2 > 0 depending on U and V, respectively, such
that

#CGR \ UR
N(R)

=
1

N(R)
#{γ ∈ CGR : ζγ/l(γ) 6∈ U} = O

(
e−δ1R

)
and

#CGT \ VT
N(T )

=
1

N(T )
#{γ ∈ CGT : ζγ/l(γ) 6∈ V} = O

(
e−δ1T

)
.
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Thus, since UR × VT ⊆ WR,T , we get as R, T →∞,

#CGR × CGT \WR,T

N(R)N(T )
≤ #CGR × CGT \ UR × VT

N(R)N(T )

≤ #CGR \ UR ·#CGT \ VT
N(R)N(T )

+
#CGR \ UR ·#VT

N(R)N(T )
+

#CGT \ VT ·#UR
N(R)N(T )

= O
(
e−δ1R

)
O
(
e−δ2T

)
+O

(
e−δ1R

)
+O

(
e−δ2T

)
= O

(
e−δ1R

)
.

�X

For the proof of Corollary 1.4, we need a bound for the intersection number
of pairs of closed geodesics on S. Here, we provide a universal bound for the
normalized intersection numbers of pairs of closed geodesics. It is worth noting
that such bound can also be deduced by the techniques used by A. Basmajian
in [1].

The injectivity radius at a point x ∈ S is the largest radius for which the
exponential map at x is a diffeomorphism. The injectivity radius of S, which
we denote by %, is the infimum of the injectivity radii of all points of S. By the
definition of %, the least length of an essential loop on S is 2%.

Proposition 3.4. Let α and β be two closed geodesics on S. Then

i(α, β)

l(α)l(β)
≤ 1

%2
.

Proof. Let ᾱ be a sub-arc of α with l(ᾱ) < % and such that i(ᾱ, β) ≥ i(α∗, β)
for any sub-arc α∗ of α with l(α∗) < %. Hence,

i(α, β) ≤
⌈
l(α)

%

⌉
i(ᾱ, β). (8)

Let {x1, . . . , xn} be the ordered set of points of intersection of ᾱ and β, with
β−1(xi) ≤ β−1(xi+1), for 1 ≤ i ≤ n− 1, and n = i(ᾱ, β). Let βk be the sub-arc
of β from xk to xk+1, for 1 ≤ k ≤ n− 1, and, βn be the sub-arc of β from xn
to x1. Similarly, let ᾱk be the sub-arc of ᾱ from xk to xk+1, for 1 ≤ k ≤ n− 1,
and ᾱn be the sub-arc of ᾱ from xn to x1.

Consider γk the concatenation of ᾱk and βk, for 1 ≤ k ≤ n. Thus, γk is an
essential loop of S, for 1 ≤ k ≤ n.

Hence, 2% ≤ l(γk) = l(ᾱk) + l(βk) ≤ l(ᾱ) + l(βk) < %+ l(βk), which implies
% < l(βk), for 1 ≤ k ≤ n.
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Consequently, n% = n
∑n
i=1 % <

∑n
i=1 l(βk) ≤ l(β). Therefore, n = i(ᾱ, β)

< l(β)
% . Thus, by (8), we conclude (α, β) ≤

⌈
l(α)
%

⌉
i(ᾱ, β) ≤ l(α)

%
l(β)
% = l(α)l(β)

%2 .

�X

Proof of Corollary 1.4. Let ε > 0. For R, T > 0 with R ≤ T , consider the set
WR,T defined in (6) from the proof of Theorem 1.3. In addition, let δ, J, C > 0
be constants satisfying the conclusion of such theorem, that is, for J ≤ R ≤ T ,
we have

#CGR × CGT \WR,T

N(R)N(T )
≤ C

eδR
.

Moreover, let J be such that Ce−δR < ε, whenever R > J .

By Proposition 3.4, we have sup
CGR×CGT

i(α, β)

l(α)l(β)
≤ 1

%2
. Therefore, for J <

R ≤ T , we have∣∣∣∣∣ 2π2(g − 1)

κN(R)N(T )

( ∑
α∈CGR
β∈CGT

i(α, β)

l(α)l(β)

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣ 2π2(g − 1)

κN(R)N(T )

∑
α∈CGR
β∈CGT

(
i(α, β)

l(α)l(β)
− κ

2π2(g − 1)

)∣∣∣∣∣
≤ 2π2(g − 1)

κN(R)N(T )

( ∑
(α,β)∈WR,T

∣∣∣∣∣ i(α, β)

l(α)l(β)
− κ

2π2(g − 1)

∣∣∣∣∣
+

∑
(α,β)∈CGR×CGT \WR,T

∣∣∣∣∣ i(α, β)

l(α)l(β)
− κ

2π2(g − 1)

∣∣∣∣∣
)

≤ 2π2(g − 1)

κN(R)N(T )

(
#WR,T · ε

+ #CGR × CGT \WR,T · sup
α∈CGR
β∈CGT

∣∣∣∣ i(α, β)

l(α)l(β)
− κ

2π2(g − 1)

∣∣∣∣∣
)

<
2π2(g − 1)

κ

(
ε+

C

eδR

[
1

%2
+

κ

2π2(g − 1)

])
<

2π2(g − 1)

κ

(
1 +

1

%2
+

κ

2π2(g − 1)

)
ε.

Given that ε was chosen arbitrarily, we conclude that

lim
R,T→∞

2π2(g − 1)

κN(R)N(T )

∑
(α,β)∈CGR×CGT

i(α, β)

l(α)l(β)
= 1,
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or equivalently,

1

N(R)N(T )

∑
(α,β)∈CGR×CGT

i(α, β)

l(α)l(β)
∼ κ

2π2(g − 1)
,

as R, T →∞. �X
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