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Abstract. We study free subgroups of index four of the parametrized modular
group Π, the subgroup of SL(2,Z[ξ]) generated by

(
1 ξ
0 1

)
and ( 0 −1

1 0 ). There
are eight free subgroups, four of which are normal and four are non-normal.
Then we study the intersections of the normal subgroups. We give canonical
presentations in terms of generators and relations. At the end of the paper
we study connections between Π and the Bianchi groups, the two-parabolic
group and a group from relativity theory.
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Resumen. Estudiamos los subgrupos libres de ı́ndice cuatro del grupo modular
parametrizado Π, que es el subgrupo de SL(2,Z[ξ]) generado por

(
1 ξ
0 1

)
y

( 0 −1
1 0 ). Hay ocho subgrupos libres, cuatro de los cuales son normales y los

otros cuatro no lo son. Luego estudiamos las intersecciones de estos subgrupos.
Damos presentaciones canónicas en término de generadores y relaciones. Al
final del art́ıculo estudiamos conexiones entre Π y los grupos de Bianchi, el
grupo dos-parabólico y un grupo de la teoŕıa de la relatividad.

Palabras y frases clave. Grupo modular parametrizado, subgrupos libres, grupos
de Bianchi, grupo de Picard, teoŕıa de la relatividad discreta.
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270 CHRISTIAN POMMERENKE & MARGARITA TORO

1. Introduction

The parametrized modular group Π is defined in [10] as the subgroup of
SL(2,Z[ξ]) generated by

A =

(
1 ξ

0 1

)
, B =

(
0 −1

1 0

)
(1)

where Z[ξ] is the polynomial ring over Z with ξ as indeterminate. In the last
section we describe some connections with the Picard group and other Bianchi
groups using the results of R. G. Swan [14]. Furthermore we sketch the relation
to discrete relativity theory and knot theory.

The previous paper [10] studied analytical properties of the singular set of
Π and the enumeration of the elements of Π, see Lemma 2.1 below. The present
paper investigates Π more in the spirit of combinatorial group theory [9] [7].

The exponent sums of a word W ∈ Π with respect to the generators (1) are

σ(W ) := (sum of exponents of A in W ), (2)

which defines a homomorphism of Π into the additive group Z, and

τ(W ) := (sum modulo 4 of exponents of B in W ), (3)

which defines a homomorphism of Π into the additive group Z/4Z, note that
B4 = I.

In particular we shall study the subgroups

Πk := {W ∈ Π : τ(W ) ≡ (k − 1)σ(W ) mod 4} (k = 1, 2, 3, 4) (4)

and their common subgroup

Π0 := {W ∈ Π : σ(W ) ≡ τ(W ) ≡ 0 mod 4}. (5)

We prove that each Πk is a rank two free normal subgroup of index four in Π
and that Π0 is a rank five free normal subgroup of index 4 in Πk (k = 1, 2, 3, 4).

Our main results are summarized in the following subgroup diagram where
[A,B] denotes the commutator.

Π1=〈A,[A,B]〉 Π3=〈AB2,[A,B]〉

〈A2,[A,B],[A2,B]〉

Π2=〈AB,[A,B]〉 Π4=〈AB3,[A,B]〉

〈A2B2,[A,B],[A2,B]〉

Π0〈A4,[A,B],[A−1,B],[A2,B],[A−1,B]〉
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See Theorem 2.2 for the first row, Theorem 3.3 for the second row and Theorem
3.1 for the third row. The other four intersections Π1 ∩Π2 and so on are equal
to Π0 by Proposition 3.2.

The presentations in this diagram are canonical in the sense of [9, p.140]:
If X is a free group of rank n and Y is a subgroup of rank m > n then there
are generators x1, . . . , xn of X and generators y1, . . . , ym of Y such that

yν = xdνν zν (1 ≤ ν ≤ n), yν = zν (n < ν ≤ m)

where zν is a word in Y and

σxν (zµ) = 0 for 1 ≤ ν ≤ n, 1 ≤ µ ≤ m,

where σxν (zµ) is the exponent sums of xv in the word zµ.

We study other index four free subgroups of Π that are not normal sub-
groups.

2. The subgroups Πi for 1 ≤ i ≤ 8

The derivation of our presentations relies on the following result. See formulas
(2.6) and (2.7) in [10], note that any negative sign in W is absorbed in l ∈ Z
because B2 = −I.

Lemma 2.1. All words W ∈ Π with W 6= ±I,±B have the form

W = BeAjnV with V = BAjn−1 · · ·Aj1Bl (6)

where e ∈ {0, 1}, l ∈ {0, 1, 2, 3}, jν ∈ Z and jn 6= 0.

First we study the groups Πk defined in (4). See Section 4.3 for the connec-
tion of Π1 with the two-parabolic group.

Theorem 2.2. Let k = 1, 2, 3, 4. The group Πk is a free normal subgroup of
index 4 in Π with the free presentation

Πk = 〈ABk−1, [A,B] 〉. (7)

Remark 2.3. Let Γk = 〈ABk−1, [A,B] 〉. The generators in (7) can be replaced
by other pairs of generators which we state in the following four lines.

Γ1 = 〈A,BAB−1〉 because [A,B] = A · (BAB−1)−1,

Γ2 = 〈AB,BA〉 because [A,B] = AB · (BA)−1,

Γ3 = 〈−A,−BAB−1〉 because [A,B] = (−A) · (−BAB−1)−1,

Γ4 = 〈−AB,−BA〉 because [A,B] = (−AB) · (−BA)−1.
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Proof. (a) Since σ and τ are homomorphisms into additive groups it is clear
from (4) that Πk is a normal subgroup. Furthermore

ΠkB
j := {W ∈ Π : τ(W ) ≡ (k − 1)σ(W ) + j mod 4} (j = 0, 1, 2, 3)

are distinct cosets of Πk and their union is Π. Hence Πk has index 4.

(b) Since σ(Bj) = 0 and τ(Bj) = j 6≡ 0 for j = 1, 2, 3, it follows from (4)
that Bj /∈ Πk for all k. If W ∈ Πk,W 6= ±I,±B, then W has the form (6). It
follows from [10, Lemma 2.2] that all these words are different. Hence Πk is a
free group. Let Γk = 〈ABk−1, [A,B] 〉.
(c) Now we show that, for W ∈ Π,

W ∈ Γk =⇒ τ(W ) ≡ (k − 1)σ(W ) mod 4. (8)

We have σ(ABk−1) = 1, τ(ABk−1) = k − 1 and σ([A,B]) = τ([A,B]) = 0,
which proves (8).

(d) Now we prove the converse, namely that, for W ∈ Π,

τ(W ) ≡ (k − 1)σ(W ) mod 4 =⇒ W ∈ Γ1. (9)

We shall however use the alternative forms of the generators listed in Remark
2.3 above. We proceed by induction on the number n of occurrences of the
symbol A in the representation (6). If n = 0 then σ(W ) = 0 and (9) is trivial.
Suppose that (9) holds when the number of occurrences of A is < n. Now let
there be n occurrences of the symbol A. Below we shall show that there exists
U ∈ Γk such that W ′ = U−1W has less than n occurrences of the symbol A.
By (4) applied to U we have τ(U) ≡ (k − 1)σ(U) mod 4. Using the left-hand
side of (9) we conclude that τ(W ′) ≡ (k − 1)σ(W ′) mod 4. By the induction
hypothesis we have W ′ ∈ Γk. It follows that W = UW ′ ∈ Γk. Now we turn
to the construction of U for the different four cases. Let W = BeAjnV with
V = BAjn−1 · · ·Aj1Bl as described in (6). (d1) Let k = 1. We define

U := BeAjnB−e = (BeAB−e)jn ∈ Π1,

and we have W ′ = U−1W = BeV which is shorter than W . (d2) Let k = 2.
We define

U := BeAjnBjn−e

and use that B2 = −I. If jn = 2q

U = Be(AA)q
(
B2

)q
B−e = Be(A(−I)A)qB−e = Be(AB ·BA)qB−e ∈ Π2.

If jn = 2q + 1 then

U := Be(AA)qA
(
B2

)q
BB−e = Be(AB ·BA)q(AB)B−e ∈ Π2.
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Therefore, in both cases

W ′ = Be−jnA−jnB−eBeAjnV = Be−jnV

so W ′ is shorter than W . (d3) Finally let k = 3 or k = 4. We see from the
remark after Theorem 2.2 that the generators to be obtained are the same as
for the cases k = 1 and k = 2 except for different signs. This difference only
changes the exponent l of B in (6) so that we can argue as above. �X

Proposition 2.4. Let j = 1, 2, 3, 4. The group

Πj+4 := 〈ABj−1,−[A,B]〉 (10)

is a free subgroup of index 4 in Π and satisfies

BΠj+4B
−1 = Πj′+4 (11)

with j′ = j + 2 mod 4 if j 6= 2 and j′ = 4 if j = 2.

Proof. We write C := [A,B]. Since Πj is a free group there is a unique homo-
morphism ϕj : Πj → Π such that

ϕj(AB
j−1) = ABj−1, ϕj(C) = −C, (12)

see [9, p.48]. Hence we have Πj+4 = ϕj(Πj) by (10). Since the generators of
Πj and Πj+4 only differ by the sign of C we have ϕj(W ) = ±W for W ∈ Πj .
Now suppose that ϕj(W ) = I. Then W = ±I where −I is not possible because
Πj is a free group. It follows that W = I. Hence ϕj is an isomorphism so that
Πj+4 is also a free group. As in part (a) of the proof of Theorem 7 we can prove
that Πj+4 has index 4 in Π. Since BCB−1 = C−1 it follows from (10) that

BΠj+4B
−1 = 〈BABj−2,−C−1〉 = 〈BABj−2,−C〉,

in the last step we replaced the generator −C−1 by its inverse. By another
Tietze transformation we can replace BABj−2 by

−C ·BABj−2 = ABA−1B−1 ·BABj−2 ·B2 = ABj+1 = ABj−1+2

and (11) follows from (7). �X

Remark 2.5. We mention, without proof, that the eight groups Πi, for 1 ≤
i ≤ 8, are the only index four free subgroups of Π.
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3. The intersections of these subgroups

Now we turn to the subgroups of Πk (k = 1, 2, 3, 4). First we study the group
defined by (5).

Theorem 3.1. The group Π0 is a free normal subgroup of index 16 in Π and
has the free presentation

Π0 = 〈A4, [A,B], [A−1, B], [A2, B], [A−2, B]〉. (13)

Proof. (a) It follows from (4) and (5) that Π0 is a normal subgroup. The 16
sets {W : σ(W ) = j, τ(W ) = k} (j, k = 0, 1, 2, 3) form a complete coset system
of Π0 in Π. Hence Π0 has index 16 in Π. Since Π1 has index 4 in Π it follows
that Π0 has index 4 in Π1. The free group Π1 has rank 2 by (8). Hence it follows
[9, Th.2.10] that Π0 is free of rank 4(2− 1) + 1 = 5. Therefore the 5 generators
in (13) are free generators.

(b) Let Γ be the group with the presentation in (13). Each of the words W in
(13) satisfies σ(W ) ≡ τ(W ) ≡ 0 mod 4. Hence it follows from (5) that Γ ⊂ Π0.
All W ∈ Π with W 6= ±I,±B have the form (6). We shall prove Π0 ⊂ Γ again
by induction on the number n of occurrences of the symbol A. In view of (13)
we have A4 ∈ Γ and

BA4B−1 = BA2 ·A2B−1 = [A2, B]−1A4[A−2, B] ∈ Γ.

It follows that

A4q ∈ Γ, BA4qB−1 ∈ Γ (q ∈ Z). (14)

Suppose that W ∈ Π0 =⇒ W ∈ Γ is true if W has < n occurrences of A. Let
W = BeAjnV , with V = BAjn−1B . . . Aj1Bl as described in (6). We write

jn = 4q + r, q ∈ Z, r = −1, 0, 1, 2.

If e = 0, then

W = A4q+rV = A4q ·ArBA−rB−1 ·BArAjn−1B · · ·Aj1Bl = A4q[Ar, B]V ′

where V ′ = Ar+jn−1B · · ·Aj1Bl has the form (6) with n − 1 ocurrences of A.
Since the factors of V ′ belong to Γ by (14), it follows that W ∈ Γ. If e = 1,
then

W = BA4q+rV = BA4qB−1 ·BArB−1A−r ·ArBV = BA4qB−1 · [Ar, B]−1V ′

where V ′ = ArBV = ArB2Ajn−1B cdotsAj1Bl = Ar+jn−1B · · ·Aj1Bl+2 has
the form (6) with n − 1 ocurrences of A. By (14) the factors before V ′ are in
Γ. Hence W ∈ Γ. �X

Volumen 49, Número 2, Año 2015



FREE SUBGROUPS OF THE PARAMETRIZED MODULAR GROUP 275

Proposition 3.2. The group Π0 satisfies

Π0 = Π1 ∩Π2 = Π2 ∩Π3 = Π3 ∩Π4 = Π4 ∩Π1 (15)

and is a normal subgroup of index 4 in each Πk (k = 1, 2, 3, 4).

Proof. We abbreviate

{σ ≡ m, τ ≡ n} := {W ∈ Π : σ(W ) ≡ m, τ(W ) ≡ n mod 4}. (16)

It follows from (8) that

Π1 ∩Π2 = {τ ≡ 0} ∩ {τ ≡ σ} = {0 ≡ τ ≡ σ} = Π0,

Π2 ∩Π3 = {τ ≡ σ} ∩ {τ ≡ 2σ} = {σ ≡ 0 ≡ τ} = Π0,

Π3 ∩Π4 = {τ ≡ 2σ} ∩ {τ ≡ 3σ} = {σ ≡ 0, τ ≡ 0} = Π0,

Π4 ∩Π1 = {τ ≡ 3σ}{τ ≡ 0} = {τ ≡ 0, σ ≡ 0} = Π0.

We see from (15) that Π0 is a subgroup of all Πk which is normal because all
definitions are in terms of σ and τ . �X

We see from Proposition 3.2 that four of the six possible intersections of
the groups Πk are equal to Π0. The remaining two intersections however lead
to new groups.

Theorem 3.3. We have the free presentations

Π1 ∩Π3 = 〈A2, [A,B], [A2, B]〉, Π2 ∩Π4 = 〈A2B2, [A,B], [A2, B]〉 (17)

and Π0 has index 2 in these two groups.

Proof. (a) First we show that ⊃ holds in (17). It follows from (4) that, with
the notation (16),

Π1 ∩Π3 = {σ ≡ 0, 2, τ ≡ 0}, Π2 ∩Π4 = {σ ≡ 0, 2, τ ≡ σ}. (18)

The generators that occur in (17) satisfy these conditions. (b) Now we prove
that ⊂ holds in (17). To simplify the proof we write

Γ := 〈A2, [A,B], [A2, B]〉, s = +1 in the case Π1 ∩Π3

Γ := 〈A2B2, [A,B], [A2, B]〉, s = −1 in the case Π2 ∩Π4.
(19)

Then the assertion (17) becomes

Γ = {W ∈ Π : σ(W ) ≡ 0, 2, τ(W ) ≡ 1

2
(1− s)σ(W ) mod 4}. (20)
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First we derive an identity. Since

sA−2[A2, B] = sA−2A2BA−2B−1 = B(sA−2)B−1

we obtain from (19) and (20) that

B(sA−2)qB−1 ∈ Γ (q ∈ Z). (21)

We shall use the notation of Lemma 6 and proceed by induction on n. Let
n = 1. In the case e = 0 it follows from (20) with q ∈ Z that W = Aj1Bl1 =
A2qB(1−s)q ∈ Γ. In the case e = 1 we obtain from (19) and (21) that W =
BAj1Bl1 = B(sA2)qB−1 ∈ Γ. Now we assume that our assertion holds for
n− 1. There are four cases where always q ∈ Z.

If W = A2qBAjn−1B · · · then we write

W = (sA2)qV, V = sqBAjn−1 · · · .

If W = A2q+1BAjn−1B · · · then we write

W = (sA2)q[A,B]V, V = sqBAjn−1+1 · · · .

If W = BA2qBAjn−1B · · · then we write

W = (sA2)qB−1V, V = sqBAjn−1 · · · .

If W = BA2q+1BAjn−1B · · · then we write

W = (sA2)qB−1[A,B]V, V = sqBAjn−1+1 · · · .

We check that V satisfies (20) in all four cases so that V ∈ Γ. In the first two
cases, the factor before V lies in Γ because of (19). In the last two cases we
also use (21) to obtain the same conclusion. Since V ∈ Γ by the induccion
hypothesis we see that W ∈ Γ holds in all cases. (c) Since the groups Π1 ∩ Π3

and Π2 ∩ Π4 lie properly between the groups Πk on the one hand and their
subgroup Π0 of index 4 on the other hand, it follows that Π0 has index 2 in
our groups. �X

Proposition 3.4. The commutator subgroup Π′ has infinite index in Π.

Proof. Let Γ := {W ∈ Π : σ(W ) = τ(W ) = 0}, here we do not consider
congruences. Then Π′ ⊂ Γ and all cosets ΓA4k are disjoint. We conclude that
|Π : Π′| ≥ |Γ : Π′| =∞. �X

The situation is often quite different in other contexts. For instance for the
Picard group (see below), the first three commutator subgroups have finite
index [3, Th.1].
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4. Connection with other groups

The groups Π(ζ) are obtained by replacing the indeterminate ξ in Π by the
complex number ζ. For instance Π(1) and Π(2) lead to classical modular groups.
Many groups are obtained by combining groups Π(ζ) with different values of ζ
as we will see below.

4.1. The Bianchi groups. Let d ∈ N be square-free and let Od be the ring of
integers of the quadratic field Q(

√
−d). We now consider the Bianchi groups

SL(2, Od) but only for the d that allow an euclidean algorithm, namely d =
1, 2, 3, 7, 11, see [14] [2, Chapter 4]. The case d = 1 is the Picard group, here
considered in SL(2,C), see for instance [2, Chapt. 5] [3] [5]. It will be convenient
to enlarge our groups Π(ζ) by adding the generator A(1).

Proposition 4.1. Let Π+(ζ) be the group generated by A(1), A(ζ) and B.

(1) If d = 1 then Π+(1 + i) = SL(2, O1).

(2) If d = 3 then Π+(ω) = SL(2, O3) where ω = 1
2 (−1 + i

√
3).

(3) If d = 2, 7, 11 then SL(2, Od) = Π+(ω) where ω = i
√
d for d = 2 and

where ω = 1
2 (1 + i

√
d) for d = 7, 11.

Proof. The cases d = 2, 7, 11 are due to Swan but the cases d = 1, 3 are new,
Swan had an additional generator, see [14, p.64-71] or [2, Chapt.4]. In a later
paper it will be proved the cases d = 1, 3. �X

4.2. Discrete space-time. The Schild group Σ is the subgroup of SL(2,C)
that leaves the discrete space-time grid {(t, x, y, z) : t, x, y, z ∈ Z} invariant
under the Lorentz transformation

X =

(
t+ z x+ iy

x− iy t− z

)
7→ SXS∗, S ∈ SL(2,C). (22)

See [13][6][4]. The Schild group Σ is generated by

A(1 + i),

(
(1− i)/2 (1− i)/2
−(1 + i)/2 (1 + i)/2

)
,

(
0 −(1− i)/

√
2

(1 + i)/
√

2 0

)
.

The last two matrices generate a subgroup of order 24.

Proposition 4.2. The group

Σ1 := 〈A(1 + i), A(1− i), B,Q〉, Q :=
(
i 0
0 −i

)
is a subgroup of index 6 in the Schild group Σ and is also a subgroup of index 3
in the Picard group SL(2, O1). Furthermore 〈A(1+ i), A(1− i), B〉 is a subgroup
of index 2 in Σ1.
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Proof. The first two assertions were proved in [4, Sect.4]. The group Σ1 is sim-
ilar to the Picard group discussed in Section 4.1, only the generators A(1), A(i)
are replaced by A(1 + i), A(1− i). This will be proved in a later paper. �X

For the Lorentz transformation (22), the generators B and Q of Σ1 have a
simple physical interpretation, namely

B : x 7→ −x, y 7→ y, z 7→ −z, Q : x 7→ −x, y 7→ −y, z 7→ z

whereas the time t remains unchanged. But t 7→ 2t+x∓y−z holds for A(1±i).
We remark that the groups A(1) and A(i) are not subgroups of Σ1.

4.3. The two-parabolic group. We consider the polynomial ring Z[x]. The
two-parabolic group is the subgroup of SL(2,Z[x]) generated by X := ( 1 0

x 1 )
and Y := ( 1 1

0 1 ); see e.g. [12][11]. Up to conjugation in SL(2,Z[x]), this is the
only subgroup generated by two parabolic matrices with distinct fixed points,
see [11].

The subgroup Π1 of Π was studied in Section 2. It is generated by A and
D := BA−1B−1. If V :=

(
a b
c d

)
∈ Π1 then b and c are odd polynomials [10,

(2.15)]. Hence

ϕ(V ) :=

(
a b/ξ

cξ d

)
∈ SL(2,Z[x]), x = ξ2 (23)

is well-defined and it can be checked that ϕ is a homomorphism. It follows from
(23) that ϕ(D) = X,ϕ(A) = Y . Hence ϕ(Π1) is the two-parabolic group.

The two-parabolic group is of interest in knot theory, see e.g. [1] [8, Chapt.4].
A knot K is a Jordan curve in R3. In many cases a discrete group Γ ⊂ SL(2,C)
is associated with the knot complement R3\K. For a 2-bridge knot a “Wirtinger
word” W ∈ ϕ(Π1) partially describes the knot K. To get Γ one chooses x such
that the relation XW = WY is satisfied.

For example, for the knot 41 = (5, 3) we have W = Y X−1Y −1X and
x = 1

2 (1 + i
√

3) [11, Example 8]. Going back to Π1 we have the relation

DAD−1A−1D = AD−1A−1DA and obtain Γ = ϕ(Π1(− 1
2 + 1

2 i
√

3)).
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