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Abstract. This study presents a new four-step iterative method for
solving nonlinear equations. The method is based on Newton’s method
and has order of convergence sixteen. As this method requires four
function evaluations and one derivative evaluation at each step, it is
optimal in the sense of the Kung and Traub conjecture. In terms of
computational cost, this implies that the efficiency index of our method
is 5
√

16 = 1.741. Preliminary numerical results indicate that the algo-
rithm is more efficient and performs better than other existing methods.
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Resumen. Este estudio presenta un nuevo método iterativo para re-

solver ecuaciones no lineales. El método está basado en método de

Newton y su orden de convergencia es dieciséis. Como este método re-

quiere cuatro evaluaciones de funciones y la evaluación de una derivada

en cada paso, es óptimo en el sentido de la conjetura de Kung y Traub.

En términos de costo computacional esto implica que el ı́ndice de efi-

ciencia de nuestro método es 5
√

16 = 1.741. Resultados numéricos pre-

liminares indican que el algoritmo es más eficiente que otros métodos

existentes.
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1. Introduction

Many complex problems in Science and Engineering involve functions of
nonlinear and transcendental nature in equations of the form

f(x) = 0, (1.1)

in which f : I → R, for an open interval I, is a continuously differentiable
real function. The boundary value problems appearing in the kinetic theory
of gases, elasticity, and other applied areas are reduced to solving that kind
of equations. Many optimization problems also lead to such equations. With
the advancements in computer hardware and software, this problem has gained
added importance.

Suppose that α ∈ I is a simple root of f , that is, f(α) = 0 and f ′(α) 6= 0.
Numerical iterative methods are often used to obtain the approximate solution
of such problems because it is not always possible to obtain their exact solution
by usual algebraic processes. Newton’s method is undoubtedly the most famous
iterative method to find α, by using the scheme

xn+1 = xn −
f(xn)

f ′(xn)
, (1.2)

which converges quadratically in some neighborhood of α [5],[8].

A number of ways have been considered by many researchers [1],[9],[2] so
to improve the local order of convergence of Newton’s method at the expense
of additional evaluations of functions, derivatives and changes in the points of
iterations. All these modifications are in the direction of increasing the local
order of convergence, with a view to increasing their efficiency indices. Indeed,
algorithm cost is another offsetting factor that decides the selection of a method
for particular types of problems. The effective cost of an algorithm is directly
affected by the following parameters:

(i) Termination criterion. Termination is the ending criterion of a process
which depends on the level of acceptability of the allowable error. Since a
numerical method gives only the approximation of the result, it is a critical
step in deciding the accuracy of any method and reliability of the result.

(ii) Number of iterations used. Iteration is the repetition of a particular
process like a generalized rule that we adopt in the first step and later im-
plement to the succeeding steps. The number of iterations used in obtaining
the result of a particular problem is the next factor that decides the length
of the solution of a problem. It is preferable to have a process that requires
a smaller number of iterations to reach its final solution.

(iii) Number of function evaluations. It depends on the number of times the
given function and their supporting functions used in the formula have to be
recalculated before arriving at the final result. It is always desirable to have
a method that requires a smaller number of function evaluations for reaching
its final result.
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This work concerns a new sixteenth-order method for estimating the simple
roots of the nonlinear equation (1.1). We need the following definitions.

Definition 1. [8] Let f be a real function with a simple root α and {xn}n≥0
be a sequence of real numbers, converging towards α. We say that the order of
convergence of the sequence is p, if there exists a constant real number C 6= 0,
called the asymptotic error constant, such that

lim
n→∞

|xn+1 − α|
|xn − α|p

= C.

Definition 2. [8] Let en = xn − α be the error in the n-th iteration. We call
the relation

en+1 = Cepn +O(ep+1
n )

the error equation.

If we can obtain the error equation for any iterative method, then the value
of p is its order of convergence and C is the asymptotic error constant.

Usually, the efficiency of a method is measured using the concept of efficiency
index, defined as follows.

Definition 3. [8] The efficiency index of a method is given by

EI = p1/β ,

where p is the order of convergence and β is the whole number of function
evaluations per iteration.

Many multi-step higher-order convergent methods have been introduced in
the recent past that use inverse, Hermite, and rational interpolations [6], [7],
[10], [4]. In developing these methods, so far, the conjecture of Kung and Traub
has remained the focus of attention. It states the following.

Conjecture 1. [3] An optimal iterative method without memory based on
m function evaluations would achieve an optimal convergence order of 2m−1.
Hence, the efficiency index is 2(m−1)/m.

Recently, Sargolzaei and Soleymani [6] showed that, using Hermite in-
terpolation, one can get a four-step fourteenth-order convergent method from
a three-step optimal eighth-order method. Their method is as follows:



yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

,

wn = zn − f(xn)+f(zn)
f(xn)

f [xn,yn]f(zn)
f [xn,zn]f [yn,zn]

,

xn+1 = wn − f(wn)
2f [xn,wn]+f [zn,wn]−2f [xn,zn]+(zn−wn)f [zn.xn,xn]

,

(1.3)



170 H. Esmaeili et al. An optimal sixteenth order convergent method ...

in which,

f [xn, yn] =
f(xn)− f(yn)

xn − yn
, f [zn, xn, xn] =

f [zn, xn]− f ′(xn)

zn − xn
.

They showed the method (1.3) has error equation

en+1 = c32c4(−4c22 + c3)2(4c32 − c2c3 + c4)e14n +O(e15n ),

where en = xn − α and ck = 1
k!

f(k)(α)
f ′(α) , k ≥ 2. Note that the method (1.3)

includes four function evaluations and one first derivative evaluation, which is
not optimal in the sense of Kung and Traub.

In the next section, a modification of (1.3) is presented to obtain an optimal
four-step sixteenth-order convergent method. To this end, using computed
quantities, we add a term to the fourth step of method (1.3) in such a way that
coefficients of e14n and e15n in the error equation will be zero. The important
feature of the new method is that it only adds some arithmetic calculations
without any evaluation of the function at another point iterated by (1.3), but
its order of convergence increases from fourteen to sixteen. Therefore, this
modified method has an efficiency index which equals 5

√
16 = 1.741, and is

better than the 5
√

14 = 1.695 of method (1.3). Hence, we provide a new example
which agrees with the conjecture of Kung and Traub for m = 5.

2. The new method and its convergence analysis

In this section, we use the computed quantities in method (1.3) so to modify
it and construct a sixteenth-order iterative method. To this end, let us define
the following notation:

an =
f(wn)

f(zn)f(yn)
, bn =

f(yn)3

f(xn)4
, cn =

f(zn)

f(xn)2
−

f(yn)3

f(xn)4
, un =

f(wn)

f(xn)f(zn)

vn =
f(yn)f(zn)

f(xn)3
, sn =

(
f(zn) −

f(yn)3

f(xn)2

)
f(yn)

f(xn)3
, tn =

(
f(zn)

f(yn)
−

f(yn)2

f(xn)2

)2
1

f(xn)
.

Suppose that G(an, bn, cn) and H(un, vn, sn, tn) are analytic functions in a
neighborhood of the origin. Consider the following modification of (1.3):



yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

,

wn = zn − f(xn)+f(zn)
f(xn)

f [xn,yn]f(zn)
f [xn,zn]f [yn,zn]

,

xn+1 = wn − f(wn)
2f [xn,wn]+f [zn,wn]−2f [xn,zn]+(zn−wn)f [zn.xn,xn]

− f(wn)f(zn)
f ′(xn)

[G(an, bn, cn) + 2H(un, vn, sn, tn)].

(2.1)
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The next theorem shows that method (2.1) is sixteenth-order convergent.

Theorem 1. Suppose that G(a, b, c) and H(u, v, s, t) are analytic functions in
a neighborhood of the origin, satifying

G(0) = −2H(0), ∇G(0) =

 1
−3
−4

 , ∇H(0) =


1
−6
−6
−2

 .
If α ∈ I is a simple root of (1.1) and the initial point x0 is sufficiently close
to α, then iterative scheme (2.1) defines a family of sixteenth-order convergent
methods with the following error equation:

en+1 = −c32(c22 − c3)2(3c32 − 4c2c3 + c4)
(
9c52 − 62c32c3 − 8c22c4 + c3c4

+ c2(18c23 + c5)
)
e16n +O(e17n ),

where, en = xn − α and ck = 1
k!

f(k)(α)
f ′(α) , k ≥ 2.

Proof. Using the Taylor expansion of the function f , we have

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)], (2.2)

and

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n +O(e6n)]. (2.3)

Dividing (2.2) by (2.3) gives

f(xn)

f ′(xn)
= en − cne2n + 2(c22 − c3)e3n + (7c2c3 − 4c32 − 3c4)e4n +O(e5n). (2.4)

So,

yn = α+ c2e
2
n + 2(−c22 + c3)e3n + (−7c2c3 + 4c32 + 3c4)e4n +O(e5n), (2.5)

which results in

f(yn) = f ′(α)[c2e
2
n + 2(−c22 + c3)e3n + (−7c2c3 + 4c32 + 3c4)e4n +O(e5n)]. (2.6)

In the same way, for the second step of (2.1) we have

zn = α+ (c32 − c2c3)e4n − 2(2c42 − 4c22c3 + c23 + c2c4)e5n +O(e6n), (2.7)

which implies

f(zn) = f ′(α)[(c32 − c2c3)e4n − 2(2c42 − 4c22c3 + c23 + c2c4)e5n +O(e6n)]. (2.8)
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Now, by expanding each existing divided differences in the third step of (2.1)
to a Taylor series, we have

f [xn, zn] = f ′(α)[1 + c2en + c3e
2
n + c4e

3
n + · · ·+O(e9n)],

f [yn, zn] = f ′(α)[1 + c22e
2
n + 2c2(−c22 + c3)e3n + · · ·+O(e9n)],

f [xn, yn] = f ′(α)[1 + c2en + (c22 + c3)e2n + (−2c32 + 3c2c3 + c4)e3n

+(4c42 − 8c22c3 + 2c23 + 4c2c4 + c5)e4n + · · ·+O(e9n)].

According to the above expansions, for the third step of (2.1), one can get

wn = α+ c22(c22 − c3)(3c32 − 4c2c3 + c4)e8n +O(e9n). (2.9)

Therefore,

f(wn) = f ′(α)[c22(c22 − c3)(3c32 − 4c2c3 + c4)e8n +O(e9n)]. (2.10)

In a similar way, we can write the Taylor series of each existing divided
differences in the fourth step of (2.1):

f [xn, wn] = f ′(α)[1 + c2en + c3e
2
n + c4e

3
n +O(e4n)],

f [zn, wn] = f ′(α)[1 + c22(c22 − c3)e4n +O(e5n)],

f [zn, xn, xn] = f ′(α)[c2 + 2c3en + 3c4e
2
n + 4c5e

3
n +O(e4n)].

By considering the above mentioned relations, one can deduce the equality

f(wn)

2f [xn, wn] + f [zn, wn]− 2f [xn, zn] + (zn − wn)f [zn, xn, xn]

= c22(c22 − c3)(3c32 − 4c2c3 + c4)e8n +O(e9n).

(2.11)

Now, consider the first-order Taylor series of G(X) and H(Y) around 0, in
which X = [a, b, c]T and Y = [u, v, s, t]T :

G(X) = G(0) + XT∇G(0) +O(‖X‖2)

= G(0) +
1

f ′(α)

[
((3Ga(0) +Gb(0))c32 − (4Ga(0) +Gc(0))c4)e2n +O(e3n)

]
,

H(Y) = H(0) + YT∇H(0) +O(‖Y‖2)

= H(0) +
1

f ′(α)

[
((3Hu(0) +Hv(0))c42 − (4Hu(0) +Hv(0) +Hs(0))c22c3

+Ht(0)c23 +Hu(0)c2c4)e3n +O(e4n)
]
.
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Hence,

G(X) + 2H(Y) = G(0) + 2H(0) + 1
f ′(α)

[
((3Ga(0) +Gb(0))c32

−(4Ga(0) +Gc(0))c2c3 +Ga(0)c4)e2n

−2((4Ga(0) + 5Gb(0)− 2Gc(0)− 3Hu(0)−Hv(0))c42

+(−9Ga(0)− 3Gb(0)− 2Gc(0) + 4Hu(0) +Hv(0) +Hs(0))c32c3

+(2Ga(0) +Gc(0)−Ht(0))c23 + (4Gb(0) +Gc(0)−Hu(0))c2c4

−Ga(0)c5)e3n +O(e4n)
]
.

On the other hand, from (2.3), (2.8), and (2.10) obtain

f(wn)f(zn)

f ′(xn)
= f ′(α)

[
c32(c22 − c3)2(3c32 − 4c2c3 + c4)e12n +O(e13n )

]
.

This implies that

f(wn)f(zn)

f ′(xn)
[G(X) + 2H(Y)] =

f ′(α)[G(0) + 2H(0)][c32(c22 − c3)2(3c32 − 4c2c3 + c4)]e12n

−2f ′(α)[G(0) + 2H(0)]c22(c22 − c3)
(
22c72 − 70c52c3 + 16c42c4

−23c22c3c4 + 3c23c4 + c32(64c23 − c5) + c2(−14c33 + 2c24 + c3c5)
)
e13n +O(e14n ).

So, if G(0) = −2H(0) we have

f(wn)f(zn)

f ′(xn)
[G(X) + 2H(Y)] =

c32(c
2
2 − c3)

2(3c32 − 4c2c3 + c4)((3Ga(0) +Gb(0))c
3
2 − (4Ga(0) +Gc(0))c2c3 +Ga(0)c4)e

14
n

−(c22(c
2
2 − c3)((156Ga(0) + 74Gb(0)− 12Gc(0)− 18Hu(0)− 6Hv(0))c

10
2

+(66Hu(0)− 706Ga(0)− 228Gb(0)− 28Gc(0) + 20Hv(0) + 6Hs(0))c
8
2c3

+(172Ga(0) + 42Gb(0) + 2Gc(0)− 12Hu(0)− 2Hv(0))c
7
2c4 − (16Ga(0) + 2Gc(0))c

2
2c

2
3c5

+(28Hu(0)− 488Ga(0)− 62Gb(0)− 46Gc(0) + 4Hv(0) + 2Hs(0))c
5
2c3c4 + 6Ga(0)c

2
3c

2
4

+(384Ga(0) + 12Gb(0) + 60Gc(0)− 16Hu(0)− 2Hv(0)− 2Hs(0)− 2Ht(0))c
3
2c

2
3c4

+(1114Ga(0) + 210Gb(0) + 158Gc(0)− 80Hu(0)− 22Hv(0)− 14Hs(0)− 6Ht(0))c
6
2c

2
3

−(12Ga(0) + 2Gb(0))c
6
2c5 + ((2Ht(0)− 56Ga(0)− 8Gc(0))c

3
3 + 4Ga(0)c

2
4 + 4Ga(0)c2c3c4c5

+((128Ga(0) + 36Gc(0) + 8Ht(0))c
3
3 + (2Hu(0)− 70Ga(0)− 6Gc(0))c

2
4 − 4Ga(0)c

3
2c4c5

+((32Hu(0)− 696Ga(0)− 52Gb(0)− 158Gc(0) + 8Hv(0) + 8Hs(0) + 14Ht(0))c
3
3

+(52Ga(0) + 4Gb(0) + 2Gc(0)− 2Hu(0))c
2
4 + (28Ga(0) + 2Gb(0) + 2Gc(0))c3c5c

4
2))e

15
n

+O(e16n ).
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Finally,

xn+1 − α = −c32(c
2
2 − c3)

2
(3c

3
2 − 4c2c3 + c4)((3Ga(0) +Gb(0))c

3
2

−(4Ga(0) +Gc(0))c2c3 + (Ga(0)− 1)c4)e
14
n

+c22(c
2
2 − c3)((156Ga(0) + 74Gb(0)− 12Gc(0)− 18Hu(0)− 6Hv(0))c

10
2

+(66Hu(0)− 706Ga(0)− 128Gb(0)− 28Gc(0) + 20Hv(0) + 6Hs(0))c
8
2c3

+(192Ga(0) + 42Gb(0) + 2Gc(0)− 12Hu(0)− 2Hv(0)− 38)c72c4 + (6Ga(0)− 6)c23c
2
4

+(126− 488Ga(0)− 62Gb(0)− 46Gc(0) + 28Hu(0) + 4Hv(0) + 2Hs(0))c
5
2c3c4

+(384Ga(0) + 12Gb(0) + 60Gc(0)− 16Hu(0)− 2Hv(0)− 2Hs(0)− 2Ht(0)− 120)c32c
2
3c4

−(4Ga(0)− 4)c32c4c5 − (12Ga(0) + 2Gb(0)− 6)c62c5 + (4Ga(0)− 4)c2c
3
4

+(4Ga(0)− 4)c2c3c4c5

+(1114Ga(0) + 210Gb(0) + 158Gc(0)− 80Hu(0)− 22Hv(0)− 14Hs(0)− 6Ht(0))c
6
2c

2
3

+(28− 56Ga(0)− 8Gc(0) + 2Ht(0))c2c
3
3c4 + (128Ga(0) + 36Gc(0)− 8Ht(0))c

2
2c

4
3

+(44− 70Ga(0)− 6Gc(0) + 2Hu(0))c
2
2c3c

2
4 − (16Ga(0) + 2Gc(0)− 8)c22c

2
3c5

+(14Ht(0)− 696Ga(0)− 52Gb(0)− 158Gc(0) + 32Hu(0) + 8Hv(0) + 8Hs(0))c
4
2c

3
3

+(52Ga(0) + 4Gb(0) + 2Gc(0)− 2Hu(0)− 30)c42c
2
4

+(28Ga(0) + 2Gb(0) + 2Gc(0)− 14)c42c3c5)e
15
n + · · ·+O(e17n ).

The above relation shows that by choosing

G(0) = −2H(0), ∇G(0) =

 1
−3
−4

 , ∇H(0) =


1
−6
−6
−2

 ,
we have

en+1 = −c32(c22 − c3)2(3c32 − 4c2c3 + c4)(9c52 − 62c32c3 − 8c22c4 + c3c4

+c2(18c23 + c5))e16n +O(e17n ),

which means the method (2.1) is sixteenth order convergent. �

3. Numerical results

There are some other sixteen-order methods in the literature. The authors
of [10] study a sixteen-order method (named as ZHFK method) defined by

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

,

wn = zn − f(xn)+f(zn)
f(xn)

f [xn,yn]f(zn)
f [xn,zn]f [yn,zn]

,

xn+1 = wn − f(wn)
h(wn)

,

(3.1)
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where

h(wn) = f [wn, zn] + (wn − zn)f [wn, zn, yn] + (wn − zn)(wn − yn)f [wn, zn, yn, xn]

+(wn − zn)(wn − yn)(wn − xn)f [wn, zn, yn, xn, 2],

and

f [wn, zn, yn] = f [wn,zn]−f [wn,yn]
wn−yn

f [wn, zn, yn, xn] = f [wn,zn]−f [zn,yn]
(wn−xn)(wn−yn) −

f [zn,yn]−f [yn,xn]
(wn−zn)(zn−xn)

f [wn, zn, yn, xn, 2] = f [wn,zn]−f [zn,yn]
(wn−xn)2(wn−yn) −

f [zn,yn]−f [yn,xn]
(wn−xn)2(zn−xn)

− f [zn,yn]−f [yn,xn]
(zn−xn)2(wn−xn)

+ f [yn,xn]−f ′(xn)
(wn−xn)(zn−xn)(yn−xn)

.

Also, in [4] following sixteenth-order method (LMMW method) was proposed:

yn = xn − f(xn)
f ′(xn)

,

zn = yn − 2f(xn)−f(yn)
2f(xn)−5f(yn)

f(yn)
f ′(xn)

,

wn = zn − f(zn)
f ′(zn)

xn+1 = wn − 2f(zn)−f(wn)
2f(zn)−5f(wn)

f(wn)
f ′(zn)

.

(3.2)

It is obvious that the efficiency indices of (3.1) and (3.2) are 5
√

16 = 1.741 and
6
√

16 = 1.584, respectively.

Now we will compare the accuracy of algorithm (1.3) (named SS me-thod),
the modified algorithm (2.1) (named MSS method), and the sixteenth-order
methods (3.1) and (3.2). In the MSS method (2.1), we use the simple choice of

G(a, b, c) = a− 3b− 4c, H(u, v, s, t) = u− 6v − 6s− 2t,

satisfying Theorem 2.1. For numerical experiments, we use the following test
functions:

f1(x) = ex
2+7x−30 − 1, α = 3,

f2(x) = x2 − ex − 3x+ 2, α ≈ 0.257530285439861,

f3(x) =
√
x2 + 2x+ 5− 2 sinx− x2 + 3, α ≈ 2.331969765588396,

f4(x) = sin 1
x − x, α ≈ 0.897539461280487,

f5(x) = 2 sinx+ 1− x, α ≈ 2.380061273139339,

f6(x) = e−x + cosx, α ≈ 1.746139530408013,

f7(x) = cos2 x− x
5 , α ≈ 2.320204274495726.
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Using two different initial guesses x0, we implement only three full iterations
of the above various sixteen-order methods and compute |f(x3)| and the time
together. All computations were done by MATLAB 10. Numerical results are
summarized in Table 1. In this table, we use the notation 0.180E-922/7.276
to show that, for SS method, |f1(x3)| < 0.180 × 10−922, when x0 = 3.1, while
the time for computing x3 is 7.276 seconds. From Table 1, it is clear that the
weakest accuracy is for LMMW method although it is rather fast, while the
strongest accuracy is for MSS method. The new MSS algorithm is comparable
with the other methods, and gives better results in all cases.

Table 1. Numerical results of various iterative methods

F x0 SS method MSS method ZHFK method LMMW method
f1 3.1 0.180E-922/7.276 0.136E-1176/9.411 0.984E-973/9.590 0.322E-154/6.783

f1 3.2 0.319E-303/7.442 0.395E-463/9.607 0.222E-402/9.965 0.503E-114/6.624

f2 0.9 0.156E-3463/8.335 0.347E-5009/10.821 0.241E-3546/10.761 0.252E-1281/6.528

f2 1 0.976E-2517/8.128 0.109E-3603/10.781 0.839E-2599/10.737 0.540E-917/6.544

f3 2.5 0.130E-3845/15.330 0.165E-5491/17.885 0.322E-3932/18.094 0.106E-840/16.007

f3 1.4 0.110E-2576/15.294 0.161E-3687 /17.854 0.127E-2745 /18.255 0.789E-709/15.961

f4 2 0.368E-1382/11.492 0.276E-1926/14.413 0.242E-1482/14.113 0.514E-472/11.408

f4 1.5 0.938E-1781/11.818 0.410E-2714 /14.000 0.715E-2009/14.626 0.123E-545/11.453

f5 4.1 0.663E-935/12.435 0.451E-1014/15.225 0.318E-811/14.383 0.170E-312/11.284

f5 3.5 0.652E-2350/11.493 0.353E-3013/14.315 0.277E-2249/14.719 0.222E-772/11.327

f6 1 0.325E-3105/14.912 0.299E-3830/18.183 0.506E-2700/17.530 0.108E-752/15.426

f6 1.6 0.610E-4633/14.256 0.456E-5377/17.223 0.351E-3867/17.668 0.338E-851/15.816

f7 2.1 0.102E-2251/11.672 0.815E-2701/15.083 0.120E-2283/15.067 0.347E-756/15.060

f7 2.6 0.393E-2138/11.680 0.215E-2508/14.666 0.363E-2082/14.373 0.824E-513/14.458

4. Conclusions

In this paper, a general four-step iterative method has been given for solving
nonlinear equations. An analytic proof of convergence order of this method was
given which demonstrates that the method has an optimal convergence order
sixteen. For this method, the number of function evaluations is five per full
step, so the efficiency index is 5

√
16 = 1.741, which is optimal in the sense of

Kung and Traub.
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