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Volumen 47(2013)2, páginas 191-204
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Abstract. This paper concerns with existence and uniqueness of a weak so-
lution for elliptic systems of partial differential equations with mixed bound-
ary conditions. The proof is based on establishing the coerciveness of bilin-
ear forms, related with the system of equations, which depend on first-order
derivatives of vector functions in Rn. The condition of coerciveness relates to
Korn’s type inequalities. The result is illustrated by an example of boundary
value problems for a class of elliptic equations including the equations of linear
elasticity.
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Resumen. Este art́ıculo trata sobre la existencia y unicidad de una solución
débil para sistemas eĺıpticos de ecuaciones diferenciales parciales con condi-
ciones de frontera mixtas. La demostración se basa en la determinación de la
coercividad de formas bilineales, relacionadas con el sistema de ecuaciones,
las cuales dependen de las derivadas de primer orden de funciones vectoriales
en Rn. La condición de coercividad se relaciona con desigualdades tipo Korn.
El resultado se ilustra mediante un ejemplo de problemas con valores en la
frontera para una clase de ecuaciones eĺıpticas, incluyendo las ecuaciones de
elasticidad lineal.

Palabras y frases clave. Solubilidad débil, problemas con valores en la frontera,
ecuaciones eĺıpticas, desigualdad tipo Korn.

191



192 FELIPE PONCE, LEONID LEBEDEV & LEONARDO RENDÓN

1. Introduction

Systems of elliptic partial differential equations arise frequently in problems
of continuum mechanics. To formulate boundary value problems (BVPs), we
should supply the equations with some boundary conditions. We will consider
the linear partial differential equations derived from an energy type functional.
We will get solutions to a BVP minimizing the energy type functional. Such
a solution will be called weak. As we expect to apply the results to physical
problems we use the terminology like “energy”, “displacements”, etc.

In general case solution of a BVP will be reduced to the minimization
problem for a functional of the form E(u) = 1

2B(u, u)−f(u) in a Hilbert space
H, where B is a symmetric bilinear form and f is a linear functional in H. It
is well know that

Theorem 1.1 ([15, 16]). Let B be a continuous symmetric bilinear form in a
Hilbert space H. If f is a continuous linear functional and B(u, u) ≥ C‖u‖2 for
every u ∈ H and some constant C > 0, then E attains a unique minimum in
H. Furthermore, u0 is the minimum point if and only if it is a unique solution
to equation

B(u0, v) = f(v) (1)

for every v ∈ H.

This simple result allows us to prove existence–uniqueness theorems for
mechanical problems; it motivates the following definition.

Definition 1.2. A bilinear form B in a Hilbert space is coercive if B(u, u) ≥
C‖u‖2 for every u ∈ H and some constant C.

In the proof of existence and uniqueness of weak solutions of the problems
under consideration, the most troublesome point is to establish the coerciveness
of B. In linear elasticity such coerciveness is also called Korn’s inequality which
was first proved in [13, 14]. Subsequent generalizations of Korn’s inequality can
be found in [9, 5, 17, 11, 6, 1]. One of the most important latest papers on
Korn’s inequality is due to V. A. Kondrat’ev and O. A. Oleynik [12], where it
is established in a general form.

Similar problems frequently arise in equilibrium or stationary linear bound-
ary value physical problems [3, 4, 7, 8, 10]. We extend some known results for
linear elasticity to a general case and consider a general coerciveness problem
of B, construction of abstract energy spaces related to B as well as the weak
setup of corresponding boundary value problems and their solvability.

Assume that Ω is a connected bounded open set in Rn with piecewise C1

boundary ∂Ω. Let B be a positive bilinear form, that is, if B
(
u,u

)
= 0 for a

smooth vector function u : Ω ⊂ Rn → Rn, such that u|Γ = 0 for some open
set Γ ⊂ ∂Ω, it follows that u = 0. Later we will show when this condition is
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valid. The linear space of smooth functions with u|Γ = 0 constitutes an inner
product space if we take B

(
u,v

)
as an inner product. Completion of this space

with respect to the norm induced by the inner product is an energy space.

The bilinear form used for the inner product is

B
(
u,v

)
=

∫
Ω

m∑
i,j=1

aij(x)Li

(
∇u,u, x

)
Lj

(
∇v,v, x

)
dx (2)

where aij ∈ L∞(Ω) are components of a symmetric positive definite matrix
and the linear forms Li are

Li

(
∇u,u, x

)
=

n∑
k,l=1

bkli (x)∂kul +

n∑
k=1

cki (x)uk.

Let f : Ω ⊂ Rn → Rn and g : ∂Ω − Γ → Rn be vector functions, these
define the energy functional

E
(
u
)

=
1

2
B
(
u,u

)
−
∫

Ω

f·u dx−
∫
∂Ω−Γ

g·u dS. (3)

By analogy with elasticity equations, we present B in the form

B
(
u,v

)
=∫

Ω

∑
t

[
−
∑
k,s

∂s

(∑
l

dklst∂kul + qkstuk

)
+
∑
k,l

qtkl∂kul +
∑
k

pktuk

]
vt dx +

∫
∂Ω−Γ

∑
t

[∑
k,l,s

dklst∂kulns +
∑
k,s

qkstukns

]
vt dS,

where dS is the surface area element, n the normal vector to the surface and
the coefficients are

dklst =
∑
i,j

aijbkli b
st
j , qkst =

∑
i,j

aijcki b
st
j , pkt =

∑
i,j

aijcki c
t
j .

If the functions involved in E are sufficiently smooth and satisfy the bound-
ary condition, functional E can be obtained from (2) integrating by parts. Us-
ing standard methods of calculus of variations, assuming existence of a smooth
minimizer u of E and minimizing E over the set of smooth functions equal to
zero on Γ, we get the corresponding system of partial differential equations

−
∑
k,s

∂s

(∑
l

dklst∂kul + qkstuk

)
+
∑
k,l

qtkl∂kul +
∑
k

pktuk = ft (4)
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for t = 1, . . . , n. Moreover, on ∂Ω− Γ we obtain the natural condition∑
k,s

(∑
l

dklst∂kul + qkstuk

)
ns = gt (5)

for t = 1, . . . , n, that is analogous to Neumann’s condition for the Laplace
equation, whereas on Γ we have Dirichlet condition

u|Γ = 0. (6)

Definition 1.3. A vector function u is a weak solution of the system in (4)
with boundary conditions (5) and (6) if it is a minimum point of the energy
functional E

(
u
)

in (3).

We will present some sufficient conditions for coerciveness and continuity
of B in the Hilbert space H of vector functions in

[
W 1,2(Ω)

]n
with zero trace

value in Γ ⊂ ∂Ω. In this way we will show that the energy norm B
(
u,u

) 1
2

is an equivalent norm in H, which in turn insure existence and uniqueness of
a weak solution of the boundary value problem (4)–(6) in the space H. We
apply this result to a particular type of bilinear forms, generalizing a result
from the theory of shallow shells [18] and consider an example of boundary
value problems for a class of elliptic equations including the equations of linear
elasticity.

Notation. The norm of a vector field u in
[
Lq(Ω)

]n
= Lq(Ω) × · · · × Lq(Ω)

and the L2(Ω) norm of ∇u are, respectively,

‖u‖q =

{∫
Ω

n∑
i=1

|ui|q
} 1

q

and
∥∥∇u∥∥

2
=

{∫
Ω

n∑
i,j=1

|∂iuj |2 dx

} 1
2

.

The norm of
[
W 1,2(Ω)

]n
= W 1,2(Ω)× · · · ×W 1,2(Ω) is

‖u‖1,2 =
{
‖u‖22 + ‖∇u‖22

} 1
2 .

2. Equivalence of Energy and Sobolev’s Norms

Let us rewrite the symmetric bilinear functional

B
(
u,v

)
=

∫
Ω

m∑
i,j=1

aij(x)Li

(
∇u,u, x

)
Lj

(
∇v,v, x

)
dx (7)

where
(
aij
)

is a symmetric positive definite matrix almost everywhere (a.e.)
and the linear forms Li are

Li

(
∇u,u, x

)
=

n∑
k,l=1

bkli (x)∂kul +

n∑
k=1

cki (x)uk.
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We can also write

Li

(
∇u,u, x

)
= Mi

(
∇u, x

)
+Ni

(
u, x

)
,

where Mi and Ni are linear forms. In what follows, we assume that

aij , bkli ∈ L∞(Ω) (8)

cki ∈ Lq(Ω) for n < q ≤ ∞. (9)

By the positive definiteness of
(
aij
)
, there exists a positive bounded a.e. func-

tion h such that

B
(
u,u

)
≥
∫

Ω

m∑
i=1

h(x)
(
Li

(
∇u,u, x

))2
dx.

From this, it is easy to prove thatB is positive definite if and only if Li

(
∇u,u, x

)
=

0 a.e. for every i implies that u = 0, a.e.

We will use the following classical properties of Sobolev spaces

Theorem 2.1 (The Embedding theorem [2]). Suppose that Ω is a bounded
open set satisfying the cone condition. Then

(i) If n = 2, W 1,2(Ω) is continuously and compactly embedded in Lq(Ω), for
1 ≤ q <∞; that is, for every u ∈W 1,2(Ω), there exists a constant C such
that ‖u‖q ≤ C‖u‖1,2 and if un ⇀ u in W 1,2(Ω), then un → 0 in Lq(Ω).

(ii) If n > 2, W 1,2(Ω) is continuously embedded in Lq(Ω), for 1 ≤ q ≤ 2n
n−2 ,

and compactly embedded in Lq(Ω), for 1 ≤ q < 2n
n−2 .

The continuous embedding is known as Sobolev embedding theorem, and
the compact embedding as Rellich-Kondrachov theorem.

The goal of this section is to show that the terms Mi, which include only
first order derivatives, determine the equivalence of the energy norm with the
Sobolev’s norm.

Theorem 2.2. If B is the bilinear form given by the Equation (7) and∫
Ω

m∑
i,j=1

aij(x)Mi

(
∇u, x

)
Mj

(
∇u, x

)
dx ≥ C

∥∥∇u∥∥2

2
, (10)

then the energy norm B
(
u,u

) 1
2 is equivalent to the norm of H.

Corollary 2.3. Suppose that B satisfies the hypothesis of Theorem 2.2 and let
f : Ω ⊂ Rn → Rn and g : ∂Ω− Γ→ Rn be vector functions. If
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f ∈
[
Lp(Ω)

]n
and g ∈

[
Lp∗(∂Ω− Γ)

]n
for 1 < p, p∗ ≤ ∞, if n = 2,

f ∈
[
L

2n
n+2 (Ω)

]n
and g ∈

[
L

2(n−1)
n (∂Ω− Γ)

]n
, if n > 2.

Then for the corresponding boundary value problem (4)–(6) there exists a unique
weak solution in H.

Proof. It is a consequence of Theorem 1.1 and the continuity of the functionals∫
Ω
f·v dx and

∫
∂Ω−Γ

g·v dx in
[
W 1,2(Ω)

]n
. �X

Inequality (10) is of Korn’s type. The name comes from the classical Korn’s
inequality in elasticity, which depends strongly on the fact that the vector field
is zero on some open subset of the boundary∫

Ω

n∑
i,j=1

(∂ivj + ∂jvi)
2 dx ≥ C‖∇v‖22.

Before proving Theorem 2.2, we need the following lemma.

Lemma 2.4. Suppose that Ω is a bounded open set satisfying the cone con-
dition and Z ⊂

[
W 1,2(Ω)

]n
is a closed subspace. Let B be a continuous posi-

tive definite bilinear form in Z. If the conditions vk ⇀ 0 in
[
W 1,2(Ω)

]n
and

B
(
vk,vk

)
→ 0 imply that ‖∇vk‖2 → 0, then

B
(
v,v

)
≥ C‖v‖21,2 (11)

for some constant C.

Proof. Suppose contrarily that B
(
v,v

)
≥ C‖v‖21,2 is false for any C. Then

we can find a sequence
{
vk

}
such that B

(
vk,vk

)
→ 0 and ‖vk‖1,2 = 1. As

Z is a Hilbert space and
{
vk

}
is bounded, we can assume that the sequence

converges weakly to some vector v0. As B(·,v0) is a continuous functional, by
positive definiteness of B,

0 ≤ B
(
vk − v0,vk − v0

)
≤ B

(
vk,vk

)
− 2B

(
vk,v0

)
+B

(
v0,v0

)
.

Taking the limit when k →∞ we get

0 ≤ −B(v0,v0).

So, B
(
v0,v0

)
= 0, which implies that v0 = 0. Thus vk ⇀ 0 in

[
W 1,2(Ω)

]n
. As

B
(
vk,vk

)
→ 0. by the assumptions we conclude that

∥∥∇vk

∥∥
2
→ 0.

As vk ⇀ 0 in
[
W 1,2(Ω)

]n
, by Rellich–Kondrachov’s theorem we see that

vk → 0 in
[
L2(Ω)

]n
. Thus vk → 0 in

[
W 1,2(Ω)

]n
, which contradicts the equal-

ity
∥∥vk

∥∥
1,2

= 1. �X
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Proof of Theorem 2.2. To verify the continuity of the bilinear form B, by
the symmetry of B it suffices to show that

∣∣B(u,u)∣∣ ≤ C‖u‖21,2. Choosing p

according to (9) and q such that 1
p + 1

q = 1
2 , for the components of the bilinear

form we have∣∣∣∣∫
Ω

aijbkli b
st
j ∂kul∂sut dx

∣∣∣∣ ≤ 1

2

∥∥aijbkli bstj ∥∥∞(‖∂kul‖22 + ‖∂sut‖22
)

≤ C1

∥∥u∥∥2

1,2
, (12)∣∣∣∣∫

Ω

aijbkli c
s
j∂kulus dx

∣∣∣∣ ≤ ∥∥aijbkli ∥∥∞∥∥csj∥∥p‖∂kul‖2‖us‖q
≤ C2

∥∥u∥∥2

1,2
, (13)∣∣∣∣∫

Ω

aijcki c
s
jukus dx

∣∣∣∣ ≤ 1

2

∥∥aij∥∥∞(∥∥cki ∥∥2

p
‖uk‖2q +

∥∥csj∥∥2

p
‖us‖2q

)
≤ C3

∥∥u∥∥2

1,2
. (14)

So we conclude that B is continuous.

By Lemma 2.4, now we only need to prove that uk ⇀ 0 in
[
W 1,2(Ω)

]n
and

B
(
uk,uk

)
→ 0 together imply that

∥∥∇uk

∥∥
2
→ 0. We write the bilinear form

as follows:

B
(
uk,uk

)
=

∫
Ω

m∑
i,j=1

aij(x)Mi

(
∇uk, x

)
Mj

(
∇uk, x

)
dx +

2

∫
Ω

m∑
i,j=1

aij(x)Mi

(
∇uk, x

)
Nj

(
uk, x

)
dx +

∫
Ω

m∑
i,j=1

aij(x)Ni

(
uk, x

)
Nj

(
uk, x

)
dx. (15)

By Rellich-Kondrachov’s theorem we know that
∥∥uk

∥∥
q
→ 0. The first In-

equality in (14) shows that the third term on the right-hand side of the In-
equality (15) tends to zero. In a similar fashion, by the first inequality in (13)
and the boundedness of ‖∂iuk,j‖2, the second term also tends to zero. Thus, by
Equation (10), we get

∥∥∇uk

∥∥
2
→ 0 as k →∞, which concludes the proof. �X

When we try to prove the coerciveness of B, the uniform positive defi-
niteness of

(
aij
)

allows us to simplify the proof and to extend theorems on
equivalence between energy norms and Sobolev’s norms.

Definition 2.5. The terms
(
aij
)

are uniformly positive definite if

m∑
i,j=1

aij(x)ξiξj ≥ θ
m∑
i=1

ξ2
i
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for every x ∈ Ω and some constant θ > 0.

This stronger requirement implies that

B
(
u,u

)
≥ θ

∫
Ω

m∑
i=1

(
Li

(
∇u,u, x

))2
dx.

In general, it is easier to prove the coerciveness of the form in the right hand
side, obtaining thus the coerciveness of the original bilinear form. Moreover,
once it is proved that

B̂
(
u,v

)
=

∫
Ω

m∑
i=1

Li

(
∇u,u, x

)
Li

(
∇v,v, x

)
dx (16)

is coercive, we can extend this result to a wider class of bilinear forms.

Theorem 2.6. Suppose that
(
aij(x)

)
is uniformly positive definite and

T (x) : Rm → Rm

(vi) 7→

(
m∑
t=1

tij(x)vj

)
(17)

is a non-singular linear operator at each point, such that
∥∥T (x)−1

∥∥ is bounded.
The bilinear form B defined by∫

Ω

m∑
i,j=1

aij

(
m∑
t=1

tit(x)Lt

(
∇u,u, x

))( m∑
t=1

tjt(x)Lt

(
∇v,v, x

))
dx (18)

is coercive if B̂ in (16) is coercive.

Proof. By uniform coerciveness of
(
aij
)
, the theorem follows from the inequal-

ity
m∑
i=1

(
m∑
j=1

tij(x)Lj

(
∇u,u, x

))2

≥ C
m∑
i=1

(
Li

(
∇u,u, x

))2
,

where C > 0 is a constant, after integrating over Ω. But this inequality is an
easy consequence of ∣∣∣[T (x)

]
(v)
∣∣∣ ≥ 1∥∥T (x)−1

∥∥ |v| ≥ 1

C1
|v|

where |·| is the euclidean norm in Rm and
∥∥T (x)−1

∥∥ ≤ C1 <∞. �X
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3. Generalization of a Bilinear Form in Elasticity

The following bilinear form is an extension of the body strain energy in theory
of shallow shells,

B
(
u,v

)
=

∫
Ω

n∑
i,j,k,l=1

aijkl(x)Lij

(
∇u,u, x

)
Lkl

(
∇v,v, x

)
dx

where aijkl = aklij ∈ L∞(Ω) are uniformly positive definite, that is, for some
θ > 0 and every x ∈ Ω we have

n∑
i,j,k,l=1

aijkl(x)ξijξkl ≥ θ
n∑

i,j=1

ξ2
ij .

The linear components are

Lij(v) = ∂ivj + ∂jvi + ckijvk

where ckij ∈ L∞(Ω).

By the uniform positive definiteness of
(
aijkl

)
, instead of B, we prove the

coerciveness of

B̂(u,v) =

∫
Ω

n∑
i,j=1

Lij

(
∇u,u, x

)
Lij(∇v,v, x) dx.

As noted in the preceding section, by means of Theorem 2.6, we can extend

equivalence of the energy norm B
(
u,u

) 1
2 to a greater class of energy norms.

Linear forms Lij can be considered as the components in the canonical basis
of operator

L(v) = ∇v +∇vT + C·v,
where the components of C·v are

(∑
k c

k
ijvk

)
. So we have the identity

B̂
(
u,v

)
=

∫
Ω

tr
(
L(u)L(v)T

)
dx. (19)

An additional advantage of B̂ is its invariance under orthogonal transfor-
mations. To see this, suppose {ei} is an orthonormal basis for Rn and let
ei′ =

∑
i q

i
i′ei define a new orthonormal basis, whose inverse transformation

is ei =
∑

i q
i′

i ei′ , where
∑

j′ q
j′

i q
k
j′ = δki . As neither ∇v nor C·v depend on a

particular basis and the trace of a matrix is invariant under orthogonal trans-
formations, we have from Equation (19) that
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∫
Ω

n∑
i,j=1

(
∂ivj + ∂jvi +

n∑
k=1

ckijvk

)2

dx =

∫
Ω′

n∑
i′,j′=1

(
∂i′vj′ + ∂j′vi′ +

n∑
k′=1

ck
′

i′j′vk′

)2

dx′

where ck
′

i′j′ =
∑

i,j,k c
k
ijq

k′

k q
i
i′q

j
j′ and Ω′ is the domain in the new coordinates.

Since the norm is an invariant, it can be seen that

‖ck
′

i′j′‖2∞ ≤
n∑

i,j,k=1

‖ckij‖2∞ = ‖C‖2∞.

As equation (10) holds by the classical Korn’s inequality, it remains to prove

that B̂ is positive definite.

Theorem 3.1. If B̂(u,u) = 0, then u = 0 a.e.

Proof. If B̂(u,u) = 0, then for any basis of Rn

2∂i′ui′ = −
n∑

k′=1

ck
′

i′i′uk′ .

Let us draw, rotating if it is necessary, a hypercube with side of length L
such that Γ passes through adjacent sides of the hypercube (Figure 1(a)). The
set of points in Ω enclosed by Γ and the hypercube is called V . The faces of
the hypercube in Ω′ are the planes xi′ = ai′ .

Let ni′ be the components of the normal vector to the surface. The function
(xi′ − ai′)u2

i′ni′ is zero on ∂V . Thus, using Gauss-Green formula, we get∫
V

∂i′
(

(xi′ − ai′)u2
i′

)
dx =

∫
V

u2
i′ + 2(xi′ − ai′)ui′∂i′ui′ dx′ = 0.

It follows∫
V

u2
i′ dx

′ ≤ 2

∫
V

∣∣(xi′ − ai′)ui′∂i′ui′ ∣∣ dx′
≤
∫
V

∣∣∣∣(xi′ − ai′)ui′ n∑
k′=1

ck
′

i′i′uk′

∣∣∣∣ dx′
≤ L

2

∫
V

n∑
k′=1

∣∣ck′i′i′ ∣∣(u2
i′ + u2

k′
)
dx′

=
L

2

∫
V

(∣∣ci′i′i′ ∣∣+

n∑
k′=1

∣∣ck′i′i′ ∣∣)u2
i′ +

∑
k′ 6=i′

∣∣ck′i′i′∣∣u2
k′ dx

′
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≤ L
n∑

k′=1

∥∥ck′i′i′∥∥∞ ∫
V

‖u‖2 dx′

≤ nL
∥∥C∥∥∞ ∫

V

‖u‖2 dx′.

Taking the sum over all the components of u we have∫
V

‖u‖2 dx′ ≤ n2L
∥∥C∥∥∞ ∫

V

‖u‖2 dx′. (20)

Choosing L small enough so that n2L
∥∥C∥∥∞ < 1, we get u = 0 a.e. in V . This

inequality makes sense for u ∈
[
W 1,2(Ω)

]n
. It is important to note that the

length L does not depend on the location of the hyperrectangles in Ω.

As for every point in Γ there exists a neighborhood where u = 0 a.e., then
in a neighborhood Ω∗ of Γ we have u = 0 a.e.. From this neighborhood, using
hyperrectangles as in Figure 1(b) we can extend the equality u = 0 a.e.. The
set Ω can be covered by a net of hyperrectangles stemming from Ω∗, covering a
subset Ω1 (Figure 2). Next, we use smaller hyperrectangles covering a greater
set Ω2 ⊂ Ω and so on, using at most countable many hyperrectangles, obtaining
u = 0 a.e. in Ω. �X

(a) Area of integration. (b) Extension by rectangles.

Figure 1

The system of equations related to B is

−
∑
i,j

∂l

(
dijkl

(
eij +

∑
s

csijus

))
+
∑
i,j

qijk
(
eij +

∑
s

csijus

)
= fk (21)
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Γ

Figure 2. The function u is zero in the region Ω1, depicted by gray rectangles.

where dijkl = aijkl + aijlk, qijk =
∑

s,t a
ijstckst and eij = ∂iuj + ∂jui. Natural

conditions are ∑
i,j,l

dijkl
(
eij +

∑
s

csijus

)
nl = gk. (22)

So we have established the following theorem.

Theorem 3.2. Let f : Ω ⊂ Rn → Rn and g : ∂Ω−Γ→ Rn be vector functions
such that

f ∈
[
Lp(Ω)

]n
and g ∈

[
Lp∗(∂Ω− Γ)

]n
for 1 < p, p∗ ≤ ∞, if n = 2,

f ∈
[
L

2n
n+2 (Ω)

]n
and g ∈

[
L

2(n−1)
n (∂Ω− Γ)

]n
, if n > 2.

Then for the system of partial differential equations (21) with boundary condi-
tions (6) and (22) exists a unique solution in H.
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