The Stekloff Problem for Rotationally Invariant Metrics on the Ball

El problema de Stekloff para métricas rotacionalmente invariantes en la bola
Óscar Andrés Montaño Carreño
Universidad del Valle, Cali, Colombia

Abstract

Let $\left(B_{r}, g\right)$ be a ball of radius $r>0$ in $\mathbb{R}^{n}(n \geq 2)$ endowed with a rotationally invariant metric $d s^{2}+f^{2}(s) d w^{2}$, where $d w^{2}$ represents the standard metric on S^{n-1}, the $(n-1)$-dimensional unit sphere. Assume that B_{r} has non-negative sectional curvature. In this paper we prove that if $h(r)>0$ is the mean curvature on ∂B_{r} and ν_{1} is the first eigenvalue of the Stekloff problem, then $\nu_{1} \geq h(r)$. Equality $\left(\nu_{1}=h(r)\right)$ holds only for the standard metric of \mathbb{R}^{n}.

Key words and phrases. Stekloff eigenvalue, Rotationally invariant metric, Nonnegative sectional curvature.

2010 Mathematics Subject Classification. 35P15, 53C20, 53C42, 53C43.
Resumen. Sea $\left(B_{r}, g\right)$ una bola de radio $r>0$ en $\mathbb{R}^{n}(n \geq 2)$ dotada con una métrica g rotacionalmente invariante $d s^{2}+f^{2}(s) d w^{2}$, donde $d w^{2}$ representa la métrica estándar sobre S^{n-1}, la esfera unitaria $(n-1)$-dimensional. Asumamos que B_{r} tiene curvatura seccional no negativa. En este artículo demostramos que si $h(r)>0$ es la curvatura media sobre ∂B_{r} y ν_{1} es el primer valor propio del problema de Stekloff, entonces $\nu_{1} \geq h(r)$. La igualdad $\left(\nu_{1}=h(r)\right)$ se tiene sólo si g es la métrica estándar de \mathbb{R}^{n}.
Palabras y frases clave. Valor propio de Stekloff, métrica rotacionalmente invariante, curvatura seccional no negativa.

1. Introduction

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold with boundary. The Stekloff problem is the following: find a solution for the equation

$$
\begin{align*}
& \Delta \varphi=0 \quad \text { in } \quad M \\
& \frac{\partial \varphi}{\partial \eta}=\nu \varphi \quad \text { on } \quad \partial M \tag{1}
\end{align*}
$$

where ν is a real number. Problem (1) for bounded domains in the plane was introduced by Stekloff in 1902 (see [7]). His motivation came from physics. The function φ represents a steady state temperature on M such that the flux on the boundary is proportional to the temperature. Problem (1) is also important in conductivity and harmonic analysis as it was initially studied by Calderón in [1]. This is because the set of eigenvalues for the Stekloff problem is the same as the set of eigenvalues of the well-known Dirichlet-Neumann map. This map associates to each function u defined on the boundary ∂M, the normal derivative of the harmonic function on M with boundary data u. The Stekloff problem is also important in conformal geometry in the problem of conformal deformation of a Riemannian metric on manifolds with boundary. The set of eigenvalues consists of an infinite sequence $0<\nu_{1} \leq \nu_{2} \leq \nu_{3} \leq \cdots$ such that $\nu_{i} \rightarrow \infty$. The first non-zero eigenvalue ν_{1} has the following variational characterization,

$$
\begin{equation*}
\nu_{1}=\min _{\varphi}\left\{\frac{\int_{M}|\nabla \varphi|^{2} d v}{\int_{\partial M} \varphi^{2} d \sigma}: \varphi \in C^{\infty}(\bar{M}), \int_{\partial M} \varphi d \sigma=0\right\} \tag{2}
\end{equation*}
$$

For convex domains in the plane, Payne (see [6]) showed that $\nu_{1} \geq k_{o}$, where k_{o} is the minimum value of the curvature on the boundary of the domain. Escobar (see [2]) generalized Payne's Theorem (see [6]) to manifolds 2-dimensionals with non-negative Gaussian curvature. In this case Escobar showed that $\nu_{1} \geq k_{0}$, where $k_{g} \geq k_{0}$ and k_{g} represents the geodesic curvature of the boundary. In higher dimensions, $n \geq 3$, for non-negative Ricci curvature manifolds, Escobar shows that $\nu_{1}>\frac{1}{2} k_{0}$, where k_{0} is a lower bound for any eigenvalue of the second fundamental form of the boundary. Escobar (see [3) established the following conjecture.

Conjecture 1.1. Let $\left(M^{n}, g\right)$ be a compact Riemannian with boundary and dimension $n \geq 3$. Assume that $\operatorname{Ric}(g) \geq 0$ and that the second fundamental form π satisfies $\pi \geq k_{0} I$ on $\partial M, k_{0}>0$. Then

$$
\nu_{1} \geq k_{0}
$$

Equality holds only for Euclidean ball of radius k_{0}^{-1}.

We propose to prove the conjecture for rotationally invariant metrics on the ball.

2. Preliminaries

Throughout this paper B_{r} will be the n-dimensional ball of radius $r>0$ parametrized by

$$
\begin{equation*}
X(s, w)=s Y(w), \quad 0 \leq s \leq r \tag{3}
\end{equation*}
$$

where $Y(w)$ is a standard parametrization of the unit sphere $(n-1)$-dimensional, S^{n-1}, given by

$$
\begin{aligned}
Y(w) & =Y\left(w_{1}, \ldots, w_{n-1}\right) \\
& =\left(\sin w_{n-1} \sin w_{n-2} \cdots \sin w_{1}, \ldots, \sin w_{n-1} \cos w_{n-2}, \cos w_{n-1}\right)
\end{aligned}
$$

$\left(B_{r}, g\right)$ will be the ball endowed with a rotationally invariant metric, i.e., such that in the parametrization (3) has the form

$$
d s^{2}+f^{2}(s) d w^{2}
$$

where $d w^{2}$ represents the standard metric on S^{n-1}, with $f(0)=0, f^{\prime}(0)=1$ and $f(s)>0$ for $0<s \leq r$.

If D is the Levi-Civita connection associated to the metric g, and $X_{s}(s, w)=$ $Y(w), X_{i}(s, w)=\frac{\partial}{\partial w_{i}} X(s, w)=s Y_{i}(w), i=1, \ldots, n-1$, are the coordinate fields corresponding to the parametrization (3), it is easy to verify the following identities:

$$
\begin{align*}
D_{X_{s}} X_{s} & =\overline{0} \tag{4}\\
D_{X_{i}} X_{s} & =\frac{f^{\prime}}{f} X_{i} \tag{5}\\
D_{X_{n-1}} X_{n-1} & =-f f^{\prime} X_{s} \tag{6}\\
D_{X_{n-2}} X_{n-2} & =-f f^{\prime} \sin ^{2} w_{n-1} X_{s}-\sin w_{n-1} \cos w_{n-1} X_{n-1} \tag{7}\\
D_{X_{n-1}} X_{n-2} & =\frac{\cos w_{n-1}}{\sin w_{n-1}} X_{n-2} \tag{8}
\end{align*}
$$

All calculations depend on the definition of the metric and the relation between the metric and the connection. To coordinate fields, this relation is given by

$$
\begin{equation*}
g\left(D_{X_{i}} X_{j}, X_{k}\right)=\frac{1}{2} X_{j} g\left(X_{i}, X_{k}\right)+\frac{1}{2} X_{i} g\left(X_{j}, X_{k}\right)-\frac{1}{2} X_{k} g\left(X_{i}, X_{j}\right) . \tag{9}
\end{equation*}
$$

These identities are necessary to calculate the mean curvature and the sectional curvatures. As an example we show the identity (8).

On the one hand

$$
g\left(D_{X_{n-1}} X_{n-2}, X_{s}\right)=0
$$

and

$$
g\left(D_{X_{n-1}} X_{n-2}, X_{i}\right)=0, \quad i=1, \ldots, n-3
$$

On the other hand

$$
\begin{aligned}
g\left(D_{X_{n-1}} X_{n-2}, X_{n-1}\right) & =\frac{1}{2} X_{n-2} g\left(X_{n-1}, X_{n-1}\right) \\
& =\frac{1}{2} X_{n-2} f^{2}(s)=0
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(D_{X_{n-1}} X_{n-2}, X_{n-2}\right) & =\frac{1}{2} X_{n-1} g\left(X_{n-2}, X_{n-2}\right) \\
& =\frac{1}{2} X_{n-1} f^{2} \sin ^{2} w_{n-1} \\
& =f^{2} \sin w_{n-1} \cos w_{n-1}
\end{aligned}
$$

From the above we conclude that $D_{X_{n-1}} X_{n-2}=\frac{\cos w_{n-1}}{\sin w_{n-1}} X_{n-2}$.

3. Curvatures

Let $X_{s}(r, w)=Y(w)$ be the outward normal vector field to the boundary of $B_{r}, \partial B_{r}$. The identity (5) implies that $g\left(D_{X_{i}} X_{s}, X_{i}\right)=g\left(\frac{f^{\prime}}{f} X_{i}, X_{i}\right)=$ $\left(\frac{f^{\prime}}{f}\right) g\left(X_{i}, X_{i}\right)$. Hence, the mean curvature $h(r)$ is given by

$$
\begin{equation*}
h(r)=\frac{1}{n-1} \sum_{i=1}^{n-1} g\left(X_{i}, X_{i}\right)^{-1} g\left(D_{X_{i}} X_{s}, X_{i}\right)=\frac{f^{\prime}(r)}{f(r)} \tag{10}
\end{equation*}
$$

Proposition 3.1. The sectional curvature $K\left(X_{i}, X_{s}\right), i=1, \ldots, n-1$ is given by

$$
\begin{equation*}
K\left(X_{i}, X_{s}\right)=\frac{-f^{\prime \prime}(s)}{f(s)} \tag{11}
\end{equation*}
$$

Proof. From (5), $g\left(D_{X_{i}} X_{s}, X_{i}\right)=f f^{\prime} d w^{2}\left(Y_{i}, Y_{i}\right)$. Differentiating with respect to X_{s} we get

$$
\begin{aligned}
g\left(D_{X_{s}} D_{X_{i}} X_{s}, X_{i}\right) & =-g\left(D_{X_{i}} X_{s}, D_{X_{i}} X_{s}\right)+\left(f^{\prime}\right)^{2} d w^{2}\left(Y_{i}, Y_{i}\right)+f f^{\prime \prime} d w^{2}\left(Y_{i}, Y_{i}\right) \\
& =-g\left(\frac{f^{\prime}}{f} X_{i}, \frac{f^{\prime}}{f} X_{i}\right)+\left(f^{\prime}\right)^{2} d w^{2}\left(Y_{i}, Y_{i}\right)+f f^{\prime \prime} d w^{2}\left(Y_{i}, Y_{i}\right) \\
& =f f^{\prime \prime} d w^{2}\left(Y_{i}, Y_{i}\right)
\end{aligned}
$$

From (4),

$$
g\left(D_{X_{i}} D_{X_{s}} X_{s}, X_{i}\right)=g\left(D_{X_{i}} \overline{0}, X_{i}\right)=0
$$

then

$$
\begin{aligned}
K\left(X_{i}, X_{s}\right) & =\frac{1}{g\left(X_{i}, X_{i}\right)}\left\{g\left(D_{X_{i}} D_{X_{s}} X_{s}, X_{i}\right)-g\left(D_{X_{s}} D_{X_{i}} X_{s}, X_{i}\right)\right\} \\
& =\frac{-f^{\prime \prime}}{f}
\end{aligned}
$$

Proposition 3.2. The sectional curvature $K\left(X_{n-1}, X_{n-2}\right)$ is given by

$$
\begin{equation*}
K\left(X_{n-1}, X_{n-2}\right)=\frac{1-\left(f^{\prime}(s)\right)^{2}}{f^{2}(s)} \tag{12}
\end{equation*}
$$

Proof. From identities (6), (7) and (8), we get

$$
g\left(D_{X_{n-1}} X_{n-1}, D_{X_{n-2}} X_{n-2}\right)=\left(f f^{\prime}\right)^{2} \sin ^{2} w_{n-1}
$$

and

$$
g\left(D_{X_{n-1}} X_{n-2}, D_{X_{n-1}} X_{n-2}\right)=f^{2} \cos ^{2} w_{n-1}
$$

From equation (9) it follows that

$$
g\left(D_{X_{n-2}} X_{n-2}, X_{n-1}\right)=-\frac{1}{2} X_{n-1} g\left(X_{n-2}, X_{n-2}\right)=-f^{2} \sin w_{n-1} \cos w_{n-1}
$$

Differentiating with respect to X_{n-1} we get

$$
\begin{aligned}
& g\left(D_{X_{n-1}} D_{X_{n-2}} X_{n-2}, X_{n-1}\right)= \\
& \quad-g\left(D_{X_{n-2}} X_{n-2}, D_{X_{n-1}} X_{n-1}\right)+f^{2}\left(\sin ^{2} w_{n-1}-\cos ^{2} w_{n-1}\right)
\end{aligned}
$$

Therefore

$$
\begin{align*}
g\left(D_{X_{n-1}} D_{X_{n-2}} X_{n-2}\right. & \left., X_{n-1}\right)= \\
& -\left(f f^{\prime}\right)^{2} \sin ^{2} w_{n-1}+f^{2}\left(\sin ^{2} w_{n-1}-\cos ^{2} w_{n-1}\right) \tag{13}
\end{align*}
$$

On the other hand,

$$
g\left(D_{X_{n-1}} X_{n-2}, X_{n-1}\right)=\frac{1}{2} X_{n-2} g\left(X_{n-1}, X_{n-1}\right)=0
$$

Differentiating this equation with respect to X_{n-2} we get

$$
\begin{align*}
& g\left(D_{X_{n-2}} D_{X_{n-1}} X_{n-2}, X_{n-1}\right)= \\
& \quad-g\left(D_{X_{n-1}} X_{n-2}, D_{X_{n-1}} X_{n-2}\right)=-f^{2} \cos ^{2} w_{n-1} \tag{14}
\end{align*}
$$

From equations (13) and 14 the proposition follows.

4. The First Nonconstant Eigenfunction for the Stekloff Problem on B_{r}

In the following theorem Escobar characterized the first eigenfunction of a geodesic ball which has a rotationally invariant metric (see 4]).

Theorem 4.1. Let B_{r} be a ball in \mathbb{R}^{n} endowed with a rotationally invariant metric $d s^{2}+f^{2}(s) d w^{2}$, where dw represents the standard metric on S^{n-1}, with $f(0)=0, f^{\prime}(0)=1$ and $f(s)>0$ for $0<s \leq r$. The first non-constant eigenfunction for the Stekloff problem on B_{r} has the form

$$
\begin{equation*}
\varphi(s, w)=\psi(s) e(w) \tag{15}
\end{equation*}
$$

where $e(w)$ satisfies the equation $\Delta e+(n-1) e=0$ on S^{n-1} and the function ψ satisfies the differential equation

$$
\begin{equation*}
\frac{1}{f^{n-1}(s)} \frac{d}{d s}\left(f^{n-1}(s) \frac{d}{d s} \psi(s)\right)-\frac{(n-1) \psi(s)}{f^{2}(s)}=0 \quad \text { in } \quad(0, r) \tag{16}
\end{equation*}
$$

with the conditions

$$
\begin{align*}
\psi^{\prime}(r) & =\nu_{1} \psi(r), \tag{17}\\
\psi(0) & =0
\end{align*}
$$

Proof. We use separation of variables and observe that the space $L^{2}\left(B_{r}\right)$ is equal to the space $L^{2}(0, r) \otimes L^{2}\left(S^{n-1}\right)$. Let $\left\{e_{i}\right\}, i=0,1,2, \ldots$, be a complete orthogonal set of eigenfunctions for the Laplacian on S^{n-1} with associated eigenvalues λ_{i} such that $0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots$. For $i \geq 1$, let ψ_{i} be the function satisfying

$$
\frac{1}{f^{n-1}(s)} \frac{d}{d s}\left(f^{n-1}(s) \frac{d}{d s} \psi_{i}(s)\right)-\frac{(n-1) \psi_{i}(s)}{f^{2}(s)}=0 \quad \text { in } \quad(0, r)
$$

$\psi_{i}^{\prime}(r)=\beta_{i} \psi_{i}(r), \psi_{i}(0)=0$.
Let $u_{0}=1$ and $u_{i}=\psi_{i}(s) e_{i}(w)$ for $i=1,2, \ldots$. The set $\left\{u_{i}\right\}$ for $i=$ $0,1,2, \ldots$ forms an orthogonal basis for $L^{2}\left(B_{r}\right)$.

Recall that the first non-zero Stekloff eigenvalue has the variational characterization

$$
\nu_{1}=\min _{\int_{\partial B_{r}} \varphi d \sigma=0} \frac{\int_{B_{r}}|\nabla \varphi|^{2} d v}{\int_{\partial B_{r}} \varphi^{2} d \sigma} .
$$

Since for $i \geq 1$

$$
\begin{aligned}
\beta_{i} & =\frac{\int_{B_{r}}\left|\nabla u_{i}\right|^{2} f^{n-1} d s d w}{\int_{\partial B_{r}} u_{i}^{2} f^{n-1} d w} \\
& =\frac{\int_{0}^{r}\left(\frac{d}{d s} \psi_{i}\right)^{2} f^{n-1} d s+\lambda_{i} \int_{0}^{r}\left(\psi_{i}\right)^{2} f^{n-3} d s}{\psi_{i}^{2}(r) f^{n-1}(r)}
\end{aligned}
$$

and $\lambda_{i} \geq \lambda_{1}=n-1$, we get that $\beta_{i} \geq \beta_{1}$. Because the competing functions in the variational characterization of ν_{1} are orthogonal to the constant functions on ∂B_{r}, we easily find that $\nu_{1}=\beta_{1}$.

Using the formula $\Delta_{g} \varphi=\frac{\partial^{2} \varphi}{\partial s^{2}}+(n-1) \frac{f^{\prime}}{f} \frac{\partial \varphi}{\partial s}+\frac{1}{f^{2}} \Delta \varphi$, where Δ is the standard Laplacian on S^{n-1}, the equation follows.

When $n=2$, the function ψ has the form $\psi(s)=c e^{\int^{s} \frac{d u}{f(u)}}$ for c constant. The first eigenvalue and the mean curvature are given by $\nu_{1}=\frac{\psi^{\prime}(r)}{\psi(r)}=\frac{1}{f(r)}$ and $h(r)=\frac{f^{\prime}(r)}{f(r)}$. From this we observe:
Remark 4.2. When $f(s)=s+s^{3}$ or $f(s)=\sinh (s)$ (the hyperbolic space with curvature -1$)$ since $f^{\prime}(r)>1$ then $\nu_{1}<h(r)$. Therefore for $n=2$, the condition that B_{r} has non-negative sectional curvature is necessary.

Remark 4.3. From Proposition 3.1, the condition of non-negative sectional curvature implies that $f^{\prime \prime}(s) \leq 0$, and therefore f^{\prime} is decreasing. Since $f^{\prime}(0)=$ 1 , then $f^{\prime}(r) \leq 1$. Hence, for $n=2$ the condition of non-negative sectional curvature implies $\nu_{1} \geq h(r)$. As examples of these metrics we have $f(s)=s$ (standard metric), $f(s)=\sin (s)$ (constant sectional curvature equal to 1) and $f(s)=s-\frac{s^{3}}{6}$.

5. Main Theorem

Theorem 5.1. Let $\left(B_{r}, g\right)$ be a ball in $\mathbb{R}^{n}(n \geq 3)$ endowed with a rotationally invariant metric. Assume that B_{r} has non-negative sectional curvature and mean curvature on $\partial B_{r}, h(r)>0$. Then the first non-zero eigenvalue of the Stekloff problem ν_{1} satisfies $\nu_{1} \geq h(r)$. Equality holds only for the standard metric of \mathbb{R}^{n}.

Proof. The coordinate functions are eigenfunctions of the Laplacian on S^{n-1}. From the equation (15) it follows that $\varphi(s, w)=\psi(s) \cos w_{n-1}$ is an eigenfunction associated to the first eigenvalue ν_{1}. Consider the function $F=\frac{1}{2}|\nabla \varphi|^{2}$. Since φ is a harmonic function and $\operatorname{Ric}(\nabla \varphi, \nabla \varphi) \geq 0$, the Weizenböck formula (see [5])

$$
\Delta F=|\operatorname{Hess}(\varphi)|^{2}+g(\nabla \varphi, \nabla(\Delta \varphi))+\operatorname{Ric}(\nabla \varphi, \nabla \varphi)
$$

implies that $\Delta F \geq 0$, and hence F is a subharmonic function. Therefore, the maximum of F is achieved at some point $P(r, \theta) \in \partial B_{r}$. Hopf's Maximum Principle implies that $\frac{\partial F}{\partial s}(r, \theta)>0$ or F is constant. Since

$$
\begin{aligned}
F(s, w) & =\frac{1}{2}\left\{\left(\frac{\partial \varphi}{\partial s}\right)^{2}+f^{-2}\left(\frac{\partial \varphi}{\partial w_{n-1}}\right)^{2}\right\} \\
& =\frac{1}{2}\left\{\left(\psi^{\prime}\right)^{2} \cos ^{2} w_{n-1}+\left(\frac{\psi}{f}\right)^{2} \sin ^{2} w_{n-1}\right\}
\end{aligned}
$$

and F is a non-constant function, then

$$
\begin{equation*}
\frac{\partial F}{\partial s}(r, \theta)=\psi^{\prime} \psi^{\prime \prime} \cos ^{2} \theta_{n-1}+\frac{\psi}{f}\left(\frac{\psi}{f}\right)^{\prime} \sin ^{2} \theta_{n-1}>0 \tag{18}
\end{equation*}
$$

Evaluating $\frac{\partial F}{\partial w_{n-1}}(s, w)$ at the point P we find that

$$
\begin{equation*}
\frac{\partial F}{\partial w_{n-1}}(r, \theta)=\left(\left(\frac{\psi}{f}\right)^{2}-\left(\psi^{\prime}\right)^{2}\right) \sin \theta_{n-1} \cos \theta_{n-1}=0 \tag{19}
\end{equation*}
$$

The equation (19) implies that

$$
\left(\frac{\psi(r)}{f(r)}\right)^{2}-\left(\psi^{\prime}(r)\right)^{2}=0
$$

or

$$
\sin \theta_{n-1}=0 \quad \text { and } \quad \cos ^{2} \theta_{n-1}=1
$$

or

$$
\sin ^{2} \theta_{n-1}=1 \quad \text { and } \quad \cos \theta_{n-1}=0
$$

If

$$
\left(\frac{\psi(r)}{f(r)}\right)^{2}-\left(\psi^{\prime}(r)\right)^{2}=0
$$

given that $\psi(r) \neq 0\left(\psi(r)=0\right.$ implies $\varphi=0$ on ∂B_{r} and thus, φ is a constant function on B_{r} which is a contradiction), it follow from (17) that

$$
\begin{equation*}
\left(\nu_{1}\right)^{2}=\left(\frac{\psi^{\prime}(r)}{\psi(r)}\right)^{2}=\left(\frac{1}{f(r)}\right)^{2} \tag{20}
\end{equation*}
$$

The condition $h(r)>0$ and 10 implies that $f^{\prime}(r)>0$. Since B_{r} has nonnegative sectional curvature then 12 implies that $1 \geq\left(f^{\prime}\right)^{2}$. Then

$$
\begin{equation*}
\left(\frac{1}{f(r)}\right)^{2} \geq\left(\frac{f^{\prime}(r)}{f(r)}\right)^{2}=(h(r))^{2} \tag{21}
\end{equation*}
$$

From (20) and 21 it follows that $\nu_{1} \geq h(r)$.
Equality holds only for $f^{\prime}(r)=1$. If

$$
\sin \theta_{n-1}=0 \quad \text { and } \quad \cos ^{2} \theta_{n-1}=1
$$

then

$$
F\left(r, \theta_{1}, \ldots, \theta_{n-2}, \theta_{n-1}\right)-F\left(r, \theta_{1}, \ldots, \theta_{n-2}, \frac{\pi}{2}\right)=\frac{1}{2}\left\{\left(\psi^{\prime}\right)^{2}-\left(\frac{\psi}{f}\right)^{2}\right\} \geq 0
$$

thus

$$
\left(\nu_{1}\right)^{2}=\left(\frac{\psi^{\prime}(r)}{\psi(r)}\right)^{2} \geq\left(\frac{1}{f(r)}\right)^{2} \geq\left(\frac{f^{\prime}(r)}{f(r)}\right)^{2}=(h(r))^{2}
$$

Equality holds only for $f^{\prime}(r)=1$.
If

$$
\sin ^{2} \theta_{n-1}=1 \quad \text { and } \quad \cos \theta_{n-1}=0
$$

from (18) we have

$$
\frac{\partial F}{\partial s}(P)>0
$$

since

$$
\frac{\psi}{f}\left(\frac{\psi}{f}\right)^{\prime}>0
$$

Thus

$$
\left(\frac{\psi}{f}\right)\left(\frac{f \nu_{1} \psi-f^{\prime} \psi}{f^{2}}\right)=\left(\frac{\psi}{f}\right)^{2}\left(\nu_{1}-h(r)\right)>0
$$

The inequality is strict.
In any case we conclude that $\nu_{1} \geq h(r)$. If equality is attained then $f^{\prime}(r)=$ 1. Since the sectional curvature is non-negative, then 11) implies that $f^{\prime \prime}(s) \leq$ 0. $f^{\prime}(0)=1=f^{\prime}(r)$ and $f^{\prime \prime}(s) \leq 0$ implies $f^{\prime} \equiv 1$. Since $f(0)=0$, then $f(s)=s$. Consequently g is the standard metric on \mathbb{R}^{n}.

References

[1] A. P. Calderón, On an Inverse Boundary Value Problem, Seminar in Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, Brazil), Soc. Brasileira de Matemática, 1980, pp. 65-73.
[2] J. F. Escobar, The Geometry of the First Non-Zero Stekloff Eigenvalue, Journal of Functional Analysis 150 (1997), 544-556.
[3] , An Isoperimetric Inequality and the First Steklov Eigenvalue, Journal of Functional Analysis 165 (1999), 101-116.
[4] _ A Comparison Theorem for the First Non-Zero Steklov Eigenvalue, Journal of Functional Analysis 178 (2000), 143-155.
[5] \qquad , Topics in PDE's and Differential Geometry, XII Escola de Geometria Diferencial, Goiania/Ed. da UFG, 2002.
[6] L. E. Payne, Some Isoperimetric Inequalities for Harmonic Functions, SIAM J. Math. Anal. 1 (1970), 354-359.
[7] M. W. Stekloff, Sur les problemes fondamentaux de la physique mathematique, Ann. Sci. École Norm 19 (1902), 445-490 (fr).
(Recibido en mayo de 2012. Aceptado en octubre de 2013)

Departamento de Matemáticas
Universidad del Valle
Facultad de Ciencias
Carrera 100, calle 13
Cali, Colombia
e-mail: oscar.montano@correounivalle.edu.co

