On Power-Associative Nilalgebras of Nilindex and Dimension n

Sobre nilálgebras de potencia asociativa de nilíndice y dimensión n

Juan C. Gutierrez Fernandez ${ }^{1, a, \boxtimes}$, Claudia I. Garcia ${ }^{1}$, Mary L. R. Montoya ${ }^{2}$
${ }^{1}$ Universidade de São Paulo, São Paulo, Brazil
${ }^{2}$ Universidad de Antioquia, Antioquia, Colombia

Abstract. We investigate the structure of commutative power-associative nilalgebras of dimension and nilindex n.

Key words and phrases. Commutative, Power-associative, Nilalgebra.
2010 Mathematics Subject Classification. 17A05, 17A30.

Resumen. Investigamos la estructura de nilálgebras conmutativas de potencia asociativa de dimensión y nilíndice n.

Palabras y frases clave. Conmutatividad, potencia asociativa, nilálgebra.

1. Introduction

Commutative power-associative algebras are a natural generalization of associative, alternative and Jordan algebras. An algebra is said to be power-associative if the subalgebra generated by any element is associative. We refer the reader to the paper [1] for more information. In [2] the authors classify Jordan powerassociative nilalgebras of nilindex n and dimension $n \geq 4$. In this paper we give the structure constants for power-associative nilalgebras of nilindex n and dimension $n \geq 5$.

Throughout this paper, \mathfrak{A} will be a commutative power-associative nilalgebra of dimension n over a field F of characteristic $\neq 2,3$ and 5 . For every $a \in \mathfrak{A}$ we will denote by \mathfrak{A}_{a} the subalgebra of \mathfrak{A} generated by a. We define inductively

[^0]the powers of $a \in \mathfrak{A}$ by $a^{1}=a$ and $a^{k}=a a^{k-1}$ for $k>1$. In a commutative power-associative algebra \mathfrak{A}, we have that $a^{i} a^{j}=a^{i+j}$ for every a of \mathfrak{A} and all positive integers i, j and hence \mathfrak{A}_{a} is spanned, as a vector space, by all the powers a^{k} with k a positive integer. We remember that in a commutative power-associative algebra, the algebra generated by all right multiplications $R_{x}: \mathfrak{A} \rightarrow \mathfrak{A}$, with $x \in \mathfrak{A}_{a}$, is in fact generated by R_{a} and $R_{a^{2}}$. A commutative algebra is called Engel if every right multiplication of \mathfrak{A} is nilpotent. We will use the process of linearization of identities, which is an important tool in our investigation. Thus, $p(x, y, z, t)=0$ will be the complete linearization of the fourth power-associative identity $x^{4}-\left(x^{2} x^{2}\right)=0$. Next, linearizing the identities $x^{2} x^{3}=x\left(x^{2} x^{2}\right)$ and $x^{3} x^{3}=\left(x^{2}\right)^{3}$ we get the following new identities
\[

$$
\begin{align*}
x^{4} y & =2 x^{3}(x y)+x^{2}\left(x^{2} y\right)+2 x^{2}(x(x y))-4 x\left(x^{2}(x y)\right), \tag{1}\\
x^{3}\left(x^{2} y\right)+2 x^{3}(x(x y)) & =2 x^{2}\left(x^{2}(x y)\right)+x^{4}(x y) \tag{2}
\end{align*}
$$
\]

For every positive integer $r \geq 3$, the identity $p\left(a^{r-2}, a, a, b\right)=0$ implies the well known multiplication identity

$$
\begin{align*}
& R_{a^{r}}=\frac{1}{3}\left(8 R_{a^{r-1}} R_{a}-2 R_{a} R_{a^{r-1}}+4 R_{a^{2}} R_{a^{r-2}}-2 R_{a}^{2} R_{a^{r-2}}-\right. \\
&\left.R_{a^{r-2}} R_{a^{2}}-2 R_{a} R_{a^{r-2}} R_{a}-2 R_{a^{r-2}} R_{a}^{2}\right) \tag{3}
\end{align*}
$$

We observe that each product in a commutative power-associative algebra \mathfrak{A} with b, one time, and a, s times, can be written as $a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)$, where i_{1}, \ldots, i_{k} are positive integers and $i_{1}+\cdots+i_{k}=s$. We get the following relevant facts about the structure of a commutative power-associative algebra \mathfrak{A}.

Lemma 1. Let $a, b \in \mathfrak{A}$ such that $b a \in \mathfrak{A}_{a}$. Then

$$
\begin{align*}
b a^{3} & =-a\left(b a^{2}\right)+2 a^{2}(b a), \\
b a^{4} & =a^{2}\left(b a^{2}\right), \tag{4}\\
a^{3}\left(b a^{2}\right) & =a^{4}(b a)
\end{align*}
$$

Furthermore,
(i) If $b a^{2} \in \mathfrak{A}_{a}$, then $b \mathfrak{A}_{a} \subset \mathfrak{A}_{a}$ and $a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)=a^{s-1}(b a)$ for all positive integers k, i_{1}, \ldots, i_{k} where $s=i_{1}+\cdots+i_{k} \geq 5$.
(ii) If $b a=0$ and $b \mathfrak{A}_{a}^{3} \subset \mathfrak{A}_{a}$, then

$$
\begin{aligned}
b a^{3} & =-a\left(b a^{2}\right), \\
a^{3}\left(b a^{2}\right) & =0, \\
b a^{5} & =-a\left(b a^{4}\right)=2 a^{2}\left(b a^{3}\right), \\
b a^{6} & =-a\left(b a^{5}\right)=a^{4}\left(b a^{2}\right)=a^{2}\left(b a^{4}\right), \quad \text { and } \\
a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right) & =0,
\end{aligned}
$$

for all positive integers k, i_{1}, \ldots, i_{k} where $i_{1}+\cdots+i_{k} \geq 7$.
Proof. Let $a, b \in \mathfrak{A}$ such that $a b \in \mathfrak{A}_{a}$. From identity $p(a, a, a, b)=0$ we get immediately $b a^{3}=-a\left(b a^{2}\right)+2 a^{2}(b a)$. Setting $x=a$ and $y=b$ in (1) immediately yields relation $b a^{4}=a^{2}\left(b a^{2}\right)$. Replacing x by a and y by b in (2) we get $a^{3}\left(b a^{2}\right)=a^{4}(b a)$.

Now we will prove (i). If $b a^{2} \in \mathfrak{A}_{a}$, then using (3) we can prove inductively on $r \geq 3$ that there exist $\lambda_{r}, \mu_{r} \in F$ such that $\lambda_{r}+\mu_{r}=1$ and

$$
\begin{equation*}
a^{r} b=\lambda_{r} a^{r-2}\left(b a^{2}\right)+\mu_{r} a^{r-1}(b a) . \tag{5}
\end{equation*}
$$

The cases $r=3,4$ are proved above. For $r>4$, we obtain from (3) and the induction hypothesis that $b a^{r}=(1 / 3)\left(4 a^{r-1}(b a)-a^{r-2}\left(b a^{2}\right)+2 a^{2}\left(b a^{r-2}\right)-\right.$ $\left.2 a\left(b a^{r-1}\right)\right)=(1 / 3)\left(4 a^{r-1}(b a)-a^{r-2}\left(b a^{2}\right)+2\left(\lambda_{r-2} a^{r-2}\left(b a^{2}\right)+\mu_{r-2} a^{r-1}(b a)\right)-\right.$ $\left.2\left(\lambda_{r-1} a^{r-2}\left(b a^{2}\right)+\mu_{r-1} a^{r-1}(b a)\right)\right)=(1 / 3)\left(\left(-1+2 \lambda_{r-2}-2 \lambda_{r-1}\right) a^{r-2}\left(b a^{2}\right)+\right.$ $\left.\left(4+2 \mu_{r-2}-2 \mu_{r-1}\right) a^{r-1}(b a)\right)$. Thus, if $b a^{2} \in \mathfrak{A}_{a}$, then relation (5) immediately yields relation $b \mathfrak{A}_{a} \subset \mathfrak{A}_{a}$. If $i_{k}=1$, then $a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)=a^{s-1}(b a)$ since $b a \in \mathfrak{A}_{a}$ and \mathfrak{A}_{a} is an associative algebra. If $b a^{2} \in \mathfrak{A}_{a}$ and $i_{k}=2$, then $a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)=a^{s-2}\left(b a^{2}\right)=a^{s-5}\left(a^{3}\left(b a^{2}\right)\right)=a^{s-5}\left(a^{4}(b a)\right)=$ $a^{s-1}(b a)$, since $b a^{2} \in \mathfrak{A}_{a}$ and $a^{3}\left(b a^{2}\right)=a^{4}(b a)$. If $b a^{2} \in \mathfrak{A}_{a}$ and $i_{k} \geq 3$, then we already proved that $b a^{i_{k}} \in \mathfrak{A}_{a}$ and hence

$$
\begin{aligned}
& a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)=a^{s-i_{k}}\left(a^{i_{k}} b\right)= \\
& a^{s-i_{k}}\left(\lambda_{i_{k}} a^{i_{k}-2}\left(b a^{2}\right)+\mu_{i_{k}} a^{i_{k}-1}(b a)\right)= \\
& \lambda_{i_{k}} a^{s-i_{k}}\left(a^{i_{k}-2}\left(b a^{2}\right)\right)+\mu_{i_{k}} a^{s-i_{k}}\left(a^{i_{k}-1}(b a)\right)= \\
& \lambda_{i_{k}} a^{s-1}(b a)+\mu_{i_{k}} a^{s-1}(b a)=\left(\lambda_{i_{k}}+\mu_{i_{k}}\right) a^{s-1}(b a)=a^{s-1}(b a) .
\end{aligned}
$$

For (ii), we will assume in what follows that $b a=0$ and $b \mathfrak{A}_{a}^{3} \subset \mathfrak{A}_{a}$, that is $b a=0$ and $b a^{k} \in \mathfrak{A}_{a}$ for all positive integers $k \geq 3$. Using (4) we get $b a^{3}=-a\left(b a^{2}\right)$ and $a^{3}\left(b a^{2}\right)=0$. Now

$$
\begin{aligned}
& 0=p\left(a, a, a, b a^{2}\right) / 6= \\
& \qquad \begin{aligned}
& a^{3}\left(b a^{2}\right)+a\left(a^{2}\left(b a^{2}\right)\right)+2 a\left(a\left(a\left(b a^{2}\right)\right)\right)-4 a^{2}\left(a\left(b a^{2}\right)\right)= \\
& \quad a\left(b a^{4}\right)-2 a\left(a\left(b a^{3}\right)\right)+4 a^{2}\left(b a^{3}\right)=a\left(b a^{4}\right)+2 a^{2}\left(b a^{3}\right)
\end{aligned}
\end{aligned}
$$

so that $a\left(b a^{4}\right)=-2 a^{2}\left(b a^{3}\right)$. Next, relation (3) for $r=5$ forces $b a^{5}=$ $(1 / 3)\left(-2 a\left(b a^{4}\right)+4 a^{2}\left(b a^{3}\right)-2 a\left(a\left(b a^{3}\right)\right)\right)=(1 / 3)\left(-2 a\left(b a^{4}\right)+2 a^{2}\left(b a^{3}\right)\right)=$ $(1 / 3)\left(-3 a\left(b a^{4}\right)\right)=-a\left(b a^{4}\right)$. Setting $x=a$ and $y=b a^{2}$ in (1) immediately yields relation $a^{4}\left(b a^{2}\right)=a^{2}\left(a^{2}\left(b a^{2}\right)\right)$ and now using second identity of (4) we get $a^{4}\left(b a^{2}\right)=a^{2}\left(b a^{4}\right)$. Thus,

$$
\begin{aligned}
0=p\left(a^{2}, a^{2}, a^{2}, b\right) / 6=b a^{6}+a^{2}\left(b a^{4}\right)+2 a^{2}\left(a^{2}\left(b a^{2}\right)\right)-4 a^{4}\left(b a^{2}\right) & = \\
b a^{6} & -a^{4}\left(b a^{2}\right) .
\end{aligned}
$$

Now, $a\left(b a^{5}\right)=-a\left(a\left(b a^{4}\right)=-a^{2}\left(b a^{4}\right)=-b a^{6}\right.$.
Taking $x=a$ and $y=b a^{2}$ in identity (2) we get

$$
\begin{gathered}
0=a^{3}\left(b a^{4}\right)+2 a^{3}\left(a\left(a\left(b a^{2}\right)\right)-2 a^{2}\left(a^{2}\left(a\left(b a^{2}\right)\right)\right)-a^{4}\left(a\left(b a^{2}\right)\right)=\right. \\
a^{3}\left(b a^{4}\right)-a^{4}\left(a\left(b a^{2}\right)\right)=a\left(a^{2}\left(b a^{4}\right)\right)+a^{4}\left(b a^{3}\right)= \\
a\left(b a^{6}\right)+a^{4}\left(b a^{3}\right)=a\left(b a^{6}\right)+a\left(a\left(a^{2}\left(b a^{3}\right)\right)\right)= \\
a\left(b a^{6}\right)+a\left(a\left(b a^{5}\right)\right) / 2=a\left(b a^{6}\right)-a\left(b a^{6}\right) / 2=a\left(b a^{6}\right) / 2 .
\end{gathered}
$$

Finally, we will prove that $x=a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)$ vanishes for all $i_{1}, i_{2}, \ldots, i_{k}$ positive integers with $s=\sum_{l=1}^{k} i_{l} \geq 7$. Using (3), we can prove, by induction on s, that the element $a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k}} b\right) \cdots\right)\right)$ is spanned by the set of all elements $a^{j_{1}}\left(a^{j_{2}}\left(\cdots\left(a^{j_{t}} b\right) \cdots\right)\right)$ with $j_{1}, \ldots, j_{t} \in\{1,2\}$ and $j_{1}+\cdots+j_{t}=s$. Thus, we can assume, without loss of generality, that $i_{1}, \ldots, i_{k} \in\{1,2\}$. If $i_{k}=1$, then $x=0$ since $b a=0$. If $i_{k}=2$ and $i_{k-1}=1$, then $x=$ $-a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k-2}}\left(b a^{3}\right)\right) \cdots\right)\right)=-a^{s-7}\left(a\left(a\left(a^{2}\left(b a^{3}\right)\right)\right)\right)=a^{k-7}\left(a\left(b a^{6}\right)\right) / 2=$ 0 since $b a^{3} \in \mathfrak{A}_{a}$. If $i_{k}=i_{k-1}=2$, then $x=a^{i_{1}}\left(a^{i_{2}}\left(\cdots\left(a^{i_{k-2}}\left(b a^{4}\right)\right) \cdots\right)\right)=$ $a^{s-7}\left(a\left(a^{2}\left(b a^{4}\right)\right)\right)=a^{s-7}\left(a\left(b a^{6}\right)\right)=0$. This complete the proof of the lemma.

2. Nilindex n

Throughout this section, \mathfrak{A} will be a commutative power-associative nilalgebra of dimension and nilindex n. Let a be an element in \mathfrak{A} with maximal nilindex. It is well known that $\mathfrak{A}^{k}=\mathfrak{A}_{a}^{k}$, for all $k \geq 2$ (see [2]). Hence

$$
\begin{equation*}
\mathfrak{A P}_{a}^{j} \subset \mathfrak{A}_{a}^{j+1} \tag{6}
\end{equation*}
$$

for all $j \geq 1$. Furthermore, $\mathfrak{A}^{n}=\mathfrak{A}_{a}^{n}=0$ and for each $x \in \mathfrak{A}$, the power x^{n-1} is in the annihilator of \mathfrak{A}.

For a finite list $S=\left\{a_{1}, \ldots, a_{n}\right\}$ we write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for the subspace consisting of all the linear combinations of elements of S.

Lemma 2. Let a be an element in \mathfrak{A} with maximal nilindex and k an integer with $1 \leq k \leq n-1$. Then there exists $b_{k} \in \mathfrak{A} \backslash \mathfrak{A}_{a}$ such that $b_{k} a^{k}=0$. The annihilator of a^{k} in \mathfrak{A} is $\left\langle b_{k}, a^{n-k}, a^{n-k+1}, \ldots, a^{n-1}\right\rangle$.

Proof. Take $b \in \mathfrak{A} \backslash \mathfrak{A}_{a}$. Then $\left\{b, a, a^{2}, \ldots, a^{n-1}\right\}$ is a basis of \mathfrak{A}. By the above lemma, $b a^{k} \in \mathfrak{A}_{a}^{k+1}$, so that $b a^{k}=\lambda_{k+1} a^{k+1}+\cdots+\lambda_{n-1} a^{n-1}$, for $\lambda_{k+1}, \ldots, \lambda_{n-1}$ in F. Then $b_{k} a^{k}=0$ for $b_{k}=b-\lambda_{k+1} a-\cdots-\lambda_{n-1} a^{n-k-1}$.

Finally, let $x=\xi_{0} b_{k}+\xi_{1} a+\xi_{2} a^{2}+\cdots+\xi_{n-1} a^{n-1}$ be an arbitrary element in \mathfrak{A}. Then $x a^{k}=\xi_{0} b_{k} a^{k}+\xi_{1} a^{k+1}+\xi_{2} a^{k+2}+\cdots+\xi_{n-k-1} a^{n-1}=\xi_{1} a^{k+1}+$ $\xi_{2} a^{k+2}+\cdots+\xi_{n-k-1} a^{n-1}$. This proves the lemma.

Corollary 3. Let $a \in \mathfrak{A}$ be an element in \mathfrak{A} with maximal nilindex. Then there exists $b \in \mathfrak{A} \backslash \mathfrak{A}_{a}$ such that ba $\in\left\langle a^{2}\right\rangle$ and $a^{n-2} b=0$. Furthermore, an element $c \in \mathfrak{A}$ satisfies $c a \in\left\langle a^{2}\right\rangle$ and $c a^{n-2}=0$ if and only if $c \in\left\langle b, a^{n-1}\right\rangle$.

We will denote by $\mathcal{P}(\mathfrak{A})$ the set of ordered pairs (a, b) of elements in \mathfrak{A} where a has maximal nilindex, and $b \in \mathfrak{A} \backslash \mathfrak{A}_{a}$ with $b a \in\left\langle a^{2}\right\rangle$ and $b a^{n-2}=0$. By definition and relation (6), we have that

$$
\begin{aligned}
b^{2} & \in \mathfrak{A}^{2}, \\
b a & =\lambda a^{2}, \\
b a^{k} & \subset\left\langle a^{k+1}, \ldots, a^{n-1}\right\rangle=\mathfrak{A}_{a}^{k+1} \quad \text { for } \quad k=2, \ldots, n-3, \\
b a^{n-2} & =b a^{n-1}=0,
\end{aligned}
$$

for any $(a, b) \in \mathcal{P}(\mathfrak{A})$.
For commutative power-associative nilalgebras of dimension 3 and nilindex 3 , we have one family of algebras $A(\alpha)=\left\langle b, a, a^{2}\right\rangle$, with $b^{2}=\alpha a^{2}, b a=0$, parametrized by $F /\left(F^{*}\right)^{2}$, that is $A(\alpha)$ is isomorphic to $A\left(\alpha^{\prime}\right)$ if and only if there exists $\gamma \in F^{*}$ such that $\alpha^{\prime}=\gamma^{2} \alpha$. We denote $F \backslash\{0\}$ by F^{*}.
M. Gerstenhaber and H. C. Myung [4] showed that commutative, powerassociative nilalgebras of dimension 4 over fields of characteristic $\neq 2$ are nilpotent and determined the isomorphic classes. They found one family of algebras parametrized by $F /\left(F^{*}\right)^{2}$ and four individual algebras.

Theorem 4. If \mathfrak{A} is a commutative power-associative nilalgebra over F with dimension and nilindex 4, then \mathfrak{A} has a pair $(a, b) \in \mathcal{P}(\mathfrak{A})$ where the nontrivial and nonzero product belong to one and only one of the list below:

$$
\begin{array}{rl}
A_{1}(\alpha): b^{2}=\alpha a^{2} & (\alpha \in F) \\
A_{2}: b^{2}=a^{3} & \\
A_{3}: & b a=a^{2} \\
A_{4}: b^{2}=a^{3} & b a=a^{2} \\
A_{5}: b^{2}=a^{2} & b a=a^{2}
\end{array}
$$

where $A_{1}(\alpha)$ is isomorphic to $A_{1}\left(\alpha^{\prime}\right)$ if and only if there exists $\gamma \in F^{*}$ such that $\alpha^{\prime}=\gamma^{2} \alpha$.

A description of commutative power-associative nilalgebras of dimension 5 was given by I. Correa and A. Suazo in [2] in the Jordan case, and by L. Elgueta and A. Suazo in [3] for algebras that are not Jordan.

Lemma 5. If \mathfrak{A} is a commutative power-associative nilalgebra over the field F with dimension and nilindex 5 and $(a, b) \in \mathcal{P}(\mathcal{A})$, then $b^{2} \in \mathfrak{A}_{a}^{3}$ and $b a^{2}-2 a(b a) \in \mathfrak{A}_{a}^{4}$.

In Theorem 6, we will show a classification of such algebras without proof.
Theorem 6. If \mathfrak{A} is a commutative power-associative nilalgebra of dimension and nilindex 5, then \mathfrak{A} has a basis $\left\{b, a, a^{2}, a^{3}, a^{4}\right\}$ with $(a, b) \in \mathcal{P}(\mathcal{A})$, and the other nonzero products belong to one and only one of the types listed below.

$$
\begin{aligned}
& A_{1}(\alpha): b^{2}=a^{3}+\alpha a^{4}, \quad b a=a^{2}, \quad b a^{2}=2 a^{3}, \quad(\alpha \in F), \\
& A_{2}(\alpha): b^{2}=\alpha a^{4}, \quad b a=a^{2}, \quad b a^{2}=2 a^{3}, \quad(\alpha \in F), \\
& A_{3}(\alpha): b^{2}=\alpha a^{4}, \quad b a^{2}=a^{4}, \quad(\alpha \in F), \\
& A_{4}(\alpha): b^{2}=\alpha a^{4}, \quad(\alpha \in F), \\
& A_{5}: b^{2}=a^{3}, \quad b a^{2}=a^{4}, \\
& A_{6}: b^{2}=a^{3} .
\end{aligned}
$$

Furthermore, we have the following conditions for two algebras in such a class to be isomorphic. For $i \in\{2,4\}$ we have that $A_{i}(\alpha) \cong A_{i}\left(\alpha^{\prime}\right)$ if and only if there exists $\gamma \in F^{*}$ such that $\alpha^{\prime}=\gamma^{2} \alpha$. Next, $A_{3}(\alpha) \cong A_{3}\left(\alpha^{\prime}\right)$ if and only if $\alpha=\alpha^{\prime}$. Finally, we have that $A_{1}(\alpha) \cong A_{1}\left(\alpha^{\prime}\right)$ if and only if there exists $\gamma \in F^{*}$ such that

$$
\alpha^{\prime}=\frac{16 \alpha-\gamma^{4}+1}{16 \gamma^{4}} .
$$

We observe that the algebras $A_{4}(\alpha)$ are associative. The algebras $A_{3}(\alpha)$, A_{5} and A_{6} are Jordan and are not associative. On the other hand, the algebras $A_{1}(\alpha)$ and $A_{2}(\alpha)$ are not Jordan.

Lemma 7. Let \mathfrak{A} be a commutative power-associative nilalgebra over the field F with dimension and nilindex 6 . Take $(a, b) \in \mathcal{P}(\mathfrak{A})$. Then there exist scalars $\alpha, \beta, \lambda, \lambda_{1}, \lambda_{2} \in F$ such that

$$
\begin{align*}
b^{2} & =\alpha a^{4}+\beta a^{5}, \\
b a & =\lambda a^{2}, \\
b a^{2} & =\lambda_{1} a^{4}+\lambda_{2} a^{5}, \tag{7}\\
b a^{3} & =2 \lambda a^{4}-\lambda_{1} a^{5} .
\end{align*}
$$

Reciprocally, if $\alpha, \beta, \lambda, \lambda_{1}$ and λ_{2} are scalars and \mathfrak{B} is a commutative algebra with basis $\left\{b, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$ and products $b a^{4}=b a^{5}=a^{k}=0, a^{i} a^{j}=a^{i+j}$ for
all $k \geq 6$ and for all positive integers i, j and (7), then \mathfrak{B} is a power-associative nilalgebra of dimension and nilindex 6. Furthermore, \mathfrak{A} is Jordan if and only if $\lambda=0=\lambda_{1}$.

Proof. By (6), we know that $b^{2} \in \mathfrak{A}^{2}=\mathfrak{A}_{a}^{2}$ and $b a^{k} \in \mathfrak{A}^{k+1}=\mathfrak{A}_{a}^{k+1}$ for $k=2,3$.

Because $(a, b) \in \mathcal{P}(\mathcal{A})$, we have that $b a^{4}=0$ and there exists $\lambda \in F$ such that $b a=\lambda a^{2}$. By (4) we have that $a^{2}\left(b a^{2}\right)=b a^{4}=0$ so that $b a^{2} \in \mathfrak{A}_{a}^{4}$. Let $\lambda_{1}, \lambda_{2} \in F$ such that $b a^{2}=\lambda_{1} a^{4}+\lambda_{2} a^{5}$. Now Lemma 1 forces $b a^{3}=$ $-a\left(b a^{2}\right)+2 a^{2}(b a)=-a\left(b a^{2}\right)+2 \lambda a^{4}$ and hence $b a^{3}=2 \lambda a^{4}-\lambda_{1} a^{5}$. Next, $0=$ $p(a, a, b, b) / 4=a\left(a b^{2}\right)+b\left(b a^{2}\right)+2 a(b(b a))+2 b(a(b a))-4(b a)^{2}-2 a^{2} b^{2}=-a^{2} b^{2}$ so that $b^{2} \in \mathfrak{A}_{a}^{4}$. This completes the proof of the first part of the lemma.

Reciprocally, let $x=\xi b+y$ be an element in \mathfrak{B}, where $y=\sum_{i=1}^{5} \xi_{i} a^{i}$. Then

$$
\begin{align*}
& x^{2} \equiv y^{2}+2 \xi \xi_{1} \lambda a^{2} \quad \bmod \left\langle a^{4}, a^{5}\right\rangle, \\
& x^{3} \equiv y^{3}+2 \xi_{1}^{2} \xi \lambda a^{3}+\xi \xi_{1}\left(\xi_{1} \lambda_{1}+2 \xi \lambda \lambda_{1}+6 \xi_{2} \lambda\right) a^{4} \bmod \left\langle a^{5}\right\rangle, \\
& x^{4}=\left(x^{2}\right)^{2}=y^{4}+4 \xi \xi_{1}^{2} \lambda\left(\xi_{1}+\xi \lambda\right) a^{4}+\left(8 \xi \xi_{1}^{2} \xi_{2} \lambda\right) a^{5}, \tag{8}\\
& x^{5}=\xi_{1}^{3}\left(\xi_{1}+2 \xi \lambda\right)^{2} a^{5},
\end{align*}
$$

and hence \mathfrak{B} is a power-associative nilalgebra of nilindex 6 .
Finally, we observe that $\left(a^{2} b\right) a-a^{2}(b a)=\lambda_{1} a^{5}-\lambda a^{4}$ and hence $\lambda=0=\lambda_{1}$ if \mathfrak{A} is Jordan. Reciprocally, if $\lambda=0=\lambda_{1}$, then $\left(b-\lambda_{2} a^{3}\right) A^{2}=0$ and Theorem 2.1 of [3] implies that \mathfrak{A} is Jordan. This completes the proof of the lemma.

Lemma 8. Let \mathfrak{A} be a commutative power-associative nilalgebra over the field F with dimension and nilindex 7. Take $(a, b) \in \mathcal{P}(\mathfrak{A})$. Then $b a=0$ and there exist scalars $\alpha, \beta, \lambda, \lambda_{1}, \lambda_{2} \in F$ such that

$$
\begin{align*}
& b^{2}=\lambda^{2} a^{4}+\alpha a^{5}+\beta a^{6}, \\
& b a^{2}=\lambda a^{4}+\lambda_{1} a^{5}+\lambda_{2} a^{6}, \\
& b a^{3}=a^{5}-\lambda_{1} a^{6}, \tag{9}\\
& b a^{4}= \\
& \lambda a^{6} .
\end{align*}
$$

Reciprocally, if $\alpha, \beta, \lambda, \lambda_{1}$ and λ_{2} are scalars and \mathfrak{B} is a commutative algebra with basis $\left\{b, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}\right\}$ and products $a b=0=b a^{5}=b a^{6}=a^{k}$, $a^{i} a^{j}=a^{i+j}$ for all $k \geq 7$ and for all positive integers i, j and (9), then \mathfrak{B} is a power-associative nilalgebra of dimension and nilindex 7.

Furthermore, \mathfrak{A} is Jordan if and only if $\lambda=0=\lambda_{1}$.
Proof. Because $(a, b) \in \mathcal{P}(\mathcal{A})$ and (6), we know that $b^{2} \in \mathfrak{A}^{2}=\mathfrak{A}_{a}^{2}, b a=\lambda_{0} a^{2}$, $b a^{k} \in \mathfrak{A}^{k+1}=\mathfrak{A}_{a}^{k+1}$ for $k=2,3,4, b a^{5}=0$ and $b a^{6}=0$.

Combining the above relations and (i) of Lemma 1 we have that $\lambda_{0} a^{6}=$ $a^{4}(b a)=b a^{5}=0$ so that $\lambda_{0}=0$ and hence $b a=0$. Also, by (i) of Lemma 1 we have $a^{3}\left(b a^{2}\right)=b a^{5}=0$ and hence $b a^{2} \in \mathfrak{A}_{a}^{4}$. Thus, we have $b a^{2}=\lambda a^{4}+$ $\lambda_{1} a^{5}+\lambda_{2} a^{6}$, for $\lambda, \lambda_{1}, \lambda_{2} \in F$. Using (4) we have that $b a^{3}=-a\left(b a^{2}\right)+a^{2}(b a)=$ $-a\left(b a^{2}\right)=-\lambda a^{5}-\lambda_{1} a^{6}$ and $b a^{4}=a^{2}\left(b a^{2}\right)=\lambda a^{6}$. Now

$$
\begin{aligned}
& 0=p(a, a, b, b) / 4= \\
& \qquad \begin{array}{l}
a\left(a b^{2}\right)+b\left(b a^{2}\right)+2 a(b(b a))+2 b(a(b a))-2 a^{2} b^{2}-4(a b)^{2}= \\
\quad a\left(a b^{2}\right)+b\left(b a^{2}\right)-2 a^{2} b^{2}=-a\left(a b^{2}\right)+b\left(b a^{2}\right)=-a\left(a b^{2}\right)+\lambda^{2} a^{6},
\end{array}
\end{aligned}
$$

since $a\left(a b^{2}\right)=a^{2} b^{2}$ and $b\left(b a^{2}\right)=b\left(\lambda a^{4}+\lambda_{1} a^{5}+\lambda_{2} a^{6}\right)=\lambda^{2} a^{6}$. Thus, we have proved that $a\left(a b^{2}\right)=\lambda^{2} a^{6}$. This completes the proof of the first part of the lemma.

Reciprocally, let $x=\xi b+y$ be an element in \mathfrak{B}, where $y=\sum_{i=1}^{6} \xi_{i} a^{i}$. Then

$$
\begin{aligned}
& x^{2} \equiv y^{2}+\xi \lambda\left(\xi \lambda+2 \xi_{2}\right) a^{4} \quad \bmod \left\langle a^{5}, a^{6}\right\rangle, \\
& x^{3} \equiv y^{3}+\xi \xi_{1}^{2} \lambda a^{4}+\xi \xi_{1}\left(\xi \lambda^{2}+\xi_{1} \lambda_{1}\right) a^{5} \bmod \left\langle a^{6}\right\rangle, \\
& x^{4}=\left(x^{2}\right)^{2}=y^{4}+2 \xi \xi_{1}^{2} \lambda\left(\xi \lambda+2 \xi_{2}\right) a^{6}, \\
& x^{5}=y^{5}+\xi \xi_{1}^{4} \lambda a^{6}, \\
& x^{6}=y^{6}=\xi_{1}^{6} a^{6},
\end{aligned}
$$

so that \mathfrak{B} is a power-associative nilalgebra of nilindex 7 .
Finally, if \mathfrak{A} is Jordan, then $0=\left(a^{2} b\right) a-a^{2}(b a)=\left(a^{2} b\right) a=\lambda a^{5}+\lambda_{1} a^{6}$, so that $\lambda=0=\lambda_{1}$. Reciprocally, if $\lambda=0=\lambda_{1}$, then $\left(b-\lambda_{2} a^{4}\right) \mathfrak{A}^{2}=0$ and Theorem 2.1 of [3] implies that \mathfrak{A} is Jordan. This proves the lemma.

Theorem 9. Let \mathfrak{A} be a commutative power-associative nilalgebra over the field F with dimension and nilindex n and $n \geq 8$. Take $(a, b) \in \mathcal{P}(\mathfrak{A})$. Then

$$
\begin{align*}
b a & =0, \\
a^{2} b^{2} & =0, \\
a^{3}\left(b a^{2}\right) & =0, \\
b a^{3} & =-a\left(b a^{2}\right), \tag{10}\\
b a^{4} & =a^{2}\left(b a^{2}\right), \\
b a^{k} & =0,
\end{align*}
$$

for all $k \geq 5$.
Reciprocally, if $\alpha, \beta, \lambda, \lambda_{1}$ and λ_{2} are scalars in F and \mathfrak{B} is a commutative algebra with basis $\left\{b, a, a^{2}, a^{3}, \ldots, a^{n-1}\right\}$ and products $b a=0, a^{n}=0, a^{i} a^{j}=$ a^{i+j}, for all positive integers i, j, and

$$
\begin{array}{rlrl}
b^{2} & = & \alpha a^{n-2}+\beta a^{n-1}, & \\
b a^{2} & =\lambda a^{n-3}+\lambda_{1} a^{n-2}+\lambda_{2} a^{n-1}, & \\
b a^{3} & = & -\lambda a^{n-2}-\lambda_{1} a^{n-1}, \tag{11}\\
b a^{4} & = \\
b a^{k} & =\quad 0, & & \lambda a^{n-1}, \\
\end{array}
$$

then \mathfrak{B} is a power-associative nilalgebra of dimension and nilindex n.
Furthermore, \mathfrak{B} is Jordan if and only if $\lambda=0=\lambda_{1}$.
Proof. Because $(a, b) \in \mathcal{P}(\mathfrak{A})$, we know that $\mathfrak{A}^{2} \subset \mathfrak{A}_{a}^{2}, b a=\lambda_{0} a^{2}, b a^{k} \subset \mathfrak{A}_{a}^{k+1}$ for $k=2, \ldots, n-3, b a^{n-2}=0$ and $b a^{n-1}=0$. By (i) of Lemma 1 we have that $\lambda_{0} a^{n-1}=a^{n-3}(b a)=b a^{n-2}=0$ so that $\lambda_{0}=0$ and hence $b a=0$. Also, by (i) of Lemma 1 we have

$$
\begin{aligned}
a^{3}\left(b a^{2}\right) & =a^{4}(b a)=0, \\
b a^{k} & =a^{k-1}(b a)=0 \quad \text { for } \quad k \geq 5 .
\end{aligned}
$$

Using identities of (4) we have that $b a^{3}=-a\left(b a^{2}\right)+a^{2}(b a)=-a\left(b a^{2}\right)$ and $a^{2}\left(b a^{2}\right)=b a^{4}$. Now

$$
\begin{aligned}
& 0=p(a, a, b, b) / 4= \\
& \qquad \begin{array}{l}
a\left(a b^{2}\right)+b\left(b\left(a^{2}\right)\right)+2 a(b(b a))+2 b(a(b a))-2 a^{2} b^{2}-4(a b)^{2}
\end{array}= \\
& a\left(a b^{2}\right)-2 a^{2} b^{2}=-a\left(a b^{2}\right)
\end{aligned}
$$

so that $a\left(a b^{2}\right)=0$. This completes the proof of the first part of the lemma.
Reciprocally, let $x=\xi b+y$ be an elements in \mathfrak{B}, where $y=\sum_{i=1}^{n-1} \xi_{i} a^{i}$. Then

$$
\begin{aligned}
x^{2} & \equiv y^{2}+2 \xi \xi_{2} \lambda a^{n-3} \quad \bmod \left\langle a^{n-2}, a^{n-1}\right\rangle \\
x^{3} & \equiv y^{3}+\xi \xi_{1}^{2}\left(\lambda a^{n-3}+\lambda_{1} a^{n-2}\right) \quad \bmod \left\langle a^{n-1}\right\rangle, \\
x^{4} & =\left(x^{2}\right)^{2}=y^{4}+4 \xi \xi_{1}^{2} \xi_{2} \lambda a^{n-1}, \\
x^{5} & =y^{5}+\xi \xi_{1}^{4} \lambda a^{n-1}, \\
x^{k} & =y^{k} \quad \text { for all } \quad k>5, \\
x^{n-1} & =y^{n-1}=\xi_{1}^{n-1} a^{n-1},
\end{aligned}
$$

so that \mathfrak{B} is a power-associative nilalgebra of nilindex $n-1$.
Finally, if \mathfrak{B} is Jordan, then $0=\left(a^{2} b\right) a-a^{2}(b a)=\left(a^{2} b\right) a=\lambda a^{n-1}+\lambda_{1} a^{n-1}$, so that $\lambda=0=\lambda_{1}$. Reciprocally, if $\lambda=0=\lambda_{1}$, then $\left(b-\lambda_{2} a^{n-3}\right) \mathfrak{B}^{2}=\{0\}$ and Theorem 2.1 of [3] implies that \mathfrak{B} is Jordan. This completes the proof of the theorem.

We therefore have the following result.
Remark 10. Let \mathfrak{A} be a commutative nilalgebra of dimension and nilindex n. Take $(a, b) \in \mathcal{P}(\mathfrak{A})$ and $\lambda \in F$ such that $a b=\lambda a^{2}$. If $x=\xi b+\sum_{i=1}^{n-1} \xi_{i} a^{i}$ is an element of \mathfrak{A}, then:
(i) for $n=5,6$ we have that x has nilindex n if and only if $\xi_{1}\left(\xi_{1}+2 \xi \lambda\right) \neq 0$;
(ii) for $n \geq 7$, we have that x has nilindex n if and only if $\xi_{1} \neq 0$.

References

[1] A. A. Albert, Power Associative Rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
[2] I. Correa and A. Suazo, On a Class of Commutative Power Associative Nilalgebras, Journal of Algebra 215 (1999), no. 2, 412-417.
[3] L. Elgueta and A. Suazo, Jordan Nilalgebras of Nilindex n and Dimension $n+1$, Comm. Algebra 30 (2002), no. 11, 5547-5561.
[4] M. Gerstenhaber and H. C. Myung, On Commutative Power Associative Nilalgebras of Low Dimension, Proc. Amer. Math. Soc. 48 (1975), 29-32.
(Recibido en junio de 2011. Aceptado en diciembre de 2012)

Departamento de Matemática-IME Instituto de Matemática e Estatística

Universidade de São Paulo Rua do Matão, 1010 Caixa Postal 66281 São Paulo, Brazil
e-mail: jcgf@ime.usp.br

Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales
Universidad de Antioquia
Apartado Aéreo 1226
Medellin, Colombia
e-mail: marom@matematicas.udea.edu.co

Revista Colombiana de Matemáticas

[^0]: ${ }^{\text {a }}$ Partially supported by FAPESP, 10/50347-9.

