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Abstract. Some formulae of Niebur and Lanphier are derived in an elementary

manner from previously known formulae. A new congruence formula for τ (p)
modulo p is derived as a consequence. We use this congruence to numerically

investigate the order of τ (p) modulo p.
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Resumen. Obtenemos algunas fórmulas de Niebur y Lanphier de manera ele-

mental a partir de formulas conocidas. Deducimos una nueva fórmula para la

congruencia τ (p) modulo p. Utilizamos esa fórmula para estudiar numérica-

mente el orden multiplicativo de τ (p) modulo p.

Palabras y frases clave. Fórmulas para la función tau de Ramanujan, congru-

encias.

1. Introduction

For a positive integer n we denote by σk(n) the sum of all k-th powers of the
positive divisors of n and let σ(n) denote σ1(n). Ramanujan’s tau function is
denoted by τ(n).

We consider convolution sums of the form

Sa(r, n) =
n−1
∑

k=1

krσa(k) σa(n− k)

where r ≥ 0 is a non-negative integer and a > 0 is a positive integer.

By changing k by n− k in the summation, we get an elementary property
of these sums (see also [20]):
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Sa(r, n) =

r
∑

j=0

nr−j

(

r

j

)

(−1)jSa(j, n). (1)

It turns out that by putting together (1) with some classical formulae given
below (see Section 2), we can prove (see Section 3) some formulae of Niebur
and Lanphier for Ramanujan’s tau function.

The values of some of the convolution sums modulo a prime number p
are computed in Section 4. Some computations concerning properties of the
order oτ (p) of τ(p) modulo p were done which improve some known results. It
turns out that oτ (p) does not seem to be uniformly distributed in 1, . . . , p− 1.
More precisely, we have oτ (p) > p−1

12 for about 92% of primes in a range of
length roughly about 800 000. This seems to be a surprising property of the tau
function. Indeed (see Section 5), this property is a consequence of the random
behavior of the function f(p) = τ(p) modulo p as Jean-Pierre Serre kindly
explained it to me. In other words, any such random function f(p) should have
the same behavior as τ(p) and viceversa.

2. The Known Classical Formulae

Lemma 1. Let n > 0 be a positive integer. Then

12S1(0, n) = 5σ3(n)− (6n− 1)σ(n) (2)

n2(n− 1)σ(n) = 18n2S1(0, n)− 60S1(2, n) (3)

n3(n− 1)σ(n) = 48n2S1(2, n)− 72S1(3, n) (4)

120S3(0, n) = σ7(n)− σ3(n) (5)

756τ(n) = 65σ11(n) + 691σ5(n)− 252 · 691S5(0, n) (6)

τ(n) = n2σ7(n)− 540
(

nS3(1, n)− S3(2, n)
)

(7)

τ(n) = 15n4σ3(n)− 14n5σ(n)

− 840
(

n2S1(2, n)− 2nS1(3, n) + S1(4, n)
)

(8)

Proof. Formula (2) comes from Glaisher [5], later was proved by Ramanujan
[14], and appears also in [4, p. 300]. It is Formula (3.10) in [8] where the com-
plete history of the formula is described. Touchard [20] proved Formulae (3)
and (4). He used some results of Van der Pol [21]. Glaisher [6] first considered
Formula (5). It appears also in [1, p. 140, exercise 9] and in Lahiri’s paper
[9, Formula (9.1), p. 199]. It is Formula (3.27) in [8] where the complete his-
tory of the formula is described. Formula (6) appears in Lehmer’s paper [11,
Formula (9), p. 683] and also in [1, p. 140, exercise 10]. Formula (7) appears
in [21], corrected in [15]; see also [10, Theorem 1, Formula (i)]. Formula (8)
appears in [11, Formula (10), p. 683]. �X
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3. Proofs of Niebur and Lanphier Formulae

The main result of Niebur’s paper [12] is the formula:

τ(n) = n4σ(n)− 24
(

35S1(4, n)− 52nS1(3, n) + 18n2S1(2, n)
)

. (9)

Proof. Let ∆ be the difference of the right hand sides of (9) and Formula (8)
of Lemma 1. Then

∆ = (n4 + 14n5)σ(n)− 15n4σ3(n) + 408n2S1(2, n)− 432nS1(3, n).

By introducing the two special cases of Formula (1):

S1(1, n) =
1

2
nS1(0, n) (10)

and

S1(3, n) =
1

2

(

n3S1(0, n)− 3n2S1(1, n) + 3nS1(2, n)
)

, (11)

∆ becomes

∆ = 108n4S1(0, n)− 240n2S1(2, n) + (n4 + 14n5)σ(n) − 15n4σ3(n).

Applying now Touchard’s Formula (3) of Lemma 1 we get

∆ = 3n4
(

12S1(0, n) + (6n− 1)σ(n)− 5σ3(n)
)

.

Thus, by Formula (2) of Lemma 1 we get

∆ = 0;

this proves Niebur’s Formula (9). �X

Lanphier (see [10, the formula after Theorem 4]) obtained the following
formula as a consequence of his tau formulae:

2S1(3, n)− 3nS1(2, n) + n2S1(1, n) = 0. (12)

Proof. Call δ the left hand member of (12). Applying Formula (11) above we
get

δ = n2
(

nS1(0, n)− 2S1(1, n)
)

;

thus δ = 0 by Formula (10) above. This proves (12). �X

Now, we prove Lanphier’s [10, Theorem 1, Formula (iv) (equivalent to For-
mula (iii)) ].

τ(n) = −
1

2
σ7(n) +

3

2
n2σ3(n) +

360

n
S3(3, n). (13)
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Proof. Observe that a special case of Formula (1) is

S3(3, n) =
1

2

(

n3S3(0, n)− 3n2S3(1, n) + 3nS3(2, n)
)

. (14)

Let ∆1 be the difference of the right hand sides of Formula (7) of Lemma 1
and (13). Then, from (14) we get

∆1 = −
3

2
n2

(

− σ7(n) + σ3(n) + 120S3(0, n)
)

;

thus, ∆1 = 0 from Formula (4) of Lemma 1. �X

Finally, we prove Lanphier’s [10, Theorem 3].

τ(n) =
65

756
σ11(n) +

691

756
σ5(n)−

2 · 691

3n
S5(1, n). (15)

Proof. Observe that a special case of Formula (1) is

S5(1, n) =
1

2
nS5(0, n). (16)

Let ∆2 be the difference of the right hand sides of Formula (6) of Lemma 1
and (15). We have

∆2 =
691

3

−2S5(1, n) + nS5(0, n)

n
;

then from (16) we get ∆2 = 0. This finishes the proof of Niebur and Lanphier
results. �X

4. Some Congruences Modulo a Prime

Proposition 1 below follows immediately from Formula (1) and from Lemma 1,
Formulae (2), (3), (4) and (8).

Proposition 1. Let p be a prime number, then

a) S1(0, p) =
1
12 (p− 1)(5p− 6)(p+ 1)

b) S1(1, p) =
1
24 (p− 1)(5p− 6)(p+ 1)p

c) S1(2, p) =
1
24 (p− 1)(3p− 4)(p+ 1)p2

d) S1(3, p) =
1
24 (p− 1)(2p− 3)(p+ 1)p3

e) S1(4, p) =
1

840

(

(50p2 − 134p+ 85)(p+ 1)p4 − τ(p)
)

f) S1(5, p) =
1

336

(

(15p2 − 43p+ 29)(p+ 1)p4 − τ(p)
)

p.

Volumen 44, Número 2, Año 2010



ON SOME FORMULAE FOR RAMANUJAN’S TAU FUNCTION 107

Observe that Ramanujan’s Formula a) was rediscovered by Chowla [3]. Thus
we obtain.

Corollary 1. Let p be a prime number, then

i)
S1(r, p)

pr
≡ 1

2r+2 (mod p), for 0 ≤ r ≤ 3

ii) τ(p) ≡ −840S1(4, p) (mod p4)

iii) τ(p) ≡ −336S1(5,p)
p (mod p4)

Lehmer (see [11, p. 683]) used Formula (8) to compute τ(n) with a computer.
Let p be a prime number. Proceeding as before it is easy to see that

τ(p) = p4(p+ 1)(15p2 − 29p+ 15)− 840L4(p) (17)

is indeed Formula (8) evaluated at n = p, where

L4(p) =

p−1
∑

k=1

k2(n− k)2σ(k)σ(p − k).

The reduction modulo p4 of τ(p) computed with Formula (17), or equivalently,
with Formula e) of Proposition 1, is (ii) of Corollary 1.

For

T4(p) =

(p−1)/2
∑

k=1

k4σ(k)σ(p − k)

we have
S1(4, p) ≡ 2T4(p) (mod p).

From (ii) of Corollary 1 we get

Corollary 2.

τ(p) ≡ −1680T4(p) (mod p). (18)

This fact was used in some computer computations.

Very little is known about τ(p) modulo p. Some nice theoretical comments
appear in Serre’s paper [16, p. 12-13] (see [17] for the English version).

Recently, Papanikolas [13] obtained a new formula involving a certain finite
field hypergeometric function 3F2, namely,

τ(p) ≡ −1−
1

2

p−1
∑

k=2

(

1− k

p

)

(

3F2(p)p
2
)5

(mod p), (19)
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that holds for all odd prime numbers p. He states that 3F2(p) may take some
time to compute when p is large. But, perhaps, the bottleneck with (19) and
also with (18) is with the length of the summation.

Consider the following facts:

a) τ(p) ≡ 0 (mod p) for p ∈ {2, 3, 5, 7, 2411}, provided p < 107

b) τ(p) ≡ 1 (mod p) for p ∈ {11, 23, 691}, provided p ≤ 314 747

c) τ(p) ≡ −1 (mod p) for p ∈ {5807}, provided p ≤ 16091.

For a) see [7], for b) see sequence A000594 in [18], for c) see [19, p. 12].

Observe that either τ(p) = 0 (mod p) or τ(p) has an order, say oτ (p), in
the multiplicative group of nonzero elements of Z/pZ.

After some straightforward computations with Maple using Formula (18),
we got the following results that extend some of the above facts:

Let b = 882 389 and let 2 ≤ p ≤ b be a prime number. Set oτ (p) = 0 if
τ(p) ≡ 0 (mod p). Otherwise, set oτ (p) = the order of τ(p) modulo p in the
cyclic multiplicative group (Z/pZ)∗ of nonzero elements of Z/pZ. Then,

a) oτ (p) < 12 if and only if

p ∈{2, 3, 5, 7, 11, 13, 19, 23, 29, 37, 67, 151, 331, 353, 659, 691, 2069,

2411, 5807, 10891, 19501, 58831, 131617, 148921, 184843}.

More precisely, oτ (p) = 0 for p ∈ {2, 3, 5, 7, 2411}, oτ (p) = 1 for p ∈
{11, 23, 691}, oτ (p) = 2 for p ∈ {5807}, oτ (p) = 3 for p ∈ {19, 151, 148291},
oτ (p) = 4 for p ∈ {13, 37, 131617}, oτ (p) = 6 for p ∈ {19501}, oτ (p) = 7
for p ∈ {29, 659}, oτ (p) = 9 for p ∈ {10891, 184843}, oτ (p) = 10 for
p ∈ {331, 58831}, and oτ (p) = 11 for p ∈ {67, 353, 2069}.

b) Let 2 ≤ p ≤ b be a fixed prime number. Let π(p) denote the number of
prime numbers q ≤ p. Let r(p) be the quantity of prime numbers q ≤ p such
that

oτ (q) <
q − 1

12
;

then the quotient qp = 100 · r(p)
π(p) oscillates, but for p ≥ 718 187 has the

decimal form
qp = 7.6 ∗ . (20)

In this range, for about 92.4% of primes q one has

oτ (q) ≥
q − 1

12
.
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c) Moreover, for practically all the range considered, i.e., for

21391 ≤ p ≤ b

one has

qp < 8.0.

So for about 92% of such p’s the order of τ(p) modulo p in (Z/pZ)∗ is equal
to or exceeds

p− 1

12
. (21)

The computations took some time. About six days of idle time in an eighth
processor Linux machine running command line, cmaple 11, (for a 9- niced
process, running in background). For example to treat all the 100 primes be-
tween 491731 and 493133 the computer took about 16 minutes, while for an
interval of 100 primes between 830503 and 831799, the computer took about
41 minutes.

So (20) and (21) show, for these values of p at least, that the orders of τ(p)
modulo p are not uniformly (and neither randomly) distributed between 1 and
p− 1.

5. More Computations. Artin’s Constant and Randomness

Several further computations of the same kind were done. Essentially all based
on some suggestions of Serre. First of all, some functions that should behave
randomly were tested in place of τ in the same computations undertaken in
Section 4. The behavior of the (analogue) densities dp = qp/100 for all of them
was about the same. That is, there were small oscillations for small primes and
stabilization close to some constant for relatively large primes. For the constant
function f(p) = 2, we obtained dp = 0.8625151883 for p = 99 991 667 the latest
prime considered for.

Some examples of the “random” functions that we tested (in a more extended
range than in Section 4 as these functions were easier to compute) are the
following:

a) For f(p) = σ
(

p−1
2

)

modulo p, where σ(n) is the sum of all the positive
divisors of n, we obtained dp = 0.7714250998 for p = 99 991 667.

b) For f(p) = φ(p− 1)φ(p+1) modulo p, where φ(n) is the euler function, i.e.,
the number of coprime integers 0 < m < n, we obtained dp = 0.7680263843
for p = 99 991 667.

The next function was tested for two of the properties in the second step
below:
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c) For f(p) = q2(p) =
2p−1−1

p modulo p, the “2-Fermat quotient”, we obtained

the approximations (to the densities d1, d2) d1p = 0.4998536691 and d2p =
0.3741391367 for p = 254 269 523. Where d1 is the density of the primes p
with f(p) a square in (Z/pZ)∗ and d2 is the density of the primes p with
f(p) a generator of (Z/pZ)∗.

In a second (more important) step and following Serre suggestions, we con-
sidered more directly the random behavior of the tau function by trying the
computations listed below. They confirmed experimentally, or in other words,
gave computational evidence, of the randomness of the function τ(p) modulo
p. In particular e) below explains the density 0.92 discovered in Section 4.

More precisely the following was tested:

a) The density d of primes p with τ(p) a square in (Z/pZ)∗ should be equal to
1
2 . In fact we got the approximation dp = 0.4997695853 for p = 815 671.

b) The density d1, d3, d5, d15 of primes p ≡ 1 (mod 15) with τ(p) of order
1, 3, 5 or 15 in (Z/pZ)∗ modulo the 15-th powers, should be equal to 1

15 ,
2
15 ,

4
15 ,

8
15 respectively. We got the approximations d1p = 0.06423327896,

d3p = 0.1320350734, d5p = 0.2635603589, and d15p = 0.5400693312 for
p = 2 412 391.

c) The density d of primes p with τ(p) primitive, i.e., of maximal order p− 1
in (Z/pZ)∗, should equal Artin’s constant

A = 0.3739558136 · · ·

We got the approximation dp = 0.3756374808 for p = 815 671.

d) The quotient dp = r(p)
u(p) should be close to 1, for large p, where r(p) is the

number of primes q ≤ p such that τ(p) modulo p is primitive, and u(p) is
the sum:

u(p) =
∑

q≤p, q prime

φ(q − 1)

φ(q)

where φ is the euler function. It is well known (see [2]) that ep = u(p)/π(p)
converges to the Artin’s constant A. We got dp = 1.004598290 and ep =
0.3741287045 for p = 723 467.

e) The sum S12 of the densities Am for m ≤ 12 is close to 0.92, (more precisely
S12 = 0.92273 · · · ) where Am is the density of the primes p such that the
subgroup of (Z/pZ)∗ generated by a “generic” fixed integer is of given index
m. So that A1 = A, and e.g., A3 = 8

45A.

We got the following approximations Apm to Am for p = 787 217:
Ap1 = 0.3758095238, Ap2 = .2813809524, Ap3 = 0.06569841270, Ap4 =
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0.06842857143, Ap5 = 0.01890476190, Ap6 = 0.04919047619,
Ap7 = 0.008777777778, Ap8 = 0.01800000000, Ap9 = 0.007761904762,
Ap10 = 0.01449206349, Ap11 = 0.002904761905, Ap12 = 0.01228571429.
Thus the sum Ap1 + · · ·+Ap12 = 0.9236349206.
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