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Abstract. In this work, we design a [7, 5, 3] optimal linear code over

F11 and use the same method to obtain a [7, 5, 3] optimal linear code

over F7, equivalent to the one suggested in the tables of Andries E.

Brouwer [1]. We construct a linear code over F11 which yields a solu-

tion to a practical problem in dealing with students entering registra-

tion information. We also describe encoding and decoding algorithms

for this code.
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Resumen. En este trabajo diseñamos un [7; 5; 3] código lineal óptimo
sobre F11 y usamos el mismo método para obtener un [7; 5; 3] código
lineal óptimo sobre F7, equivalente al sugerido en las tablas de Andries

E. Brower [1]. Construimos un código lineal sobre F11 que da una solu-
ción a un problema práctico de registro de información por estudiantes.
También describimos algoritmos de codificación y decodificación para
este código.

1. Introduction

Every year, the Facultad de Matemáticas de Yucatán (FMAT) selects a dele-
gation of high school students to represent the state of Yucatán in the Mexican
Mathematical Olympiad.

The first phase of the selection process consists in inviting all high schools
to participate. At most 100 students from each high school are allowed to
participate. Each participant from that high school is issued an identification
number that serves to identify that student throughout the competition. In
the second phase, each student takes a common multiple choice exam and the
students use their unique identification number to identify themselves. Students
record their identification number on the top of the answer sheet, by filling in
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circles with a number 2 pencil, and below that, the students fill in the answers
to the math questions. This sheet is then machine read.

Thousands of students take this exam each year and routinely about ten
percent fail to record their identification number correctly. This failure causes
difficulties for the examination committee. The organizing committee asked us
help to solve this problem. To this end we designed an optimal, one error–
correcting two error–detecting linear code over the finite field F11.

2. On block and linear codes

2.1. Block codes. The terminology and basic concepts used here can be
found in [7], [8]. Let A be a finite set, called the alphabet, n a positive integer
and let An be the set of n-tuples from the set A. A block code C of length n
over A is a non-empty subset of An. Each element of the code will be called a
codeword. The Hamming distance for u = (u1, . . . , un) and v = (v1, . . . , vn) in
An is defined by d(u, v) = |{i : 1 ≤ i ≤ n, ui �= vi}|. Given a block code C ⊆ An

its minimal distance is defined as d(C) = mı́n{d(u, v) : u, v ∈ C, u �= v}. An
(n, M, d) code is any code of length n, M codewords and minimum distance d.

A code is said to be t-error–detecting if whenever t ≥ 1 symbols in any
codeword are changed, the resulting vector is not a codeword. We say that a
code is t-error–detecting exactly if it is t-error–detecting but not (t + 1)-error–
detecting.

Theorem 1([7]) A code C is t-error–detecting exactly if and only if d(C) = t+1.

A code is called t-error–correcting if for each y ∈ F
n
q there is at most an

element x ∈ C such that d(x, y) ≤ t. We say that a code is t-error–correcting
exactly if it is t-error–correcting but not (t+1)-error–correcting. In the following
theorem, �·� denotes the floor function.

Theorem 2([7]) A code C has minimum distance d if and only if it is �d−1
2 �–

error—correcting exactly.

In accordance with this last Theorem, if we know the minimum distance d of
a code, we know its error–correcting capability, which is �d−1

2 �, and conversely.
In general, is not easy to find the minimum distance of a code, and this is one
of the principals problems in Coding Theory.

2.2. Linear codes. Let Fq the finite field with q = pα elements, where p
is a prime number, α a positive integer, and C ⊆ F

n
q a code. The Hamming

weight for a vector u ∈ F
n
q is defined as w(u) = d(u,0), where 0 denotes

the vector of zeros of F
n
q . The minimum weight of the code C is defined as

w(C) = mı́n{w(u) : u ∈ C � {0}}.
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We say that C ⊆ F
n
q is a linear code if C is a subspace of F

n
q . From now

we shall use [n, k, d]q as the notation for a linear code over Fq of length n,
dimension k and minimum distance d. The number k is called the dimension
of the code.

If C ⊆ F
n
q is a linear code and u, v ∈ C with u �= v, then u − v ∈ C � {0}

and therefore w(C) ≤ d(C). Conversely, since 0 ∈ C and w(u) = d(u,0), then
w(C) ≥ d(C). Hence, for linear codes, the minimum distance and the minimum
weight coincide.

A generator matrix for an [n, k]q code C is any matrix whose rows form a
Fq–basis for C. Note that if C is an [n, k]q code and G is a generator matrix for
C, then C = {vG : v ∈ F

k
q}. This relationship provides an encoding scheme for

C: if v ∈ F
k
q is the original message, then vG is the codeword.

The inner product between two vectors u = (u1, . . . , un) and v = (v1, . . . , vn)
in F

n
q is defined as u · v =

∑n
i=1 uivi ∈ Fq. If C is an [n, k]q code, the set

C⊥ = {u ∈ F
n
q : u ·v = 0 for all v ∈ C} is an [n, n−k]q code called the dual code

of C. If H is a generator matrix for C⊥, then v ∈ C if only if Hvt = 0t, where
vt is the transpose of v. Because of this, the matrix H is called the parity check
matrix of C. The following result permits the easy calculation of the matrix H
when the generator matrix has a very special form.

Proposition 1. ([7]) If an [n, k]q code C has a generator matrix G = [Ik|A],
then a parity check matrix for C is H = [−At|In−k], and conversely.

Let σ be a permutation of size n. For i = 1, . . . , n let αi be a non-zero scalar
in F. Then the map μ : F

n
q → F

n
q defined as

μ(v1, . . . , vn) = (α1vσ1 , . . . , αnvσn)

is called a monomial transformation of degree n. We say that two [n, k]q codes
C1 and C2 are scalar multiple equivalent if there is a monomial transformation
μ of degree n for which {μ(v) : v ∈ C1} = C2.

Lemma 1. Let C1 and C2 be two [n, k]q codes, then C1 is scalar multiple
equivalent to C2 if and only if C⊥

1 is scalar multiple equivalent to C⊥
2 .

Proof. Suppose that C1 is scalar multiple equivalent to C2. Then, there is a
permutation σ of size n, and there are nonzero scalars α1, . . . , αn in Fq such
that

C2 = {(α1vσ1 , . . . , αnvσn) : (v1, . . . , vn) ∈ C1} .

This implies that

C⊥
2 =

{
(α−1

1 uσ1 , . . . , α
−1
n uσn) : (u1, . . . , un) ∈ C⊥

1

}
.

Therefore, C⊥
1 is scalar multiple equivalent to C⊥

2 . The converse is similar. ��
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3. Design of the Code

In this section we will design a code that will help us solve the problem posed
in section 1. We begin with the design of the key and then proceed to design a
code with the proper error–correcting capabilities. Then, we give a method for
encoding the keys. The decoding process will be given in the next section.

3.1. Designing the key to encode. Registration for the selection process
is carried out on a website. High schools use this webpage to enter the names
of the student participants. The entries on the webpage consist of two items,
the name of the school and the student participant. When the high school has
completed their registration, a 3 digit number (1-999) is assigned to the school
and a 2 digit number (1-99) is assigned to the student. The school-student 5
digit number is thus the key to encode. Note that this key is unique to each
student.

3.2. Construction of the code. The organizing committee decided that
the code must have the following characteristics:

1. The data collected from previous contests showed that some students
made one error in transcribing their key into the answer sheet, and
rarely were there two errors. Therefore, the organizing committee asked
for a 1-error correcting code. By Theorem 2, the minimum distance of
the code should be 3 or 4.

2. The codeword must have the shortest length possible, since the longer
it is, the more likely that the participant commits more errors.

3. The messages should be easy to encode and the codewords should be
easy to decode.

4. The algorithms used for encoding and decoding must be easily imple-
mented in software.

On the one hand, because the key of the previous section consists of digits from
0 to 9, the alphabet we will use is the field F11 = {0, 1, 2, . . . , 10}, where the sum
and multiplication is done modulo 11. Good encoding and decoding algorithms
exist for linear codes and our code will be linear. Specifying a generator or parity
check matrix is enough to determine this code. We will use these matrices to
encode the original message and decode messages received.

As the key consists of 5-F11 entries, the matrix generating for the code must
have rank 5. Thus, two of the parameters of the code are determined: the
dimension of the code, k = 5, and the minimum distance d, which should be
3 or 4. Thus, we need to determine the length of the code (which should be
minimal). If we know two parameters of a code, there are certain bounds that
allow us to determine the third, among them, the Singleton Bound.

Following [8], set A(n, d) = max{M : an (n, M, d) code exists}. The study of
the numbers A(n, d) is considered to be central in combinatorial coding theory.
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A (resp., linear) code C such that |C| = A(n, d) is called optimal (resp., optimal
linear).

Theorem 3. (Singleton Bound, [8]) For any positive integers q, n, d, q ≥ 2 we
have A(n, d) ≤ qn−d+1.

The Singleton bound implies that any [n, k, d]q linear code must satisfy

qk ≤ A(n, d) ≤ qn−d+1.

It follows that

k ≤ n − d + 1. (1)

Now notice that any [n, k, d]q linear code is optimal if and only if k = n−d+1.
Therefore, according to (1), the length of the code should be n ≥ 7 or

n ≥ 8. As we want the shortest length possible, we question whether a [7, 5, 3]11
code exists. It is worth mentioning that there are not always codes given the
parameters n, k and d (for an example of this fact, see [5]). But this is not our
case and we proceed to build a parity check matrix H as follows: for the first
column of H choose the vector v1 = (1, 1) ∈ F

2
11. For the second column of

H we select any nonzero vector in F
2
11 other than a multiple of v1; we take

v2 = (1, 2). The third column of H would be a nonzero vector in F
2
11 that is

not a multiple of v1 and v2; let v3 = (1, 3). We continue this way until we
complete the first five columns of this matrix. For the last two columns we
chose the vectors (1, 0) and (0, 1) to use Proposition 1 and obtain a dual code
of dimension two. Thus, the parity check matrix is:

H =
[

1 1 1 1 1 1 0
1 2 3 4 5 0 1

]
.

Therefore, a generator matrix G for a [7, 5]11 linear code is:

G =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 10 10
0 1 0 0 0 10 9
0 0 1 0 0 10 8
0 0 0 1 0 10 7
0 0 0 0 1 10 6

⎤
⎥⎥⎥⎥⎦ .

The shape of these arrays will allow us to give very simple rules for encoding
and decoding. Denote by C the [7, 5]11 code with generator matrix G and parity
check matrix H given above. Note that the columns of H are different from
zero and that any two of its columns are linearly independent, hence we deduce
that w(C ) ≥ 3. Since the difference of the first two rows of G is a codeword in
C with Hamming weight 3, we concluded that w(C ) = 3. Hence, this is a code
with the characteristics we seek, which is quite appropriate to our purposes
(see section 5 of this work).
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If (x1, x2, x3, x4, x5) is the key to any participant as described above, then
this would be encoded as

(x1, x2, x3, x4, x5, 10(x1 + · · · + x5), 10x1 + 9x2 + · · · + 6x5),

where operations are carried out in the field F11. This codeword is the one that
each participant receives and will have to write in their answer sheet. As you
can see all the information of the student is in it. A program implemented in a
computer is responsible for creating the key for each student and also codifying
it. Thus, these processes are free from human error. We now address the process
of decoding, which is presented below.

4. Decoding C

Suppose that we send x ∈ C and that we receive y, which (possibly) was
corrupted in at most one coordinate, ie, w(y − x) ≤ 1. If w(y − x) = 0, then
y = x ∈ C and this happens if and only if Hyt = 0t. If w(y − x) = 1,
y − x = αei, where α ∈ F11 � {0} and ei has a one in the position i, 1 ≤ i ≤ 7,
and zeros in the others. Then y = x+αei and hence Hyt = αhi, where hi is the
column i of H. We distinguish between two cases. First, if i = 6 or i = 7, then
y−x = (0, 0, 0, 0, 0, α, 0) or y−x = (0, 0, 0, 0, 0, 0, α) respectively. For 1 ≤ i ≤ 5,
the hi column has all its coordinates no zero. The first is 1 and the second is
between 1 and 5. Then, the first coordinate of the vector (α, β)t = Hyt is the
no zero coordinate of y−x and βα−1, where α−1 is the inverse of α in F11, tell
us the position where the error has occurred when 1 ≤ βα−1 ≤ 5. If βα−1 ≥ 6,
there must have occurred more than one error. Our decoding scheme can be
summarized in the following algorithm:

1. Input:The information received y = (y1, y2, y3, y4, y5, y6, y7)
2. Calculate Hyt = (α, β)t

3. IF (α, β)t= (0, 0)t or α = 0 or β = 0
(x1, x2, x3, x4, x5, x6, x7) = (y1, y2, y3, y4, y5, y6 − α, y7 − β)

ELSE
IF 1 ≤ βα−1 ≤ 5, set i = βα−1

e = αei = (0, . . . , α, . . . , 0)
(x1, x2, x3, x4, x5, x6, x7) = y − e

ELSE
print “More than one error has occurred”

4. Output:(x1, x2, x3, x4, x5, x6, x7) or“More than one error has occurred”.

Example 1. Let c = (0, 0, 1, 1, 1) be a key as described in the section 3. We
encode this key as x = (0, 0, 1, 1, 1, 8, 10). Suppose that y = (0, 1, 1, 1, 1, 8, 10)
is the key written on the answer sheet rather than x. We can see that an error
has occurred but in practice we do not know that this happened. Then, we
work with the only thing we know: the vector y. We have that Hyt = (1, 2)t

and because (1, 2)t �= (0, 0)t, we calculate the inverse of 1 in the field F11
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(it is 1) and we see that 1 · 2 = 2. Therefore e = (0, 1, 0, 0, 0, 0, 0). Hence,
y − e = (0, 0, 1, 1, 1, 8, 10), which coincides with x since in this case one error
has occurred.
Example 2. Let x as in the example above and we suppose that the student
recorded his key as the vector y = (1, 0, 1, 1, 1, 9, 10) (A vector in which two
errors have occurred.) Therefore Hyt = (2, 1)t �= (0, 0)t. The inverse of 2 in F11

is 6 and therefore, 6 · 1 = 6 > 5. Hence the output of the algorithm is “More
than one error has occurred”.

It is also possible that more than two errors occurred, but in this case the
code C is not always able to detect it and indeed, it may be that the resulting
vector be a codeword. This does not contradict the detecting and correcting
capability of code C since the Theorems 1 and 2 establish clearly these capa-
bilities.

5. Some properties of C

The most important property of the code C is that its parameters satisfy
the equality d = n − k + 1. In particular, C is an optimal linear code. Usually
[n, k, n− k + 1] linear codes are called Maximum Distance Separable because
the codewords are the most distant possible (with respect to the Hamming
metric). This favors the decoding of such codes (for details see [7], [8]).

Finding optimal codes is one of the main problems of Coding Theory and
many efforts have been made with the aim of identifying such codes in certain
fields [2], [4], [6]. In the chapter “Bounds on linear codes” of [3] there are
Brower’s tables which contain bounds on the parameters of various types of
codes over the field Fq for q ∈ {2, 3, 4, 5, 7, 8, 9}. More updated versions of these
tables can be found in [1]. Thus, the code C is not in these tables, although
can be obtained from the well-known general theory of optimal linear codes.

The code C can be used to transmit at most 161051 different messages. This
amount is more than what we need but this excess allows that C can be used
in other situations with increased demand, where one error is not uncommon
but two errors are rare. This will also justify the choice of field F11. If it is
required a code with fewer codewords and with the same parameters that C ,
we suggest the [7, 5, 3]7 code C1 with generator matrix and parity check matrix
given below,

H1 =
[
1 1 1 1 1 1 0
1 2 3 4 5 0 1

]
and G1 =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0 6 6
0 1 0 0 0 6 5
0 0 1 0 0 6 4
0 0 0 1 0 6 3
0 0 0 0 1 6 2

⎤
⎥⎥⎥⎥⎦ .

The matrix H1 was built in the same manner as the matrix H. This is not
a coincidence and the shape of these matrices is very general as shows the
following
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Theorem 4. Each [7, 5, 3]q code C (up to scalar multiple equivalence) has
generator matrix G = [I5| − At], where A is the Fq–matrix

A =
[

1 1 1 1 1
α1 α2 α3 α4 α5

]
,

with αi �= αj ,and αi a unit in Fq for 1 ≤ i, j ≤ 5. Moreover, these codes exist
for q ≥ 7 and none of them is equivalent to a Hamming code.

Proof. Suppose there is an [7, 5, 3]q code with parity check matrix H . Applying
elementary operations the matrix H can be transformed to

H ′ =
[
c1 c2 c3 c4 c5 1 0
d1 d2 d3 d4 d5 0 1

]
.

By Lemma 2, the code C is scalar multiple equivalent to the code with parity
check matrix H ′. As any two columns of H are linearly independent and equiv-
alent codes have the same minimum distance, then the scalars c1, . . . , c5, d1,
. . . , d5 are nonzero in Fq. Thus, we can transform the matrix H ′ to the matrix

H =
[

1 1 1 1 1 1 0
d1c

−1
1 d2c

−1
2 d3c

−1
3 d4c

−1
4 d5c

−1
5 0 1

]
.

Again, by Lemma 2, the code with parity check matrix H ′ is scalar multiple
equivalent to the code with parity check matrix parity H. This implies that
C is scalar multiple equivalent to the code with generator matrix of the form
asked in the theorem, where αi = dic

−1
i , for 1 ≤ i ≤ 5. Note that the α′

is
are different, because the columns of H are linearly independent. From this
observation we can conclude that the finite fields for which these codes exist are
those with group of units of order ≥ 5. The smallest number with this property
is q = 7. Now, remember that a Hamming code of order r on Fq and length n has
parameters [n = (qr−1)/(q−1), n−r, 3]q. Being C a [7, 5, 3]q code, we must have
necessarily that r = 2. Then [(q2−1)/(q−1) = (q+1), 5, 3]q = [q+1, 5, 3]q. But
as we have proved that [7, 5, 3]q codes exist for q ≥ 7, then q+1 ≥ 8. Therefore,
none [7, 5, 3]q code can be equivalent to a Hamming code as the length of the
blocks do not match. ��

Theorem 4 is a concrete instance of the following theorem [7, Theorem 5.3.2].
Theorem 5. An [n, k]q code with parity check matrix H is optimal if and only
if n − k columns of H are linearly independent.

On the other hand, we must emphasize that in [1] is provided a code which
have the same parameters of C1 and is constructed in the following way:

1. Construct the [57, 54, 3]7 Hamming code (r = 3);
2. Shorten the [57, 54, 3]7 Hamming code in the coordinates 51, . . . , 57.

We obtain a [50, 47, 3] code;
3. Delete from the [50, 47, 3]7 code the (at most) 42 coordinates of a word

in the dual;
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4. Shortening the last [8, 6, 3] code in the eighth coordinate code gives the
parity check matrix of the desired code.

It should be noted that our construction is simpler than that suggested in [1].
In addition, the construction indicated in [1], in step 3 does not specify which
coordinates must be eliminated. Using the Magma c© computer algebra system,
removing the 42 last coordinates of step 3, we find the following parity check
matrix,

H̃ =
[

1 0 1 2 3 4 5
0 1 1 1 1 1 1

]
.

Obviously, we obtain the matrix H1 permuting the columns of H̃ . Hence, the
code suggested in [1] is scalar multiple equivalent to the code C1 by Lemma 1.

In general, the weight distribution of an optimal linear code is known [7].
Using this result and MacWilliams Identities for linear codes, we calculate the
weight distribution wi and w⊥

i of C and C⊥, respectively.

i wi w⊥
i

0 1 1
3 350 -
4 2800 -
5 17430 -
6 57820 70
7 82650 20

A linear code is a projective code if w(C⊥) ≥ 3. Therefore, C is a projective
code.

Finally, note that the algorithms for encoding and decoding data given are
still valid, with slight modifications, for any code C described above in Theorem
4.
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