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Abstract. One of the common methods to solve algebraic Riccati

equations is using matrix sign function to calculate stable invariant

subspaces. In this paper, we show that it is possible to compute the ma-

trix sign function using the quadratically convergent Kovarik’s method.

Since the explicit inversion of a matrix, in every iteration, must be

computed, this will introduce unstability in numerical results. The

modification for Kovarik’s method is presented here in such way, that

the elimination of matrix inversion is considered and, therefore, com-

putational process is limited for every iteration to matrix-by-matrix

multiplications.
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Resumen. Uno de los métodos comunes para resolver ecuaciones al-
gebraicas de Ricatti es usar la función signo matricial para calcular
subespacios invariantes estables. En este art́ıculo mostramos que es
posible calcular esta función usando el método cuadráticamente con-
vergente de Kovarick.

1. Introduction

The algebraic Riccati equations of the form

AT X + XA − XRX + G = 0 (1)

appears in various control and filtering problems of continuous time systems,
where A,R and G are given n × n matrices, R and G are symmetric positive
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semidefinite. A special case of (1) is the algebraic Bernouli equation

AT X + XA − XRX = 0

with G = 0. In applications, the desired solution X of (1) must be symmetric
positive semidefinite and stabilizing in the sense that all eigenvalues of A−RX
have negative real parts. Under mild technical assumptions on the problems,
the existence and uniqueness of such a solution is guaranteed [24].

There have been offered various numerical methods to solve algebraic Riccati
equation, which can be reviewed in [19]. The key of numerical technique to
solve (1) is to convert the problem to a stable invariant subspace problem of
the 2n × 2n Hamiltonian matrix

H =
(

AT G
R −A

)
,

i.e., finding the invariant subspace corresponding to the eigenvalues of H with
negative real parts. We observe that X satisfies (1) if and only if[

AT G
R −A

] [
X −In

In 0

]
=
[
X −In

In 0

] [−(A − RX) −R
0 (A − RX)T

]
. (2)

The matrix H is said to be Hamiltonian if JH = (JH)T , where J =
[

0 In

−In 0

]
.

If λ is an eigenvalue of the Hamiltonian matrix H, then −λ is too. It is well-
known that H has precisely n eigenvalues with negative real parts. If columns
of (UT V T )T span the desired invariant subspace, then U is invertible and the
solution X of (1) is given by X = −V U−1 [16].

The numerical solution of the Riccati equation by the computation of the
stable invariant subspace has received considerable interest over decades. The
existing methods include the Schur vector method [16], the Hamiltonian QR-
algorithm [1, 6], the SR algorithm [5], and the matrix sign function method [2,
7, 23]. Among all these existing algorithms, the matrix sign function method is
apparently the most suitable method for parallel implementation [17]. However,
in the inner loop iteration of the method, it is required to compute matrix
inversion, which is potentially numerically unstable when the matrix is ill-
conditioned to inversion [9].

The purpose of this article is to calculate matrix sign function, and there-
fore to solve algebraic Riccati equation, using Kovarik’s method [15]. Kovarik’s
method is quadratically convergent and in every iteration of which, the explicit
inverse of a matrix must be calculated. Here, we present a modification for Ko-
varik’s method in such way every iteration needs only matrix-by-matrix mul-
tiplication. This modification is comparable to Kovarik’s method. In section
2, we introduce matrix sign function and Newton method for its computation.
In section 3, the Kovarik’s method and some of its convergence property is
discussed. We show, in section 4, how to calculate matrix sign function by
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Kovarik’s method (in the future work, we will turn to numerical results of the
method).

2. Matrix sign function

Let us first briefly recall the matrix sign function method for computing the
stable invariant subspace. Suppose

H = S

(
J− 0
0 J+

)
S−1

be the Jordan canonical form of the matrix H, where the eigenvalues of J−
are the eigenvalues of H with negative real parts and the eigenvalues of J+ are
the eigenvalues of H with positive real parts. Then the matrix sign function
sign (H) is defined by [2, 23]

sign (H) = S

(−In 0
0 +In

)
S−1 .

If H has an eigenvalue with zero real part, then sign (H) will not be defined.
It follows immediately from the definition that if sign (H) is defined and C is
nonsingular, then sign (C−1HC) = C−1sign (H)C. The matrix

P− =
1
2
(I2n − sign (H)) = S

(
In 0
0 0

)
S−1

is the projection on the stable invariant subspace corresponding to the eigen-
values with negative real parts. Then the first n columns (QT

11 QT
21)

T of Q in
the rank revealing QR decomposition of P− span the stable invariant subspace,
and the desired solution X of (1) is given by X = Q21Q

−1
11 .

The matrix sign function method was first introduced by Roberts [23] for
solving the algebraic Riccati equation. However, it was soon extended to solving
the spectral decomposition problem [4]. A survey can be found in [3, 18].

Since the matrix sign function sign (H) satisfies sign2(H) = I2n [10, 11], we
may use the Newton method

H0 = H, Hj+1 =
1
2
(
Hj + H−1

j

)
, j = 0, 1, 2, . . . , (3)

to compute sign(H). It can be shown that the iteration is globally and ulti-
mately quadratically convergent with limj→∞ Hj = sign(H), provided H has
no pure imaginary eigenvalues [12, 23]. The Newton iteration is terminated
when ‖Hj+1 − Hj‖1 ≤ τ‖Hj‖1, where τ is a given tolerance value. Starting
(3) with the Hamiltonian matrix H0 = H makes each Hj Hamiltonian, too.
Unfortunately, in finite precision arithmetic, the ill conditioning of a matrix
Hj with respect to inversion and rounding errors, may destroy the convergence
of the Newton iteration (3), or cause convergence to the wrong answer. There
exist different scaling schemes to speedup the convergence of the iteration, and
make it more suitable for parallel computation [14, 19].
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Byers [7] improved the method (3) by changing the inversion of nonsym-
metric matrices to symmetric ones for a Hamiltonian matrix. More results can
be found in Laub’s review article [17]. There have been some modifications
for Newton’s method to remove the necessity of inverse calculation [14, 10, 7].
For example, if ‖H2 − I2n‖ < 1, then we can use Newton–Schulz iteration

H0 = H, Hj+1 =
1
2

Hj

(
3I2n − H2

j

)
, j = 0, 1, 2, . . . ,

to avoid the use of the matrix inverse.
If H has no eigenvalue with zero real part, then it is shown that the matrix

sign function satisfies [11, 13]

sign(H) = (H2)−1/2H.

In section 4, we use of this definition for computing matrix sign function by
Kovarik’s method.

3. Kovarik’s method

Kovarik [15] proposed his algorithm for approximate orthogonalization of
a finite linearly independent set of vectors in a Hilbert space. His algorithm
is some kind of iterative version of the classical Gram-Schmidt one and also
some of its direct applications have been derived for variational finite element
formulation of elliptic problems and least squares. Kovarik showed that the
approximate orthogonalization method has quadratic convergence. The main
difficulty with this method is the necessity of computing the inverse of a matrix
explicitly in every iteration. Many years after Kovarik, Popa [22] adapted
and extended his algorithm for a set of arbitrary vectors in Rn, and proved that
the transformed matrix columns, in addition to rows, are “quasi-orthogonal”.

Suppose m ≤ n and M is a m × n real matrix of rank r. Approximate
orthogonalization method of Kovarik is to transform M to a matrix with ap-
proximate orthogonal rows (see (8)). This method starts with M0 = M and
produces the sequences of Kk and Mk, k ≥ 0, as follow:

Kk = (Im − MkMT
k )(Im + MkMT

k )−1, Mk+1 = (Im + Kk)Mk, k ≥ 0. (4)

Kovarik showed that if the rows of matrix M are linearly independent and

M� =
[
(MMT )1/2

]−1

M

then,

(a) the rows of M� are orthogonal;
(b) the sequence of matrices Mk, k ≥ 0, defined in (4), are convergent to

M�. In addition,
‖K0‖ < 1
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and
‖M� − Mk‖2 ≤ ‖K0‖2k

2 , ∀ k ≥ 1. (5)

The inequality (5) shows that Kovarik’s method is convergent of the second
order.

Based on the fact that rows of M are linearly independent, we can conclude
that Gram’s matrix MMT is symmetric and positive definite. Therefore, the
matrix M� is well-defined. On the other hand, if rows of matrix M are not
linearly independent, there still exists matrix (MMT )1/2 but not invertible. In
this case, we regard “natural” generalization of M� as

M∞ =
[
(MMT )1/2

]+
M .

Here, B+ shows the Moore-Penrose pseudo–inverse of matrix B [9]. It is proved
[22] that Mk matrices, in this case, converge to M∞ and the rows of M∞ are
approximately orthogonal.

We know that I + MkMT
k is invertible if and only if [9]

‖MkMT
k ‖2 < 1. (6)

For k = 0, the condition of (6) turns into

‖MMT ‖2 < 1. (7)

If (7) is the case, it is proved that (6) holds for all k ≥ 1. On the other hand,
the assumption (7) is not restrictive. It is enough to scale matrix M , say, as
the following:

Mnew :=
1√‖M‖1‖M‖∞ + 1

M.

Hence, without loss of generality, we suppose that matrix M satisfies (7).
Therefore, by putting δ = 1 − λmin, where λmin is the smallest nonzero eigen-
value of MMT , we have

M∞ := lim
k→∞

Mk =
[
(MMT )1/2

]+
M

and
‖Mk − M∞‖2 ≤ δ2k

, ∀ k ≥ 0.

Suppose that SVD factorization of matrix M is

UT MV = (σ1, . . . , σr, 0, . . . , 0),

where
σ1 ≥ · · · ≥ σr > 0, r = rank (M).

By putting

Ĩ =
[

Ir 0
0 0

]
m×m

,
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we can prove [22] that the following “approximately orthogonal” relationship
satisfies among the rows of M∞:

〈(M∞)i, (M∞)j〉 = 〈(U)iĨ , (U)j〉. (8)

If the rows of matrix M are linearly independent, then Ĩ = I and (8) is the same
classical orthogonal relation. Popa showed that there is a similar relationship
between the columns of M∞ and

lim
k→∞

κ2(Mk) = κ2(M∞) = 1.

Despite the quadratic convergence of Kovarik’s algorithm, there is a difficult
computational aspect related to the matrix inversion in (4) at each of its iter-
ations. Several modifications have been proposed for Kovarik’s method, all of
which try to eliminate the necessity to explicitly compute the inverse. These
are upon using some approximations for (I +AkAT

k )−1, based on Taylor’s series
of particular functions, and are commonly linearly convergent [20, 21, 22].

We have offered [8] a single parameter class of modifications for Kovarik’s
method by using a special quadratic polynomial interpolation which is not need-
ing any inverse calculation but only matrix-by-matrix multiplications. We have
proved that the convergence of the mentioned class is linear and its asymptotic
error constant is a function of parameter. We chose the best value of parameter
such that the convergence is monotonic and asymptotic error constant is very
small. Despite the fact that Kovarik’s method and our modification are con-
vergent of the second and first order, respectively, numerical experiments show
that our modification works as efficiently as Kovarik’s method in iterations and
costs. On the other hand, our modification provides good results with less work
and is free from numerical problems.

4. Kovarik’s method to calculate matrix sign function

We consider Kovarik’s method for Hamiltonian matrix

H0 = H =
(

AT G
R −A

)
as the following:

Kk = (I2n − H2
k)(I2n + H2

k)−1, Hk+1 = (I2n + Kk)Hk, k ≥ 0. (9)

Suppose that Jordan canonical form of matrix H0 is as

S−1H0S =

(
J

(0)
− 0
0 J

(0)
+

)
= Σ(0).

Inductively, assume that Jordan canonical form of matrix Hk can be written
as

S−1HkS =

(
J

(k)
− 0
0 J

(k)
+

)
= Σ(k).
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In this case,

S−1Hk+1S =S−1(I2n+Kk)HkS =S−1HkS+S−1(I2n−H2
k)(I2n+H2

k)−1HkS

=S1HkS + S−1(I2n − HkSS−1Hk)SS−1(I2n + HkSS−1Hk)−1SS−1HkS

=S−1HkS + S−1(I2n − HkSS−1Hk)S[S−1(I2n + HkSS−1Hk)S]−1S−1HkS

=S−1HkS + (I2n − S−1HkSS−1HkS)[I2n + S−1HkSS−1HkS]−1S−1HkS

=Σ(k) + [I2n − (Σ(k))2][I2n + (Σ(k))2]−1Σ(k) = Σ(k+1)

is the Jordan canonical form of the matrix Hk+1, in which

Σ(k+1) = Σ(k) + [I2n − (Σ(k))2][I2n + (Σ(k))2]−1Σ(k).

Therefore,

J
(k+1)
− = J

(k)
− +

(
In − (J (k)

− )2
)(

In + (J (k)
− )2

)−1

J
(k)
−

J
(k+1)
+ = J

(k)
+ +

(
In − (J (k)

+ )2
)(

In + (J (k)
+ )2

)−1

J
(k)
+ .

If
J

(k)
+ = diag (σ(k)

1 , σ
(k)
2 , . . . , σ

(k)
n ),

J
(k)
− = diag (η(k)

1 , η
(k)
2 , . . . , η

(k)
n ),

then,

σ
(k+1)
j =

[
1 +

1 − (σ(k)
j )2

1 + (σ(k)
j )2

]
σ

(k)
j =

2σ
(k)
j

1 + (σ(k)
j )2

, j = 1, . . . , n, k ≥ 0, (10)

η
(k+1)
j =

[
1 +

1 − (η(k)
j )2

1 + (η(k)
j )2

]
η
(k)
j =

2η
(k)
j

1 + (η(k)
j )2

, j = 1, . . . , n, k ≥ 0. (11)

Hence, the convergence of Kovarik’s method is reduced to that of real numbers
sequences (10) and (11). On the other hand, as we need only the sign of real
parts of the eigenvalues, without loss of generality, we can suppose that the
absolute value of all eigenvalues of H0 is less than one and H0 has no pure
imaginary eigenvalues. In addition, to calculate the projection matrix P−, we
need to have those eigenvalues with negative real parts. Therefore, we focus
only on sequence (11). This sequence starts from an initial value η

(0)
j , with

0 < η
(0)
j < 1. If ηj is the limit of sequence (11), then ηj = 2ηj/(1+ η2

j ), so that

it follows ηj = ±1. As sequence (11) is strictly ascending for η
(0)
j ∈ (0, 1), we

have ηj = 1.
Kovarik’s method (9) needs the calculation of matrix inverse in every iter-

ation. Various modifications have been offered which have tried to eliminate
this precondition. These modifications are obtained with approximation of
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1/(1 + (η(k)
j )2) (and therefore, (I2n + H2

k)−1). For example, the approximation
of

1
1 + (η(k))2

≈
qk∑

s=0

(
−(η(k)

j )2
)s

has been used in [20] resulting in the modification of

Kk = (I2n − H2
k)

qk∑
s=0

(−H2
k)s, Hk+1 = (I2n + Kk)Hk, ∀ k ≥ 0

for Kovarik’s method. Here, qk is a positive odd arbitrary integer which must
be chosen large enough to obtain a good convergence. Moreover, for qk to be
even, it’s likely not to be convergent.

We have offered a single parameter modification class in [8] as

Kk = (Im − MkMT
k )(Im − αMkMT

k ), Mk+1 = (Im + Kk)Mk, k ≥ 0 (12)

for Kovarik’s method in which α ∈ (0, 1] is a parameter. We proved that
every modification in this class is linearly convergent. In addition, the choice
of α = 0.507 gives us

Kk = (Im − MkMT
k )(Im − 0.507MkMT

k ), Mk+1 = (Im + Kk)Mk, k ≥ 0
(13)

that is the best linearly convergent modification with a strict convergence and
asymptotic error constant of 0.014. Numerical experiments show that the num-
ber of iterations of the above modification is the same as that of Kovarik’s
method so that the calculation time is less. In addition, calculation cost in ev-
ery iteration is restricted to matrix-by-matrix multiplications and is less than
that for Kovarik’s method. We note that the above modification does not need
any calculation of matrix inverse. Finally, the following method is suggested
to calculate matrix sign function:

Kk = (I2n − H2
k)(I2n − 0.507H2

k), Hk+1 = (I2n + Kk)Hk, k ≥ 0. (14)

In future work, we will express the numerical results of this modification.

Conclusion

In this paper, we study the matrix sign function method to solve algebraic
Riccati equation. We suggest an algorithm, based on Kovarik’s approximate
orthogonalization method, to calculate the matrix sign function. It is theo-
retically observed that Kovarik’s method can be used to calculate matrix sign
function, and in turn, to solve algebraic Riccati equation. Numerical tests will
be analyzed in future works.
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1–12.

[9] G. H. Golub & C. F. van Loan, Matrix computations. The Jhon’s Hopkins Uni-
versity Press, Baltimore, 1983.

[10] N. J. Higham, Computing the polar decomposition –with applications. SIAM J. Sci.
Stat. Comput. 7 (1986), 1160-1174.

[11] N. J. Higham, The matrix sign decomposition and its relation to the polar decompo-
sition. Lin. Alg. Appl. 20 (1994), 212–213.

[12] J. Howland, The sign matrix and the separation of matrix eigenvalues Lin. Alg. Appl.
49 (1983), 221–232.

[13] C. S. Kenney & A. J. Laub, The matrix sign function. IEEE Trans. Automat.
Control 40 (1995), 1330–1348.

[14] C. Kenney & A. Laub, Rational iteration methods for the matrix sign function.
SIAM J. Mat. Anal. Appl. 21 (1991), 487–494.

[15] Z. Kovarik, Some iterative methods for improving orthogonality. SIAM J. Numer.
Anal. 7 (1970), 386–389.

[16] A. J. Laub, A Schur method for solving algebric Riccati equations. IEEE Trans. Auto.
Control AC-24 (1979), 913–921.

[17] A. Laub, Invariant subspace method for the numerical solution of Riccati equations.
In S. Bittanti, A.J. Laub & J. C. Willems (editors),Riccati Equations, Berlin,
Springer–Verlag, 1990.

[18] C–C. Lin & E. Zmijewwski, A parallel algorithm for computing the eigenvalues
of an unsymetric matrix on an SIMD mesh of processors. Department of Computer
Science TRCS 91–15, University of California, Santa Barbara, CA, July 1991.

[19] V. Mehrmann, The linear quadratic control problem: Theory and numerical algo-
rithms. Habilitationsschrif Universität Bielefeld FRG, 1987.

[20] C. Popa, A method for improving orthogonality of rows and columns of matrices.
International J. Computer Mathematics 77 (2001), 469–480.

[21] C. Popa, Extention of an approximate orthogonalization algorithm to arbitrary rect-
angular matrices. Lin. Alg. Appl. 33 (2001), 181–192.

[22] C. Popa, Modified Kovarik algorithm for approximate orthogonalization of arbitrary
matrices. International J. Computer Mathematics 80 (2003), 519–525.

[23] J. Roberts, Linear model reduction and solution of the algebric Riccati equation Inter.
J. Control 32 (1980), 677–687.



22 H. Esmaeili

[24] M. Wonham, Linear Multivariable Control Theory: A Geometric Approach. Springer–
Verlag, New York, 2nd edition, 1979.

(Recibido en abril de 2007. Aceptado para publicación en abril de 2008)

H. Esmaeili, Department of Mathematics

Bu-Ali Sina University, Hamedan, Iran

e-mail: Esmaeili@basu.ac.ir


